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Probabilistic programming languages are valuable because they allow domain experts to express probabilistic

models and inference algorithms without worrying about irrelevant details. However, for decades there

remained an important and popular class of probabilistic inference algorithms whose efficient implementation

required manual low-level coding that is tedious and error-prone. They are algorithms whose idiomatic

expression requires random array variables that are latent or whose likelihood is conjugate. Although that is

how practitioners communicate and compose these algorithms on paper, executing such expressions requires

eliminating the latent variables and recognizing the conjugacy by symbolic mathematics. Moreover, matching

the performance of handwritten code requires speeding up loops by more than a constant factor.

We show how probabilistic programs that directly and concisely express these desired inference algorithms

can be compiled while maintaining efficiency. We introduce new transformations that turn high-level pro-

babilistic programs with arrays into pure loop code. We then make great use of domain-specific invariants

and norms to optimize the code, and to specialize and JIT-compile the code per execution. The resulting

performance is competitive with manual implementations.
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1 SIMPLIFYING AND OPTIMIZING PROBABILISTIC PROGRAMMING

Many users of an algorithm would rather not worry about the details of its efficient implementation
or correctness proof.Whether the algorithm is copied from a textbook by a programmer or generated
from a domain-specific language by a compiler, the vocabulary used to express the algorithm needs
to be mapped to executable code before the algorithm can be run. For example, if the algorithm
invokes sorting, then it is easier to turn into executable code using a language or library that
features a sorting routine. To take a more recent example, if the algorithm refers to the gradient of
a function, then it is easier to turn into executable code using automatic differentiation.
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In the realm of probabilistic programming, while a wide variety of languages [Carpenter et al.
2017; De Raedt et al. 2007; de Salvo Braz et al. 2007; Fischer and Schumann 2003; Goodman et al.
2008; Goodman and Stuhlmüller 2014; Huang et al. 2017; Kiselyov 2016; Kiselyov and Shan 2009;
Lunn et al. 2000; Mansinghka et al. 2014; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2014;
Patil et al. 2010; Pfeffer 2007, 2016; Tran et al. 2017; Tristan et al. 2014; Wood et al. 2014; Wu et al.
2016] have made many algorithms easier to express, many practically-important inference methods
continue to require manual transformation and implementation. In this paper, we extend the range
of probabilistic inference algorithms that can be turned automatically into executable code, to
include arrays whose distributions need to be simplified and whose loops need to be optimized.

• Simplification includes eliminating latent variables and recognizing conjugate likelihoods.
– Briefly, a latent variable is a random variable whose value may be used in the program
but is not returned. Elimination is widely applied to discrete and continuous variables
[de Salvo Braz et al. 2007; Dechter 1998; Poole and Zhang 2003; Sanner and Abbasnejad 2012;
Zhang and Poole 1994, 1996] and is known in various contexts as Rao-Blackwellization
[Blackwell 1947; Casella and Robert 1996; Gelfand and Smith 1990; Kolmogorov 1950;
Murray et al. 2018; Rao 1945], collapse [Koller and Friedman 2009; Liu 1994; Liu et al. 1994;
Venugopal and Gogate 2013], marginalization [Meng and van Dyk 1999; Obermeyer et al.
2018], and integrating out [Griffiths and Steyvers 2004; Resnik and Hardisty 2010].

– Briefly, a conjugate likelihood is a weight on samples that can be made constant while pre-
serving semantics by changing how the samples are generated in the first place. Conjugacy
is a preferred starting point and basic building block of Bayesian data modeling [Gelman
et al. 2014, page 36] and underlies such popular applications as Naive Bayes classification
[Bayes 1763] and Bayesian linear regression [Borgström et al. 2016].

• Loop optimization includes reordering sums to achieve superlinear speedups, and fusing and
specializing loops to obtain one more order of magnitude in performance.

As the description above suggests, the importance of this class of algorithms has been established in
applied statistics for decades. However, turning the vocabulary used to express them into executable
code had required manual calculation and coding that is tedious and error-prone [Cook et al. 2006;
Geweke 2004]. Our work thus paves the way for programmers and compilers alike to target a
higher-level probabilistic language with arrays and to worry less about the details of the correctness
of distribution simplifications and the efficiency of loop optimizations.
One major reason that turning high-level algorithms into efficient code is difficultÐwhether

by hand or by machineÐis that it requires sophisticated symbolic mathematics. Recent research
has started to automate such reasoning on probabilistic programs [Carette and Shan 2016; Gehr
et al. 2016; Hoffman et al. 2018; Tran et al. 2017]. However, even systems that support arrays either
fail to perform popular transformations such as latent-variable elimination (as in Augur [Tristan
et al. 2014], AugurV2 [Huang et al. 2017], and Edward [Tran et al. 2017]) or unroll random choices
entirely at prohibitive performance cost (as in PSI [Gehr et al. 2016]). Given that arrays are key in
almost any inference algorithm, unrolling is a non-starter for efficient execution.
We remove these obstacles to automation. Probabilistic programmers can express high-level

algorithms and expect sophisticated transformations to automate efficient execution on large arrays
of data. We present a domain-specific compilation pipeline that meets all these goals. Specifically:

(1) We extend probabilistic programs and their simplification to those with arrays of large or
arbitrary size, such as arrays of size n or of size n1-by-n2-by-n3, where each n is large and/or
unknown (Section 3). Our array simplification transformation is modular in that it reuses
existing technology underlying scalar simplification and, like that technology, eschews brittle
pattern matching of specific distributions and extends easily to new primitive distributions.
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• We extend symbolic integration in computer algebra to high- and arbitrary-dimensional
integrals, such as integrals over Rn or over Rn3n2n1 , where each n is large and/or unknown.

• We introduce the symbolic unproduct operation to uncover independence underlying a
program so as to apply our simplification transformation. This process traverses an input
term systematically and recursively to uncover its equivalence to a sequence of products∏

i

∏
j

∏
k of any given length.

(2) We introduce the histogram optimization (Section 4), which asymptotically speeds up loops
by rewriting them as map-reduce expressions in a modular and general way.
• This optimization unnests loops, by locating conditionals buried deep inside any level of
nested loop bodies. It is particularly effective on simplified array probabilistic programs.

(3) We optimize the resulting array-manipulating code aggressively yet safely, by taking advan-
tage of the domain-specific features of probabilistic programs (Section 5).
• We carefully engineer loop-invariant code motion (LICM) and loop fusion, so that they
apply soundly, widely, and profitably.

• We further use just-in-time (JIT) compilation to propagate static information.
(4) We show that while each of our techniques is valuable, their compositionÐour pipelineÐ

is dramatically more effective. In other words, each bullet item above is a significant and
essential contribution.

Section 2 lays out our compilation pipeline and sets the stage for these technical contributions.
We emphasize that our aim is not to improve the compilation of models already handled by

existing systems, but rather to enable the compilation of algorithms not handled by existing systems
and not expressed by previous probabilistic programmers. We compile probabilistic programs that
directly and concisely express a new and open class of algorithms of lasting and current significance
that previously required manual, tedious, and error-prone mathematics and coding. Of course, we
can only measure our system against other systems on tasks that they can also do. The quantitative
evaluation in Section 6 demonstrates that our proof-of-concept system achieves the competitive
performance expected of the newly expressed algorithms, relative to handwritten code for the
same algorithms and other state-of-the-art systems carrying out different algorithms. Whereas our
system automates exact inference and collapsed Metropolis-Hastings (MH) sampling, our modular
tools and techniques automate tasks often performed manually by practitioners of many other
inference methods. Hence, for example, it is promising to incorporate our contributions in a future
system that supports Hamiltonian Monte Carlo (HMC) or variational inference.

2 COMPILATION PIPELINE OVERVIEW

The heart of many popular inference algorithms is to calculate a conditional distribution exactly
and possibly sample from it. This pattern is clearest and most challenging in Gibbs sampling, which
repeatedly updates a sample by conditioning on some of its dimensions. But the same pattern
recurs in MH, HMC, and importance sampling, because they require computing a density, which is
the total of a conditional distribution. And in important cases such as Bayesian linear regression,
an exact solution is available, because conditioning the model on the observed data results in a
distribution that can be represented in a closed form. Due to this pattern, practitioners communicate
and compose not only probabilistic models (such as hidden Markov models [Rabiner 1989]) but
also inference algorithms (such as Markov Chain Monte Carlo (MCMC) [MacKay 1998]) using
the same probabilistic programming constructs: sampling, sequencing, looping, conditioning, and
so on. Therefore, it makes sense to express both modeling and inference distributions in a single
declarative language of measures, as pioneered by the proof-of-concept probabilistic programming
system Hakaru [Narayanan et al. 2016; Zinkov and Shan 2017].
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conditional distribution
patently linear
expression

simplified distribution simplified
patently linear
expression

map-reduce expressions

combined let bindings

Sham IR

Sham IR

Sham IR x86 code

model

LLVM IR

disintegrate MH, . . .

Gibbs

integrate (Section 3.3)

reduce (Section 3.4)
recognize (Section 3.4)




simplify
(Section 3)

histogram (Section 4)




histogram
(Section 4)

A-normalization; loop-invariant code motion (Section 5.1)

loop fusion; lowering (Section 5.1)

common indexing-expression elimination (Section 5.1)

constant propagation; array pre-allocation (Section 5.2)

lowering śO3





code gen
(Section 5)

static data such as array sizes

Fig. 1. Our pipeline, compiling probabilistic programs via math into imperative code to process data

The compilation pipeline in this paper is designed to express such inference algorithms concisely
and execute them efficiently. The starting point is a probabilistic program that expresses the desired
inference algorithm by denoting the conditional distribution to calculate and possibly sample. That
is, we represent the inference distribution as a generative process, which is a step-by-step procedure
for drawing random variables and computing a final outcome. Some procedures score their outcome
so its importance weight varies from run to run; other procedures make no random choice so the
computation is deterministic.
Figure 1 lays out our compilation pipeline from model to code. Because this paper starts with

the conditional distribution near the top, it leaves open the issue of how to find the desired
inference algorithm. After all, there is no single inference method that works well for all models,
and knowing what works well takes domain expertise not available to a compiler. In Hakaru, which
our implementation builds on, the inference distribution is typically produced by metaprogramming
constructs that form a directed graph of choices [Narayanan and Shan 2017; Shan and Ramsey 2017;
Zinkov and Shan 2017], depicted schematically at the very top of the figure. In another context, the
inference distribution may be produced by hand. Either way, producing the inference distribution is
outside the scope of this paper. Rather, the contributions of this paper start as soon as the inference
algorithm is expressed as a conditional distribution, as it is naturally in the literature.
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The probabilistic IR in which we express and simplify inference distributions is the Hakaru
language. Because Hakaru eschews general recursion and is typed and terminating, all abstractions
can be beta-reduced away near the start of the pipeline, leaving a first-order core whose constructs
express mathematical operations and the measure monad (Figure 2). Other probabilistic languages
that allow general recursion may well profit from selectively applying our pipeline, but that is
outside the scope of this paper.

An elementary tour. We sketch a simple application to give an impression of the parts of our
pipeline. The rest of the paper elaborates on this Gaussian mixture example.

Suppose we observe n data points. Each data point lies at some location along the real line and
belongs to one ofm classes, so we store our observations in two arrays of size n: the locations in
®s ∈ R

n and the class labels in ®y ∈ {0, . . . ,m − 1}n . A simple model of how these data points came
to be might say that each class has an underlying location, not directly observed, and the location
of each data point is a noisy measurement of the underlying location of the class of the data point.
Whether we are interested in estimating the locations of the classes or predicting the locations
of upcoming data points, the disintegration transformation can produce a probabilistic program
that denotes the distribution of our quantity of interest, conditioned on our observations. In this
program, each possible underlying location of a class is weighted, or scored, by the likelihood of
the noisy measurements that we observed from the class.

Starting with this probabilistic program for a conditional distribution, our simplification transfor-
mation produces a closed-form formula that (a) estimates the underlying location of each class or
predicts the location of each upcoming data point, and (b) evaluates how well the observed data
fits the model. As one might expect, part (a) is based on the mean of the data points in that class,
and part (b) is based on the variance of the data points in that class. Thus, the formula generated
by simplification contains sums such as

∑n−1
j=0

{
®s[j]2 i=®y[j]
0 otherwise

∑n−1
j=0

{
®s[j] i=®y[j]
0 otherwise

∑n−1
j=0

{
1 i=®y[j]
0 otherwise

(1)

where i ∈ {0, . . . ,m−1} is a class label. Each of the three sums take timeO(n) to compute, so looping
over allm classes takes O(mn) time. Improving upon this situation, our histogram transformation
discovers that each of the three sums can be computed for allm classes in a single pass through the
data that creates an array of sizem:

let hist2 := newArray(m)
for j = 0 to n − 1:
hist2[®y[j]] += ®s[j]2

let hist1 := newArray(m)
for j = 0 to n − 1:
hist1[®y[j]] += ®s[j]

let hist0 := newArray(m)
for j = 0 to n − 1:
hist0[®y[j]] += 1

(2)

Now the computation takes only O(n) time for allm classes. Even better, the code in (2) never
materializes because our domain-specific code generator aggressively optimizes these loops: it fuses
the three loops into one, eliminates the common indexing expressions ®y[j] and ®s[j], pre-allocates
the three output arrays, and JIT-specializes the machine code not only to the given sizem but also
to the addresses of the pre-allocated output arrays.
These aggressive optimizations might be overkill if we only need to perform the computation

once for a given sizem. But the generated code may well be the inner loop of an approximate
inference algorithm that solves a harder problem. For example, suppose that the class labels ®y are
not observed. Then, a closed-form solution is no longer available. A popular solution approach,
called MCMC, is to design a random walk among themn possible values of ®y that approximates
the target distribution. The transition probabilities of this random walk are calculated by repeating
part (b) above at every step. Hence these optimizations are worthwhile, and we automate them.
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3 SIMPLIFYING ARRAY PROGRAMS

To simplify a probabilistic program is to produce a more efficient (or readable) program while still
representing the same distribution. Carette and Shan [2016] introduced a simplifier that applies
computer algebra strategically to the linear operator denoted by a probabilistic program: their
simplifier eliminates latent variables and recognizes conjugate likelihoods by exploiting domain
constraints. We extend that simplifier to handle probabilistic programs with arrays, which naturally
represent high- and arbitrary-dimensional distributions that arise in inference algorithms.
Our extended simplifier handles latent variables and conjugacy by exploiting constraints on

array indices. A key part, the unproduct operation (Section 3.4), uncovers independence in the
mathematical denotations of array programs; this operation is derived from first principles and
subsumes AugurV2’s rewrite rule for indirect indexing [Huang et al. 2017]. Without unrolling an
array or even knowing its concrete size, our simplifier computes exact distribution parameters that
recover sufficient statistics such as sample mean, sample variance, and word counts by document
class. These informative symbolic parameters let us compile inference algorithms such as MCMC
on Dirichlet-multinomial mixtures.

Simplification depends heavily on computer algebra. Our extended simplifier is implemented in
Maple, but we do not rely on features specific to Maple, and we have experimented with SymPy
and obtained promising results.
The rest of this section uses a progression of examples to explain what our extended simplifier

does, why it’s useful, and how it works. To pump intuition about Bayesian inference, these examples
use simplification as a form of exact inference, even though simplification is also essential for
efficient approximate inference, as discussed in Section 2.

3.1 Background

We tour Carette and Shan’s simplifier [2016] with an example. Consider the distribution over R2

generated by

(1) drawing x ∈ R from the normal distribution with some fixed mean µ and standard deviation 1;
(2) drawing y, z ∈ R from the normal distribution with mean x and standard deviation 1; and
(3) returning the pair [y, z].

These steps model two noisy measurements y, z of the unknown location x of a particle along
the real line. To model that we do not directly observe the location x , the returned outcome [y, z]
omits x , and we say that the random variable x is latent. We represent this distribution by the term

Bind(Gaussian(µ, 1), x,Bind(Gaussian(x, 1),y,Bind(Gaussian(x, 1), z,Ret([y, z])))), (3)

in which µ is a free variable, and x,y, z are bound and take scope to their right. To create generative
processes, we use two constructs of Giry’s monad of probability distributions [1982] (which was
popularized by Ramsey and Pfeffer [2002]):

• Ret(e) produces the outcome e deterministically.
• Bind(m, x,m′) carries out the processm (such as the primitive distribution Gaussian(µ, 1))
and binds the outcome to the variable x then carries outm′ to get the final outcome.

Figure 2 shows the essential part of the language. We write the informal type MT for distributions
(measures) over the type T . Whereas Giry’s and Ramsey and Pfeffer’s works concerned probability
distributions, our language includes theWeight(e,m) construct for weighting samples or scaling
distributions. Because the weight e is not bounded, our language can express not just probability
or sub-probability distributions but the more general class of s-finite measures [Staton 2017].

One way to interpret the term (3) is as a monadic program that samples three random numbers
each time it is run. But before running the program, we can first use Carette and Shan’s simplifier
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Types T ,U F R
�� R+

�� Z
�� N

�� MT
�� AT

�� · · ·
Some primitive distributions (see [Carette and Shan 2016] for more)

a : R b : R

Uniform(a,b) : MR

µ : R σ : R+

Gaussian(µ,σ ) : MR

α : R+ β : R+

Beta(α, β) : MR
+

e : AR
+

Categorical(e) : MN

Measure combinators

e : T

Ret(e) : MT

e : R+ m : MT

Weight(e,m) : MT

m : MT

[x : T ]···
m′ : MU

Bind(m, x,m′) : MU

Array constructs

e0 : T . . . en−1 : T

[e0, . . . , en−1] : AT

e : AT i : N

e[i] : T
n : N

[i : N]···
e : T

ary(n, i, e) : AT

n : N

[i : N]···
m : MT

Plate(n, i,m) : M (AT )
e : AT

#e : N

Fig. 2. Informal term typing rules for distributions and (new) for arrays. The bracketed judgments indicate

the scope of bound variables; for example, in Bind(m, x,m′), the variable x takes scope overm′ but notm.

[2016] to turn it into

Bind(Gaussian(µ,
√
2),y,Bind(Gaussian( 12 (µ + y),

√
6
2 ), z,Ret([y, z]))). (4)

The latent variable x was eliminated, and the distributions ofy and z adjusted accordingly. Compared
to the program (3), the program (4) makes fewer random choices yet produces the same distribution.
That is, the two programs are equivalent if we interpret M as the distribution monad, but (4) uses
randomness more efficiently if we interpret M as the sampling monad [Ramsey and Pfeffer 2002].
Moreover, we can read off from the form of (4) exactly how to perform a kind of Bayesian inference:
If we have measured y but not z, we can predict z using

Gaussian( 12 (µ + y),
√
6
2 ), (5)

a subterm of (4). (In particular, we can estimate z using the mean 1
2 (µ + y).) That is, the simplifier

has computed (5) to be the conditional distribution of z given y in our model.
To pump intuition about Bayesian inference, we ordered the random variables x,y, z in (3) so

that simplification produces a conditional distribution (5). If we had commuted the bindings of y
and z, then simplification would instead produce the conditional distribution of y given z. This
illustrates that simplification, like a typical optimization pass, is sensitive to syntactic choices in
semantically equivalent inputs, even though it preserves semantics.
We now zoom into how simplification works. Figure 1 illustrates the structure of Carette and

Shan’s simplifier [2016], whose parts we extend with arrays. It turns (3) into (4) by three steps.
First, the simplifier converts the program (3) into

∫

R

∫

R

∫

R

e−
1
2 (x−µ)2
√
2π

e−
1
2 (y−x )2
√
2π

e−
1
2 (z−x )2
√
2π

h([y, z])dz dy dx . (6)

This quantity is the expectation of an arbitrary measurable function h : R2 → R
+ with respect to

the distribution. In other words, the simplifier interprets M as the expectation monad [Ramsey
and Pfeffer 2002]. The expectation (6) is linear in h. To understand this integral, consider when

h([y, z]) =
{
1 [y,z]∈S
0 otherwise

for some S ⊆ R
2; the integral is then just the probability of S . Each factor

in (6), such as e−
1
2 (x−µ )

2

√
2π

, is the density of a primitive distribution, here Gaussian(µ, 1) at x .
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д F ℏ(e)
�� e · д

�� д1 + · · · + дn
�� If(e,д,д)

��
∫ b

a
дdx

��
∫
X
дd ®x X F (a,b)

�� ∏d
i=c X

Fig. 3. The grammar of expressions patently linear in ℏ. The denotation of д and the range of ℏ lie in R
+.

Metavariables a,b, c,d, e stand for expressions, whereas ℏ, x, i stand for variables. New is the last д-production,

for integrals over high- and arbitrary-dimensional spaces X . We omit д F
∑b
i=a д as we treat distributions

over Z by analogy to those over R.

Second, noticing that the variable x is latent (that is, no argument to h contains x free), the
simplifier symbolically integrates over x to get

∫

R

∫

R

e−
1
3 µ

2
e−

1
3y

2
e

1
3 µye−

1
3 z

2
e

1
3 µze

1
3yz

2
√
3π

h([y, z])dz dy. (7)

Third, inverting the first step, the simplifier converts (7) back to a program, namely (4). This
conversion requires the simplifier to recognize that a factor, such as the fraction in (7), is the
density of a primitive distribution, here (5) at z. Recognizing a factor as the density of a distribution
subsumes recognizing the conjugacy of a likelihood with respect to a distribution. To recognize a
factor by matching it against syntactic patterns would be brittle and ad-hoc. Instead, the simplifier
characterizes the factor f (z) by its holonomic representation [Chyzak and Salvy 1998; Wilf and
Zeilberger 1992], a first-order linear differential equation (here 3f ′(z) = (µ + y − 2z)f (z)) whose
coefficients (here 3 and µ + y − 2z) are polynomials in z.

Fortunately, functions with holonomic representations constitute a large class with useful closure
properties, such as closure under integration, differentiation, and composition with algebraic
functions [Kauers 2013]. Taking advantage of these closure properties, the simplifier computes the
holonomic representation from the factor expression compositionally and not by pattern matching.
Moreover, because the coefficients are polynomials, their ratios can be matched efficiently and
robustly using existing algorithms such as Euclid’s algorithm. Therefore, this third and final step
of the simplifier is robust against syntactic perturbations, general across primitive distributions,
and modular so that implementing each primitive distribution separately suffices for conjugacy
relationships among them to be recognized [Carette and Shan 2016].
The first of the three steps, integrate(m,h), produces an expression patently linear in h by

structural induction on the programm. The expression produced by integrate(m,h) denotes the
expectation, or Lebesgue integral, of the function h with respect to the distributionm; for example,
integrate((3),h) produces (6), and integrate((4),h) produces something that expands to (7). Because
distributions m and the linear operators λh. integrate(m,h) are in one-to-one correspondence
[Pollard 2001, Section 2.3], any simplification of integrate(m,h) that preserves its meaning also
preserves the distribution denoted bym. But feeding (6) willy-nilly to a computer algebra system
will not out-of-the-box improve it to (7) and may even make it worse. Instead, Carette and Shan’s
simplifier [2016] operates strategically on parts of a patently linear expression, guided by the
grammar in Figure 3.

3.2 Scalar Simplification Is Not Enough

Given that Carette and Shan’s simplifier [2016] works on scalar probabilistic programs, one might
hope that array probabilistic programs can be simplified by applying the same simplifier to scalars
in loop bodies. Unfortunately, the array programs that express desired inference algorithms require
extending the simplifier at the level of mathematical denotations, not just applying it strategically
at the level of source programs. Before describing our extended simplifier, we motivate it with four
increasingly tricky examples. Along the way, we introduce the array constructs of our language.
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We begin with an example of an array program that is trivial to handle using the scalar simplifier.
The distribution over R2 in Section 3.1 generalizes to one over R2n , generated by repeating the
following for i = 0, . . . ,n − 1:

(1) drawing x ∈ R from the normal distribution with some fixed mean µ and standard deviation 1;
(2) drawing y, z ∈ R from the normal distribution with mean x and standard deviation 1; and
(3) returning the pair [y, z].

This distribution models 2n noisy measurements of the unknown locations of n particles along the
real line. Because the loop body returns a pair of reals, the loop returns an array of n pairs of reals.
We represent this distribution by

Plate(n, i,Bind(Gaussian(µ, 1), x,Bind(Gaussian(x, 1),y,Bind(Gaussian(x, 1), z,Ret([y, z]))))).
(8)

The new construct Plate forms a monadic loop: the variable n above is free like µ and denotes
an arbitrary iteration count, and the variable i is an index that takes scope over the monadic
action to its right. In general, Plate(n, i,m) is a monadic action whose outcome is an array of n
elements, independently drawn from the distributionsm{i 7→ 0}, . . . ,m{i 7→ n − 1}. (Indices begin
at 0.) The informal typing rule for Plate in Figure 2 says accordingly that ifm has typeMT then
Plate(n, i,m) has typeM (AT ), where AT means arrays of T . This Plate construct is named after
plate notation for repetition in Bayes nets [Buntine 1994; Koller and Friedman 2009]. It is like
Data.Vector.generateM in Haskell, but since each array element is drawn independently, a Plate
is a parallel comprehension [Huang et al. 2017].

Of course, we can apply the scalar simplifier to the subexpression (3) in (8), and the result is an
improvement for the same reasons as for (3): it makes fewer random choices (2n instead of 3n) and
enables probabilistic inference (from measuring each y to predicting each z).

But pointwise simplification is not enough. It is just as natural to express essentially the same
distribution by multiple loops: we can generate a pair of arrays of n reals by

(1) drawing ®x[i] ∈ R from the normal distribution with mean µ and standard deviation 1, for
i = 0, . . . ,n − 1;

(2) drawing ®y[i], ®z[i] ∈ R from the normal distribution with mean ®x[i] and standard deviation 1,
for i = 0, . . . ,n − 1; and

(3) returning the pair [®y, ®z].
We use accents on the three variables ®x, ®y, ®z to remind ourselves that they denote arrays, so their
type is AR, and element i of ®x is ®x[i], not x[i]. Again using Plate, we represent this distribution by

Bind(Plate(n, i,Gaussian(µ, 1)), ®x,
Bind(Plate(n, i,Gaussian(®x[i], 1)), ®y,
Bind(Plate(n, i,Gaussian(®x[i], 1)), ®z,Ret([®y, ®z]))))

(9)

and we want to simplify this probabilistic program to

Bind(Plate(n, i,Gaussian(µ,
√
2)), ®y,

Bind(Plate(n, i,Gaussian( 12 (µ + ®y[i]),
√
6
2 )), ®z,Ret([®y, ®z]))).

(10)

Before we can apply the scalar simplifier, we seem to have to first fuse the three Plate loops in (9),
to form a single loop body to simplify.

Loop fusion is still not enough. Fusing loops may seem promising, but the following richer classic
example illustrates the broader variety of array programs that simplification ought to improve.
Suppose we would like to model n + 1 data points drawn from a mixture ofm normal distributions.
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Each component i of the mixture might represent a different subpopulation, such as researchers of
different specialties. A Gaussian mixture distribution [Pearson 1894] can be generated by

(1) drawing the mixture weights ®θ , an array ofm non-negative reals that sum to 1, from some
Dirichlet distribution;

(2) drawingm component means ®x[i] from Gaussian(µ,σ ), for i = 0, . . . ,m − 1;
(3) drawingn class labels ®y[j] ∈ {0, . . . ,m−1} from the discrete distribution ®θ , for j = 0, . . . ,n−1;
(4) drawing n data points ®s[j] from Gaussian(®x[®y[j]], 1), for j = 0, . . . ,n − 1;
(5) drawing one more class label z ∈ {0, . . . ,m − 1} from the discrete distribution ®θ ;
(6) drawing one more data point t from Gaussian(®x[z], 1); and
(7) returning the tuple [®y, ®s, z, t].

By first drawing the random indices ®y, z then using those class labels to decide which means in ®x to
draw ®s, t around, this process models how different subpopulations share different characteristics.
Again, we want to automate the process by which human experts simplify this program to make
fewer choices (eliminating ®θ, ®x ) and enable inference (predicting z, t from ®y, ®s).

We first examine how to eliminate ®x , then turn to eliminating ®θ . At first glance, it is not obvious
how to eliminate the latent array variable ®x , because the loop where ®x is drawn and the loop where
®x is used (to draw ®s) range over different domains (i = 0, . . . ,m − 1 and j = 0, . . . ,n − 1) and cannot
be fused. However, we can group the iterations of the latter loop by which element of ®x they use:
each ®x[i] is used to draw exactly those ®s[j] for which i = ®y[j]. In other words, we can group the
elements of ®s by how they are classified in ®y. Hence we can transform steps 2, 4, and 6 above into a
single loop that, informally speaking, repeats the following for i = 0, . . . ,m − 1:

(2′) drawing ®x[i] from Gaussian(µ,σ );
(4′) drawing ®s[j] from Gaussian(®x[i], 1), for each j = 0, . . . ,n − 1 such that i = ®y[j]; and
(6′) drawing t from Gaussian(®x[i], 1) if i = z.

Because each ®x[i] drawn in the new step 2′ is used only in steps 4′ and 6′ in the same iteration
over i and not beyond, scalar simplification can eliminate ®x[i]. More formally, eliminating each ®x[i]
requires performing the integral

∫
R
ef ( ®x [i]) d ®x[i], whose integrand ef ( ®x [i]) multiplies together the

densities of the same Gaussian(®x[i], 1) at all the elements of ®s whose classification in ®y is i . Because
just one Gaussian(®x[i], 1) is involved, the exponent

f (x) =
n−1∑

j=0

{
− 1

2 (®s[j]−x )2 i=®y[j]
0 otherwise

= −1

2

(n−1∑

j=0

{
®s[j]2 i=®y[j]
0 otherwise

)
+x

(n−1∑

j=0

{
®s[j] i=®y[j]
0 otherwise

)
− 1

2
x2

(n−1∑

j=0

{
1 i=®y[j]
0 otherwise

)

(11)
depends on just one element x of ®x at a time. The result of the integration is expressed in terms of
the three summations in the right-hand side of (11) (same as (1)). They are the square-sum, sum,
and count of just those elements of ®s labeled by ®y to belong to class i; these summations recover
the sufficient statistics of the input data. Thus, simplifying array programs requires extracting
per-element formulas such as (11) and conjuring the conditionals therein to preserve semantics.

Even iteration reordering is not enough. Grouping loop iterations in the source program is enough
to eliminate the latent variable ®x but not ®θ . To explain why, we first need to explain what Dirichlet
distributions are. Dirichlet distributions are a family of distributions over arrays of non-negative
numbers that sum to 1 (the informal type is M (AR

+)). For simplification, we expand step 1 above,
łdraw ®θ from some Dirichlet distributionž, as a macro to the following:

(1a) drawing ®p[i] ∈ [0, 1] from some Beta distribution, for i = 0, . . . ,m − 2; and
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(1b) returning the array ®θ = [1 − ®p[0],
®p[0] · (1 − ®p[1]),
®p[0] · ®p[1] · (1 − ®p[2]),
®p[0] · ®p[1] · ®p[2] · (1 − ®p[3]),
. . . ,

®p[0] · · · ®p[m − 3] · (1 − ®p[m − 2]),
®p[0] · · · ®p[m − 3] · ®p[m − 2]].

(Here we notate an array by a bracketed list of elements.)

This expansion is a well-known, finite-dimensional variant of the stick-breaking process [Gelman
et al. 2014, page 583]. The intuition behind the name is to start with a stick of length 1 and break
off a piece of proportion ®p[0], then from that piece break off a piece of proportion ®p[1] (that is,
of length ®p[0] · ®p[1]), then from that piece break off a piece of proportion ®p[2] (that is, of length
®p[0] · ®p[1] · ®p[2]), and so on.1 We represent this process by the term

Bind
(
Plate

(
m − 1, i,Beta(α(i) + 1, β(i) + 1)

)
, ®p,Ret

(
ary

(
m, i,

(∏i−1
k=0

®p[k]
)
·
{
1−®p[i] i<m−1

1 i=m−1
) ) )

, (12)

where α(i)+ 1 and β(i)+ 1 are parameters of the Beta distribution that may depend on i . Here ary is
an array comprehension construct: the term ary(m, i, e) denotes an array of sizem whose elements
are e{i 7→ 0}, . . . , e{i 7→ n − 1}. As the informal typing rules in Figure 2 show, the difference
between ary and Plate is that ary is non-probabilistic: it neither requires nor produces a distribution
(like Data.Vector.generate in Haskell). Hence ary(m, i, e)[e ′] reduces to e{i 7→ e ′}.2

Eliminating the latent array variable ®θ is trickier than eliminating ®x . Because most elements
of ®θ use multiple elements of ®p, we cannot eliminate ®θ just by reordering the iterations of the loop
where ®θ is used (step 3 above). Rather, we need to work with mathematical denotations underlying
the source program. Eliminating ®θ amounts to performing the (m − 1)-dimensional integral

∫

Rm−1

(m−2∏

i=0

®p[i]α (i)(1− ®p[i])β (i)
)

︸                          ︷︷                          ︸
step 1

(n−1∏

j=0

(∏®y[j]−1
k=0

®p[k]
) {1−®p[ ®y[j]] ®y[j]<m−1

1 ®y[j]=m−1

)

︸                                            ︷︷                                            ︸
step 3

(∏z−1
k=0

®p[k]
) {1−®p[z] z<m−1

1 z=m−1
︸                           ︷︷                           ︸

step 5

d ®p.

(13)
The factors in the integrand arise from steps 1, 3, and 5 above and the macro expansion (12). The
way to calculate this integral is to group the factors ®p[k], 1− ®p[®y[j]], and 1− ®p[z] by which elements
of ®p they use. For instance, the factors

∏®y[j]−1
k=0

®p[k] include ®p[i] at exactly those j for which i < ®y[j].
Thus, the integral (13) can be rewritten to the form

∫

Rm−1

(m−2∏

i=0

®p[i]α ′(i)(1 − ®p[i])β ′(i)
)
d ®p =

m−2∏

i=0

∫

R

®p[i]α ′(i)(1 − ®p[i])β ′(i)d ®p[i], (14)

whose exponents

α ′(i) = α(i)
︸︷︷︸
step 1

+

(n−1∑

j=0

{
1 i< ®y[j]
0 otherwise

)

︸               ︷︷               ︸
step 3

+

{
1 i<z
0 otherwise

︸      ︷︷      ︸
step 5

β ′(i) = β(i)
︸︷︷︸
step 1

+

(n−1∑

j=0

{
1 i=®y[j]<m−1
0 otherwise

)

︸                  ︷︷                  ︸
step 3

+

{
1 i=z<m−1
0 otherwise

︸       ︷︷       ︸
step 5

(15)

1We usem − 1 Beta distributions, notm Gamma distributions, even though normalizing an array ofm independent Gamma

variables is another well-known way to obtain the Dirichlet distribution. The reason is that every element of the normalized

array depends on every element of the unnormalized array, so this more symmetric way to obtain the Dirichlet distribution

actually makes it harder to eliminate ®θ and to recognize the conjugacy of ®y and z .
2We leave the meaning of indexing out of bounds undefined.
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have absorbed terms from steps 3 and 5.3 The right-hand side of (14) is a product of independent
one-dimensional integrals that existing computer algebra can finally calculate.4

In sum, simplifying an adequate variety of array programs requires representing high- and
arbitrary-dimensional integrals and uncovering independence among the dimensions that is not
necessarily expressible at the source level. We flesh out this approach below. It succeeds on all the
examples above.

3.3 High- and Arbitrary-Dimensional Integrals

Our simplifier handles arrays by converting them to high- and arbitrary-dimensional integrals.
It takes the same three steps as Carette and Shan’s scalar simplifier [2016]. We illustrate these steps
using the relatively simple example (9) above. First, our simplifier converts (9) into the expression

∫

Rn

(n−1∏

i=0

e−
1
2 ( ®x [i]−µ)2
√
2π

) ∫

Rn

(n−1∏

i=0

e−
1
2 ( ®y[i]−®x [i])2
√
2π

) ∫

Rn

(n−1∏

i=0

e−
1
2 (®z[i]−®x [i])2
√
2π

)
h([®y, ®z])d®z d ®y d ®x . (16)

Second, it integrates over the latent variable ®x to get
∫

Rn

∫

Rn

2−n3−
1
2nπ−ne−

1
3nµ

2

e−
1
3

∑n−1
i=0 ®y[i]2e

1
3 µ

∑n−1
i=0 ®y[i]e−

1
3

∑n−1
i=0 ®z[i]2e

1
3 µ

∑n−1
i=0 ®z[i]e

1
3

∑n−1
i=0 ®y[i]®z[i]

h([®y, ®z])d®z d ®y. (17)

Third, it converts this expression back to the program (10).
Although conceptually straightforward, extending these three steps to handle arrays is challeng-

ing because computer algebra systems today only support integrals whose dimensionality is low
and known, not high and arbitrary. Even just to represent the integralsÐlet alone compute with
themÐwe had to extend the language of expressions.

Our representation for high- and arbitrary-dimensional integrals appears at the end of Figure 3:

д F · · ·
��
∫
X
дd ®x X F (a,b)

�� ∏d
i=c X (18)

Whereas in
∫ b

a
дdx the variable x ranges over reals, in

∫
X
дd ®x the variable ®x ranges over arrays

of (arrays of . . . ) reals. The space X is either a real interval (a,b) or a Cartesian product
∏d

i=c Y (i)
indexed by integers i between c and d . For example,

∫ b

a
f (x)dx is equivalent to

∫
(a,b) f (x)dx , and∫ b0

a0

∫ b1

a1

∫ b2

a2
f ([x,y, z])dz dy dx is equivalent to

∫
∏2
i=0(ai ,bi )

f (®x)d ®x .
In the integral

∫
X
дd ®x over the space X =

∏d1
i1=c1

· · ·∏dr
ir=cr

(a,b), the set of valid indices into the
array ®x is determined by the sequence of index-variable bindings [ d1

i1=c1
, . . . ,

dr
ir=cr

]. We notate this
sequence of name-bounds pairs by the metavariable B, then define the syntactic sugar
∏

B X =
∏d1

i1=c1
· · ·∏dr

ir=cr
X , ary(B, e) = ary(d1 − c1 + 1, i1, . . . ary(dr − cr + 1, ir , e) . . . ), (19)

∏
B e =

∏d1
i1=c1

· · ·∏dr
ir=cr

e , e[B] = e[i1 + c1] . . . [ir + cr ]. (20)

Our new first step is defined using this new notation. Figure 4 shows the key cases. In the call
integrate(m,B,h), the second argument B is a new accumulator that tracks the Plate levels nested
around m. This list starts empty, and grows when integrate encounters Plate. When integrate

arrives at a primitive distribution such as Gaussian, it generates an integral whose body nests as
many definite products as the list is long.

3This absorption can also be viewed as the conjugacy of binomial likelihoods with respect to Beta distributions.
4Expressing a multivariate distribution by transforming an array of independent random variables is a general strategy that

may apply beyond Dirichlet distributions. For example, it is promising to express a multivariate Gaussian distribution by

transforming an array of independent one-dimensional Gaussian random variables, but we have only tried it (successfully)

with known (non-diagonal) covariance matrices.
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integrate
(
Gaussian(µ,σ ),B,h

)
=

∫

∏
B (−∞,∞)

(∏

B

e
− 1

2σ 2 ( ®x [B]−µ)2

√
2πσ

)
h(®x)d ®x

integrate
(
Ret(e), B,h

)
= h

(
ary(B, e)

)

integrate
(
Weight(e,m), B,h

)
=

(∏

B
e
)
· integrate(m,B,h)

integrate
(
Bind(m, x,m′), B,h

)
= integrate

(
m,B, λ ®x . integrate(m′{x 7→ ®x[B]},B,h)

)

integrate
(
Plate(e, j,m), B,h

)
= integrate(m, [B, e−1j=0],h)

Fig. 4. Converting programs with arrays to patently linear expressions

Our second step seeks to eliminate latent array variables by integrating over them. In (16) for

example, we seek to integrate
∫
Rn (

∏
i · · · )(

∏
i · · · )(

∏
i · · · )d ®x symbolically. We perform such an

integral by factoring it into a product of independent one-dimensional integrals. Formally, suppose
we want to perform an integral

∫
X
f (®t)d®t over the space X =∏

B (a,b). We try to re-express its
body f (®t) as

e0 ·
∏

B д(®t[B]), (21)

where д depends on just one element of ®t at a time. If this rewrite succeeds, then the integral factors
into a product of one-dimensional integrals over a scalar variable t :

∫
X
f (®t)d®t =

∫
X
e0 ·

∏
B д(®t[B])d®t = e0 ·

∏
B

∫ b

a
д(t)dt (22)

In our running example, the array case reduces to the scalar case of integrating over x in (6):

∫

Rn

n−1∏

i=0

e−
1
2 ( ®x [i]−µ)2
√
2π

e−
1
2 ( ®y[i]−®x [i])2
√
2π

e−
1
2 (®z[i]−®x [i])2
√
2π

d ®x =
n−1∏

i=0

∫

R

e−
1
2 (t−µ)2
√
2π

e−
1
2 ( ®y[i]−t )2
√
2π

e−
1
2 (®z[i]−t )2
√
2π

dt

(23)
Existing routines for integrals and definite products then directly apply to eliminate the latent ®x ,
even if n were unknown. (If rewriting to (21) fails, then the latent variable would not be eliminated.)

To recognize array distributions, the third step tries to rewrite a density f (®t) to a product (21). If
this succeeds and the resulting factor д is the density of some one-dimensional distributionm, then
f is the density of r levels of Plate nested aroundm. Continuing the example, the right-hand-side
of (23) is already a product whose body depends on just one element of ®z at a time, so again the
array case reduces to the scalar case (5), and our simplifier recognizes (23) to be the density of
Plate(n, i,Gaussian( 12 (µ + ®y[i]),

√
6
2 )) at ®z.

3.4 Rewriting an Expression as a Product

The purpose of the unproduct operation is to rewrite an expression as a product (21). As just
described, this rewrite is key to eliminating array variables and recognizing array distributions in
the second and third steps of our extended simplifier. Because the running example (9) above is
simple, the unproduct rewrite to (23) is trivial. It turns out that we can handle a much broader variety
of array programs that express desired algorithmsÐincluding all the examples in Section 3.2Ðby
making the unproduct operation succeed more often.
The unproduct operation enables the automation of many common simplifications, by uncov-

ering independence among random variables and likelihood factors that is prevalent yet often
hidden in the source program. It generalizes the normalization rewrite rule for indirect indexing
in AugurV2 [Huang et al. 2017], as illustrated by the Gaussian mixture model in Section 3.2. It
also generalizes inversion in the lifted inference literature [de Salvo Braz and O’Reilly 2017] from
discrete distributions to continuous ones. At the very least, because the unproduct operation is
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the only way for our extended simplifier to produce Plate, it must succeed in order for a program
containing Plate to even just simplify to itself unscathed. (Our test suite has many such round-trip

tests.) Hence, unproduct needs to succeed even though factors tend to have their parts shuffled
by computer algebra. In particular, because our simplifier rewrites

∏
e· · · to e

∑· · · so as to expose
holonomy, the two forms need to be treated equivalently by the unproduct operation.

More formally, given a term e and an array variable ®x , the goal of the operation unproduct(e, ®x)
is to produce a pair of expressions (e ′,д) such that д does not contain ®x free yet e = e ′ ·∏i д(i, ®x[i]).
Because the produced factor д does not contain ®x free but rather takes an index i and an element ®x[i]
as inputs, it only gets to use one element of ®x at a time. We call this operation unproduct because
its specification is that putting

∏
i on its output should be equal to its input.

The unproduct operation proceeds by structural recursion over a term, remembering the path to
the subterm currently in focus. We represent the path as a heap. It is a contextÐan expression with
a single hole [ ] where a subexpression can be plugged in. The result of plugging an expression e

into a heap H is notated H [e]. We distinguish between heaps of twomodes by what they factor over :
H× of mode × factors over multiplication, whereasH+ of mode + factors over addition. For example,
H× could be [ ]2 because (e1 · e2)2 = e21 · e22 , whereas H+ could be e[ ] because ee1+e2 = ee1 · ee2 . More
generally, we maintain the factoring invariants

H×[1] = 1 H×[e1 · e2] = H×[e1] · H×[e2] H× [∏b
i=a e

]
=

∏b
i=a H

×[e] (24)

H+[0] = 1 H+[e1 + e2] = H+[e1] · H+[e2] H+
[∑b

i=a e
]
=

∏b
i=a H

×[e] (25)

by defining a restricted grammar of heaps

H×
F [ ]

�� H× [[ ]c
] �� H× [∏b

i=a[ ]
] �� H× [{[ ] e

1 otherwise

]
(26)

H+ F H× [c[ ]
] �� H+

[
c · [ ]

] �� H+
[∑b

i=a[ ]
] �� H+

[{[ ] e
0 otherwise

]
(27)

where the expressions a,b, c are constants in the sense that they do not contain ®x free. An occurrence

of
∏b

i=a or
∑b

i=a in a heap binds the index variable i .
The goal of unproduct(e, ®x,H ), where the accumulator argumentH is initially the empty heap [ ],

is to produce a pair of expressions (e ′,д) such thatд does not contain ®x free yetH [e] = e ′·∏i д(i, ®x[i]).
Again, because д does not contain ®x free but rather takes i and ®x[i] as inputs, it only gets to use
one element of ®x at a time.
The definition of unproduct appears in Figure 5. The notation e ′ ? e means the conditional{

e e ′
I otherwise where I is the identity of the mode of the surrounding heap. That is, we define

H×[e ′ ? e] = H× [{e e ′
1 otherwise

]
, H+[e ′ ? e] = H+

[{
e e ′
0 otherwise

]
. (28)

The second case in Figure 5 is the workhorse; it is the source of any д returned that is not just
constantly 1. It applies when there is a unique index a where the term e uses the array ®x . It would
then be correct to return (

1, λ(i,xi).H [(i = a) ? e(xi)]
)
. (29)

For example, unproduct can rewrite f (®x[k]) to ∏n−1
i=0

{
f ( ®x [i]) i=k

1 otherwise
. However, to prevent subse-

quent computer algebra from stumbling over the conditional, we further reduce the result (29)
algebraically in four steps.

(1) GivenH [e ′ ?e], hoist the test e ′ as far out ofH as possible: First, decomposeH intoH = H1[C],
where the context C is the maximal inner portion of H that does not bind any free variable
in e ′. (In particular, if H does not bind any free variable in e ′ at all, then H1 = [ ] and C = H .
Otherwise, H1 has the form H×

1

[∏
j [ ]

]
or H+1

[∑
j [ ]

]
, where j is the innermost-scoped index

variable bound by H that e ′ contains free.) Then, rewrite H1

[
C[e ′ ? e]

]
to H1

[
e ′ ?C[e]

]
. (The
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unproduct
(
e, ®x,H

)
=

(
H [e], λ(i,xi). 1

)
if e does not contain ®x free

unproduct
(
e(®x[a]), ®x,H

)
=

(
1, λ(i,xi).H [(i = a) ? e(xi)]

)
if e only uses ®x at index a

unproduct
(
ce , ®x,H×)

= unproduct
(
e, ®x,H× [c[ ]

] )
where c does not contain ®x free

unproduct
(
ec , ®x,H×)

= unproduct
(
e, ®x,H× [[ ]c

] )
where c does not contain ®x free

unproduct
(
c · e, ®x,H+

)
= unproduct

(
e, ®x,H+

[
c · [ ]

] )
where c does not contain ®x free

unproduct
(∏b

i=a e, ®x,H×)
= unproduct

(
e, ®x,H× [∏b

i=a[ ]
] )

where a,b do not contain ®x free

unproduct
(∑b

i=a e, ®x,H+
)
= unproduct

(
e, ®x,H+

[∑b
i=a[ ]

] )
where a,b do not contain ®x free

unproduct
({e1 d1

e2 d2
, ®x,H

)
=

(
e ′1 · e ′2,д1 ⊙ д2

)
where (e ′

k
,дk ) = unproduct

(
ek , ®x,H

[
dk ? [ ]

] )

unproduct
(
e1 · e2, ®x,H×)

=

(
e ′1 · e ′2,д1 ⊙ д2

)
where (e ′

k
,дk ) = unproduct(ek , ®x,H×)

unproduct
(
e1 + e2, ®x,H+

)
=

(
e ′1 · e ′2,д1 ⊙ д2

)
where (e ′

k
,дk ) = unproduct(ek , ®x,H+)

unproduct
(
e, ®x,H

)
=

(
H [e], λ(i,xi). 1

)
as the last resort

Fig. 5. Rewriting an expression as a product: if unproduct(e, ®x,H ) = (e ′,д), then д does not contain ®x free, yet

H [e] = e ′ ·∏i д(i, ®x[i]). These rules are applied top-down. The first two cases and the last case are the base

cases; see the text for algebraic reductions that take place in the second case. The rest are the recursive cases,

which simply traverse the structure of the input term e while accumulating the heap H using distributivity. In

the last three recursive cases, k is 1 or 2, and д1 ⊙д2 is short for the pointwise product λ(i,xi).д1(i, xi) ·д2(i, xi).

identity in e ′ ? e may differ from the identity in e ′ ?C[e], because the mode of H1[C] may
differ from the mode of H1.)

(2) Try to turn a loop into a let: Given the loop
∏

j

{
e(j) e ′(j)
1 otherwise

or
∑

j

{
e(j) e ′(j)
0 otherwise

, where the
test e ′(j) contains j free, try to solve for j in e ′(j) to yield an equivalent equation j = b.
If the solving succeeds, then rewrite the loop to e(b). For example, unproduct can rewrite∏n

j=1 f (j, ®x[j − 1]) to ∏n−1
i=0 f (i + 1, ®x[i]), by solving the test i = j − 1 symbolically to yield

the equivalent equation j = i + 1. A more substantial example is that unproduct enables
eliminating a Dirichlet distribution by rewriting (13) to (14). However, if the test is i = ®y[j],
as in the mixture-model example (11), then the solving fails and this step does nothing.

(3) Try to turn
∏

into
∑

by pushing it inward: Given the loop
∏

j

{
e(j) e ′(j)
1 otherwise

(or just
∏

j e(j)),
if the body e(j) has the form e

e1(j)
0 (or just e0) where e0 does not contain j free, then rewrite

the loop to e

∑
j

{
e1(j) e ′(j)
0 otherwise

0 . If the body e(j) consists of several factors multiplied together,

then deal with each factor separately. Similarly, rewrite any factor
{
e
e1
0 e ′

1 otherwise
at the top

level, where e0 is closed, to e
e1 ·

{
1 e ′
0 otherwise

0 .

(4) Try to push
∑

inward: Given the loop
∑

j

{
e(j) e ′(j)
0 otherwise

(or just
∑

j e(j)), if the body e(j) has
the form e0 · e1(j) (or just e0) where e0 does not contain j free, then rewrite the loop to

e0 ·
∑

j

{
e1(j) e ′(j)
0 otherwise

. If the body e(j) expands to several terms added together, then deal with
each term separately.

Roughly, these steps work together to reduce the conditional expressions produced by unproduct, so
that subsequent computer algebra successfully eliminates latent variables and recognizes primitive
distributions in Section 3.2 and our classification benchmarks. These benchmarks use indexing
heavily to express clusters, topics, and Dirichlet distributions. For example, unproduct produces
the expression on the right-hand-side of (11), which is expanded so that the sums and conditionals
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do not contain the integration variable x free; existing computer algebra can thus perform the

integral
∫
R
ef (x ) dx automatically by treating those sums and conditionals atomically.

The last case in Figure 5 is the fallback for when e uses ®x at multiple indices but cannot be
decomposed recursively. This fallback is the source of any e ′ returned that uses ®x as a whole.
Because it trivially satisfies the equational specification H [e] = e ′ ·∏i д(i, ®x[i]), simplification still
preserves semantics, but does not eliminate a variable or recognize a conjugacy. In some cases, this
is because there is really nothing to do; in other cases, our optimizing compiler lags behind the
mathematical prowess of applied statisticians.

4 THE HISTOGRAM TRANSFORMATION

We introduce the histogram transformation, which improves the asymptotic running time of loops
that arise from simplifying mixture models, by rewriting loops into map-reduce expressions.
Recall that the goal of our compilation pipeline is the efficient execution of array inference

algorithms expressed as probabilistic programs denoting conditional distributions. Simplifying
these programs produces loops, such as

∑n−1
j=0

{
®s[j] i=®y[j]
0 otherwise

(30)

and other summations in (1) (same as in the right-hand-side of equation (11)). When the program
performs indirect indexing, the resulting loops are nested: the outer loop iterates over classes i and
the inner loop iterates over all individuals j but only considers those that belong to the current
class (i = ®y[j]). By generalizing loops from scalar summation to other map-reduce expressions, we
can dramatically speed up such nested loops to run in time independent of the number of classes.
For example, by looking up the class of every individual, a single pass over the population can
produce the sum of every class; a summation such as (30) can be computed for all i in O(n) rather
than O(mn) time.

Loop nests like (30) often arise for inference when the model divides array elements into subpop-
ulations, as mixture models do. Eliminating latent variables proliferates such loop nests, because
intuitively, after eliminating a variable x , the information that used to be required to infer x be-
comes required to infer the variables that depend on x . For example, in the Gaussian mixture
model in Section 3.2, each point ®s[j] only requires one quantityÐthe mean ®x[®y[j]] underlying the
class ®y[j]Ðbut eliminating ®x makes the point ®s[j] require the other points in the same class.

Wherever a nested formula arises, an applied statistician would translate it manually to unnested
code as a matter of course; we automate this asymptotic improvement here. As Figure 1 suggests,
this histogram optimization of ours composes with simplification and applies to both exact and
approximate inference procedures. In fact, it applies to probabilistic and non-probabilistic programs
alike, even though probabilistic programming is the context where we needed it and invented it.
This modularity and generality sets our work apart from other systems that incorporate this
optimization only for MCMC inference on mixture models [Huang et al. 2017; Tristan et al. 2014].
As the name implies, the histogram transformation recognizes nested loops that are usually

visualized as (generalized) histograms. These histogram computations manifest as sums such as (30).
We thus introduce a term construct Hist to represent such computations. The transformation
rewrites such sums to an equivalent let-expression that binds a Hist term to a hist variable. For
example, in the scope of i ∈ {0, . . . ,m − 1}, the histogram transformation rewrites (30) to

let hist = Histn−1j=0

(
Idxmi (®y[j],Add(®s[j]))

)
in hist[i], (31)

where the capitalized keywords are new (in Figure 6). The hist variable is bound to an array whose
size ism and whose element at each index i is the sum of those ®s whose corresponding ®y matches i .
The sequential code we generate for computing hist initializes it to an all-zero mutable array then
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Reducers

[j : N]···
e : R

Add(e) ▷j R
b : N

[j : N]···
e : N

[i : N]···
r ▷j T

Idxbi (e, r ) ▷j AT

[j : N]···
e : B r1 ▷j T1 r2 ▷j T2

Split(e, r1, r2) ▷j T1 ×T2

r1 ▷j T1 r2 ▷j T2

Fanout(r1, r2) ▷j T1 ×T2 Nop ▷j 1

Histograms
a : N b : N r ▷j T

Histbj=a(r ) : T

Fig. 6. Typing rules for reducer expressions and the histogram expressions they constitute

adds ®s[j] to hist[®y[j]] for each j from 0 to n − 1. Roughly, Add means to add, Idxmi means to index
into an array of sizem, and Histn−1j=0 means to loop for j from 0 to n − 1. We leave further speedups

of such map-reduce computations using parallelization, vectorization, and GPUs to future work.
Out of context, the let-expression (31) seems like a waste because it computes hist then uses only

one element of it. But because the class variable i does not occur free in the Hist expression (the
subscript i is a binder), LICM (Section 5.1) will later lift the binding of hist out of the scope of i , thus
reusing it across allm classes. To pave the way, a Hist term should depend on as few inner-scoped
variables as possible, and the index variable i in hist[i] should be loop-bound.

4.1 Syntax and Semantics of Reducers

Figure 6 formalizes the sublanguage of reducers, which constitute the body of a Hist expression.
The judgment r ▷j T means that r is a reducer of type T over index j. A reducer r constitutes the

body of a histogram expression Histbj=a(r ), whose typing rule is shown at the bottom of the figure.

The scope of the variable j is special, because the histogram expression Histbj=a(r ) interprets the
reducer r in two ways: first to initialize a mutable histogram to zero independently of j , and then to
update the histogram iteratively by looping over the index j . Thus, j can only appear free in certain
parts of r , marked intentionally by ł[j : N] . . . ž in Figure 6.

Mathematically, a reducer r of typeT denotes a monoid whose carrier isT (that is, an associative
binary operation +r on T that has an identity r 0), along with a map r 1 from indices j to elements
of T . Intuitively, the histogram expression Histbj=a(r ) first initializes a mutable histogram using the
identity r 0, then updates the histogram iteratively using the map r 1 and the monoid operation +r .

That is,Histbj=a(r ) denotes the monoidal sum r 1(a)+r · · ·+r r 1(b) (which equals r 0 in case a = b +1).

Thus, to describe the operational semantics of a histogram expression on sequential hardware, we
associate with each reducer r two methods: initializing a mutable T , and updating it at a given

index j . The expression Histbj=a(r ) uses r to initialize a mutable histogramT then updates it at each

index j = a, . . . ,b. We now describe the denotation and operation of each reducer construct in turn.

• Add(e) denotes addition on R along with the map λj . e . Accordingly, Add(e) initializes a real
to 0 and updates it by adding e .

• Idxbi (e, r (i)) denotes the product of the monoids denoted by r (0), . . . , r (b − 1), along with the
map

Idxbi (e, r (i))1 = λj . ary
(
b, i,

{
r (e)1(j) i=e

r (i)0 otherwise

)
. (32)

Accordingly, Idxbi (e, r (i)) initializes an array of size b by initializing its elements using
r (0), . . . , r (b − 1), and updates the array by updating just the element at e using r (e).
Note that the denoted monoid and the initialization method are independent of e and thus
independent of j . In particular, the size expression b is evaluated during initialization without
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histogram
(
C
[{e1 e

e2 otherwise

]
, j
)
=

(
Fanout(m1,m2), λ(s1,s2).

{
f1(s1) e
f2(s2) otherwise

)

where (mk , fk ) = histogram(C[ek ], j) and e does not depend on j

histogram
(
C
[{e1 e

e2 otherwise

]
, j
)
=

(
Split(e,m1,m2), λ(s1,s2). f1(s1) + f2(s2)

)

where (mk , fk ) = histogram(C[ek ], j)
histogram

({
a i=e
0 otherwise , j

)
=

(
Idxmi (e, r ), λs .

{
f (s[i]) i ∈{0, ...,m−1}

0 otherwise

)

where (r , f ) = histogram(a, j), i is a loop-bound variable that does not depend on j,
and the context entails that i ∈ {0, . . . ,m − 1} or e ∈ {0, . . . ,m − 1}

histogram
(
0, j

)
=

(
Nop, λs . 0

)

histogram
(
e, j

)
=

(
Add(e), λs . s

)

Fig. 7. Rewriting a summation as a histogram: if histogram(e, j) = (r , f ) then ∑n−1
j=0 e = f

(
Histn−1j=0 (r )

)
. The

metavariable C denotes a context. These rules are applied top-down, except the second and third rules are

prioritized by choosing the rule for which the innermost scope of the free variables FV (e) \ {j} is outermost.

using j. However, Idxbi binds i in r (i), so the monoid and initialization of each histogram
element hist[i] can depend on i . In particular, r (i) may contain an inner Idxb

′
i′ whose size

expression b ′ does depend on i (not j). Such a nested Idx reducer produces a histogram that
is a ragged array of arrays. We cannot forego the bound variable i by substituting e for i in b ′,
because e may contain j free.

• Split(e, r1, r2) and Fanout(r1, r2) both denote the product of the monoids denoted by r1 and r2.
But

Split(e, r1, r2)1 = λj .
{(r 11 (j),r 02 ) e

(r 01 ,r 12 (j)) otherwise
, Fanout(r1, r2)1 = λj .

(
r 11 (j), r 12 (j)

)
. (33)

Accordingly, Split(e, r1, r2) and Fanout(r1, r2) both initialize a pair by initializing its parts
using r1 and r2. But Split uses r1 to update the first part when e is true and uses r2 to update
the second part when e is false, whereas Fanout always updates both parts.

• Nop denotes the trivial monoid and the constant map. Accordingly, Nop initializes a unit
value and does nothing to it.

4.2 Histogram Transformation Implementation

We recognize when a
∑n−1

j=0 e can be rewritten in terms of an equivalent Hist computation that can
then be hoisted by LICM for reuse. Formally, we describe a program transformation histogram such
that if histogram(e, j) = (r , f ) then∑n−1

j=0 e = f
(
Histn−1j=0 (r )

)
. To facilitate LICM, r should depend on

as few inner-scoped variables as possible.
The entire definition of histogram appears in Figure 7. Whenever we encounter a summation∑n−1
j=0 e , we apply the rules in Figure 7 to evaluate histogram(e, j) to (r , f ), then replace

∑n−1
j=0 e by

f
(
Histn−1j=0 (r )

)
if r looks profitable (that is, contains Idx or Fanout).

The histogram transformation is profitable when the summand chooses among alternatives,
typically depending on some contextual information (such as i in (31)). The first rule takes all
expressions defined by cases which do not depend on the summation variable j, and translates
them to a Fanout. Further case expressions are translated to either a Split or an Idx, by pulling out
conditions while prioritizing outermost bound variables. Once all case expressions are gone, the
remainder is emitted either as Nop (if zero) or Add.
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Continuing with the example (30), we try histogram
({

®s[j] i=®y[j]
0 otherwise

, j
)
. The first rule does not

apply, as the condition i = ®y[j] depends on j. The next two rules are both applicable: the Split
rule incurs the free variables {i, ®y} whereas the Idx rule only incurs {®y}. The Idx rule wins, as the
input ®y is bound outside i . We end up with histogram(®s[j], j), which only matches the last rule.
Assembling the results gives

(
Idxmi (®y[j],Add(®s[j])), λhist. hist[i]

)
as desired.

5 CODE GENERATION

Our code generator uses the domain specific properties of Hakaru programs to generate optimized
x86 code at runtime. This generator is designed to fit into the pipeline of Figure 1Ðafter the
programs have undergone the simplification and histogram transformationsÐalthough it applies
to any Hakaru program. In fact, the optimizations performed by the generator make sense for a
general-purpose language (GPL) and are not new, but thanks to the invariants present in Hakaru
programs, we can implement them much more easily, perform them much more aggressively, and
reap much more performance benefit. And we need to: as we demonstrate in the ablation study in
Section 6.2, simplifying array programs that express desired inference algorithms produces residual
codeÐsuch as repeated traversals of arraysÐthat would be prohibitively slow without optimization.

The time-consuming computations of probabilistic programs come from pure numerical expres-
sions involving tuples and arrays. It is straightforward to translate these programs into any GPL.
However, the domain-specific nature of Hakaru provides several advantages for generating efficient
code, advantages not typically available to GPLs:

(1) All arrays in Hakaru programs are immutable and unaliased, and loops operate over arrays.
(2) The histogram transformation produces loops that are nested yet independent.
(3) Hakaru programs not only contain loops but typically are the loop body of an inference

method, so they are both short and called repeatedly on a particular data set.

Using these insights, the second half of our pipeline (the bottom half of Figure 1) optimizes programs
in two ways that are novel in the context of probabilistic programming languages:

(1) We perform LICM [Aho et al. 1986] to hoist inner loops out of outer loops. We then fuse loops
of the same bounds together while lowering the program into Sham IR, an IR with for loops
and mutation that compiles to x86 via LLVM. We carry out these simple optimizations freely
and aggressively, without worrying about side effects (Section 5.1). These optimizations yield
a 1289× speedup (Table 2).

(2) We JIT-compile Hakaru programs at run time, allowing for extensive specialization (Sec-
tion 5.2) yielding a 9.5× speedup (Table 2).

Our code generator uses exact arithmetic but generates code that uses floating-point arithmetic.
It is well known that floating-point probabilities should be computed in log-space in order to avoid
underflow. We use this log-representation for all numbers of type R+.

5.1 Loop Optimizations

LICM and loop fusion are the two most significant optimizations performed by our code generator.
As depicted in Figure 1, LICM operates on A-normal forms [Flanagan et al. 1993] in our pure
(probabilistic) language, before loop fusion lowers them into Sham’s imperative IR. This design
makes the optimizations easier to implement and more effective, as we now describe.
The input language to our LICM pass makes it easy to identify loops and compute their depen-

dencies. That is important as we want to find where we can convert a nest of loops into a sequence
of loopsÐthat is, when an inner loop does not depend on an outer loop’s index variable. Such code
motion yields our biggest performance gain, in part due to the preceding histogram transformation.
Identifying loops is simple, because Hakaru has only four specialized loop constructs (

∑
,
∏
, ary,
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λ ®α :AR
+
. λ®y :AN. λ®s :AR. λu :N.

let hist1 = Hist#®s−1k=0

(
Idx# ®α_ (®y[k],Add(1))

)

hist2 = Hist#®s−1k=0

(
Idx# ®α_ (®y[k],Add(®s[k]))

)

let array1 = ary(# ®α, i,

let prod1 =

# ®α−1∏

j=0

(
hist1[j] +

{
®y[u] j=i
0 otherwise

)

sum1 =

# ®α−1∑

j=0

(
hist2[j] +

{
®s[u] j=i
0 otherwise

)

prod1 + sum1)
Categorical(array1)

Fig. 8. An excerpt from one of our examples after

performing LICM. Here hist1 and hist2 were moved

out of the prod1 and sum1 loops respectively, and

out of the array1 loop together.

λ ®α :AR
+
. λ®y :AN. λ®s :AR. λu :N.

let hist1 := newArray(# ®α)
hist2 := newArray(# ®α)

for k = 0 to #®s − 1:

hist1[®y[k]] += 1; hist2[®y[k]] += ®s[k]
let array1 := newArray(# ®α)
for i = 0 to # ®α − 1:

let prod1 := 1; sum1 := 0

for j = 0 to # ®α − 1:

prod1 ×= hist1[j] +
{ ®y[u] j=i

0 otherwise

sum1 += hist2[j] +
{®s[u] j=i

0 otherwise

array1[i] := prod1 + sum1

Categorical(array1)

Fig. 9. The result of loop fusion and lowering on the

example in Figure 8

Hist) and no general recursion. Computing dependencies using A-normalization in a pure language
ensures that code motion preserves semantics: we hoist let-bindings as far out as the scope of their
free variables allows. Figure 8 shows how a typical program looks like after LICM and before loop
fusion and lowering; the two Hist expressions, which were originally nested inside two loops, did
not depend on them and have been safely hoisted.

Next, multiple independent loops with identical bounds can be fused. In our domain, aggressive
loop fusion improves performance because most loops iterate over arrays and fusion reduces the
number of indexing operations. In contrast, loop fusion in a GPL may worsen performance by
disturbing locality of reference.

Although Hakaru makes loop fusion straightforward, it is inappropriate as the output language,
because a single fused loop may need to maintain many accumulators without tupling them. Instead,
our loop-fusion pass produces Sham IR, which has for-loops and mutation. A single pass fuses
loops and lowers them to Sham IR, to avoid the harder task of identifying independent loops in
Sham IR. Figure 9 shows the result of loop fusion on the example from Figure 8.
Applying LICM and loop fusion to histogram operations introduces multiple array indexing

operations that were previously implicit. If two histograms over the same array were fused, the
resulting loop body would contain repeated indexing operations, such as ®y[k] in Figure 9. To avoid
this repeated indexing, we follow loop fusion by a hoisting pass in Sham IR that applies only to
indexing operations into input arrays, which are known to be constant. This helps reduce memory
lookup and improve cache locality should these loops be unrolled later.

5.2 Run-Time Specialization and Code Generation

Our programs are small and typically run as the body of an outer loop over fixed-size data. To use
this fact, we perform several optimizations that can only be performed in a JIT compiler. Inside
the outer loop, some information stays the same across iterations; in particular, arrays whose
values change may well stay a constant size nevertheless. Thus we allow the programmer to mark
arguments with such binding-time information.

When array sizes are known, exact loop bounds tend to become known for most loops. LLVM can
then optimize those loops more aggressively. From input array sizes we can even infer intermediate
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array sizes. When we know the constant size of an intermediate array, we pre-allocate it only once
and reuse it across iterations, removing per-iteration allocation overhead. Thus for array arguments,
two different specialization directives can be given: known size, and known size and values.
By waiting until we know array sizes before generating code, we can prepone allocation even

further: we can allocate intermediate arrays before we even emit the code! In other words, upon
execution of a program, we can use the size of input data to allocate arrays of the appropriate size
for intermediate data. The machine code we emit then embeds the intermediate arrays’ sizes as
well as addresses as constants, which no longer need to be kept in registers. We end up with extra
registers that can be used for other variables, reducing the need to store and load things on stack.
To perform the run-time specializations as described, we build LLVM IR in memory and JIT-

compile it using LLVM’s C-API. The outcome, as shown in Section 6, is highly optimized code
compared to traditional implementations of domain-specific languages.

6 EVALUATION

The main claim of this paper is that array inference algorithms, expressed as probabilistic programs
denoting conditional distributions, can be compiled automatically to efficient code. It is impossible
to evaluate how existing systems compile the same programs to implement the same algorithms,
because they don’t. Instead, we justify our claim by ballpark quantitative comparisons on flagship
applications of the decades of work in applied statistics that established the importance of this
class of algorithms. We make two overall findings:

• Compared against handwritten code for the same algorithms, we find that Hakaru’s generated
code achieves competitive speed (and of course the same accuracy).

• Compared against existing systems that use different inference algorithms for the same
models, we find that Hakaru delivers the expected increase in accuracy and/or speed.

We measure the performance of both approximate and exact inference algorithms. For approxi-
mate inference using Gibbs sampling, we are

• more accurate and 2ś12× as fast as JAGS [Plummer 2003], a popular probabilistic-program-
ming system specialized for Gibbs sampling that cannot eliminate latent variables;

• more accurate or faster than STAN [Carpenter et al. 2017], a popular probabilistic-program-
ming system that carries out other inference algorithms and cannot eliminate latent variables;

• 9× as fast as MALLET [McCallum 2002], a popular document-classification package whose
handwritten code performs the same computation as our inference procedure; and

• more accurate than AugurV2 [Huang et al. 2017], a recent research system that like Hakaru
can compile models with arrays into fast MCMC samplers, but cannot eliminate variables.

For exact inference, we are

• over 5000000× faster while handling 10× more data than PSI [Gehr et al. 2016], another
system that can perform exact inference on models containing arrays; and

• 3ś11× as fast as handwritten-quality Haskell code emitted by an earlier backend.

All benchmarks were executed on a 6-core AMD-Ryzen 5 with 16 GB of RAM, running Linux 4.15.
We used Racket 6.12, LLVM 5.0.1, Maple 2017.2, and GHC 8.0.2.

Our benchmarks span inference tasks that are unsupervised and supervised, with observed and
inferred variables that are continuous and discrete. We do not compare against Figaro [Pfeffer 2016]
and Anglican [Wood et al. 2014] because those shallowly embedded languages do not use conjugacy
to handle unlikely continuous observations gracefully: Figaro produces no Gibbs samples whereas
Anglican produces very inaccurate samples. (Our preliminary testing also found Figaro an order of
magnitude slower than JAGS on models with just a few discrete variables.)
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6.1 Approximate Inference

We report three benchmarks of approximate inference using Gibbs sampling:

(1) clustering of data points using a Gaussian mixture model (Section 3.2)
(2) supervised document classification using a Naive Bayes model [McCallum and Nigam 1998]
(3) unsupervised topic modeling using Latent Dirichlet Allocation (LDA) [Blei et al. 2003]

Gibbs sampling works by repeatedly sweeping through all unobserved random variables and
updating their currently inferred values randomly. Thus a sweep consists of as many updates as
there are random variables that are unobserved and uneliminated (such as unclassified data points
or documents).
On each benchmark, we compare with

• AugurV2, a probabilistic-programming research system focused on composable and perfor-
mant MCMC. (Applying AugurV2 required a small patch to make its algebraic rewriting
more robust.)

On the first two benchmarks, we further compare with

• JAGS, a widely used probabilistic-programming system specialized for Gibbs sampling. (JAGS
does not scale to the third benchmark.)

Both JAGS and AugurV2 perform different computations than Hakaru, because those systems do
not eliminate latent variables [Casella and Robert 1996] as our simplification transformation does.
In the first benchmark, Gaussian mixture classification, we further compare with

• STAN, another widely used probabilistic-programming system that cannot perform Gibbs
sampling but defaults to a very different MCMC inference algorithm, namely HMC [Betan-
court 2017; Neal 2011] with No-U-Turn Sampling [Hoffman and Gelman 2014]. (Applying
STAN required the manual elimination of latent discrete array variables, a transformation
automated by our simplification transformation.)

In the second benchmark, Naive Bayes document classification, we further compare with

• MALLET, a popular Java-based package for statistical natural-language processing that can
be configured to perform the same computation as Hakaru.

To summarize the results across benchmarks, our generated code turns out to be faster than
JAGS and MALLET, and more accurate for a given time budget than AugurV2 and STAN. As noted
above, our system executes a different algorithm than JAGS, AugurV2, and STAN, which we credit
for the higher eventual accuracy we achieve. We reiterate that the purpose of these benchmarks is
to show that Hakaru compiles a new class of inference algorithms while maintaining competitive
performance, not to rehash or analyze the superiority of a particular inference algorithm.

Gaussian mixture model. The first benchmark uses synthetic data, and we show two variations.
Following the Gaussian mixture model in Section 3.2, we draw n = 10000 (5000) data points from a
mixture ofm = 50 (25) normal distributions, whose standard deviations are all 1 and whose means
are independently generated with standard deviation σ = 14 and mean µ = 0. We then hold out all
the labels ®y and use Gibbs sampling to infer them.

We can compare inference accuracy on this benchmark, because we know the true labels of our
synthetic data.5 Figure 10 plots the accuracy achieved by each sampler against wall-clock time.
Hakaru’s generated code achieves higher accuracy compared to STAN’s very different algorithm,
and compared to JAGS and AugurV2 after a few seconds. This is the case even though, as marks

5For this clustering task, symmetry (unidentifiability) demands we define accuracy as the proportion of data points classified

correctly under the most favorable one-to-one correspondence between true and inferred labels. Hence computing accuracy

requires solving the assignment problem. For STAN, which samples ®θ and ®x rather than ®y , we plot expected accuracy.
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Fig. 10. Comparison of samplers for the Gaussian mixture model with n = 10000,m = 50 and with n = 5000,

m = 25. Startup time is removed to Table 1. Curves represent mean accuracy over time; shaded area is

standard error of 50 trials with different input data. Each mark on a curve represents 10 sweeps by Hakaru

or JAGS or 100 sweeps by AugurV2. The mixture weights are drawn from the flat Dirichlet distribution, so

clustering all points together would achieve accuracy ≈ 9% form = 50 and ≈ 15% form = 25.
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Fig. 11. Comparison of Gibbs samplers for Naive Bayes document classification. Curves represent mean

accuracy or log likelihood over time; shaded area is standard error. Each mark on a curve represents 1 sweep

by Hakaru or 100 sweeps by AugurV2; a sweep by JAGS takes more than 500 seconds. The documents are

evenly distributed among 20 newsgroups, so a random or constant classifier would achieve 5% accuracy. Log

likelihood consists of supervised and inferred labels, which are correlated due to eliminating latent variables.

on the curves show, AugurV2 is an order of magnitude faster at performing a sweep than Hakaru
and JAGS. We credit our greater accuracy to simplification eliminating the latent variables ®θ and ®x
(Section 3.2). STAN works well on other models for which simplification has nothing to do.

Naive Bayes topic model. The second benchmark uses the 20 Newsgroups corpus, which consists
of 19997 articles classified into 20 newsgroups [Joachims 1997]. We hold out 10% of the classi-
fications and use Gibbs sampling to infer them, following a Dirichlet-multinomial Naive Bayes
model [McCallum and Nigam 1998; Resnik and Hardisty 2010].6

Again we can compare inference accuracy, because we know the true labels we hold out. We also
compare the log likelihood of the samples. Figure 11 plots these two metrics against wall-clock time.
As the curves show, Hakaru’s generated code achieves higher accuracy and likelihood right from

6In this model and the LDA model, to encode that different documents have different numbers of words, we use two integer

arrays of equal length, one containing word identifiers and one containing document identifiers. We could as well have

used a single ragged array of integer arrays, where each inner array contains the word identifiers that make up a document.
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Fig. 12. Comparison of Gibbs samplers for the LDA model, with 50 and 100 topics. Curves represent mean

log likelihood over time; shaded area is standard error. Each mark on a curve represents 1 sweep by Hakaru

or 10 sweeps by AugurV2.

the first sweep onward. This is the case even though, as marks on the curves show, AugurV2 is two
orders of magnitude faster at performing a sweep. We again credit our simplification transformation
eliminating the latent variables and generating code that samples no continuous variables. That is,
a sweep by our generated code is not the same mathematical operation as a sweep by AugurV2 or
JAGS. However, we do not know why JAGS produces higher-quality samples than AugurV2.

For a speed comparison against inference code that has been specialized and tuned by hand for
the same mathematical operation as our generated code, we also configure MALLET to compute
our Gibbs updates, by calling them 19997-fold cross-validation. Our generated code is 9× as fast as
MALLET, performing an update in 21.32 ± 0.04 ms while MALLET takes 189.95 ± 4.87 ms.

Latent Dirichlet Allocation topic model. The third benchmark applies the LDA model [Blei et al.
2003] to infer topics from the KOS data set [Dheeru and Karra Taniskidou 2017], which contains
467714 words drawn from a vocabulary of 6906. We do not hold out any data.

Figure 12 plots log likelihood against wall-clock time, for 50 topics and 100 topics, using Hakaru
and AugurV2. Here, AugurV2 is more accurate in the first few minutes. Within 1 sweep, Hakaru’s
sample likelihood surpasses AugurV2’s, and continues to increase past the bounds of the plot. We
conclude that integrating out latent variables produces a slower but likelier result on each update.

Compilation and startup time. Time in the prior figures does not include startup: the time it takes
to initialize a system or generate machine code for the given model or the given input data. Table 1
quantifies this startup time separately. On one hand, Hakaru has significant ahead-of-time compile
time, because the simplification transformation can take minutes. We also incur moderate per-data
startup time, for run-time specialization and machine-code generation. On the other hand, JAGS
incurs negligible per-model startup time but substantial per-data startup time, because it unrolls
arrays into a graph in memory before sampling. Moreover, we have observed the per-data startup
time incurred by JAGS to rise faster than linearly with respect to the input data size. AugurV2,
like JAGS, does not eliminate latent variables and has negligible per-model startup time, and like
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Table 1. Startup time (mean and standard error in seconds) for different benchmarks and systems before

sampling begins

Benchmark System Compile Startup

GMM Hakaru 545 ± 7 0.192 ± 0.002
GMM JAGS ś 223 ± 3
GMM AugurV2 ś 0.068 ± 0.001
GMM STAN 34.3 ± 0.1 0.641 ± 0.006
Naive Bayes Hakaru 134 ± 6 17.61 ± 0.09
Naive Bayes JAGS ś 22400 ± 400
Naive Bayes AugurV2 ś 0.43 ± 0.06
LDA Hakaru 136 ± 6 2.904 ± 0.006
LDA AugurV2 ś 13.00 ± 0.08

Table 2. Run time in seconds (mean over 1000 trials and standard error) of one sweep of Gibbs sampling with

m = 50 and n = 10000. Slowdown is compared to full optimization.

Optimizations Time in seconds Slowdown

No optimizations 471.4 ± 0.6 1848 ×
No histogram 460.6 ± 0.2 1805 ×
No LICM and loop fusion 328.7 ± 0.1 1289 ×
No loop fusion 0.471 ± 0.003 1.8×
No run-time specialization 2.422 ± 0.005 9.5×
Full optimization 0.255 ± 0.001 Ð

Hakaru has no size-dependent initialization. STAN incurs moderate compile and startup times, but
its automatic tuning (burn-in) takes tens of minutes, so instead of accounting for burn-in in Table 1,
we show STAN’s decent performance and quick startup by plotting the beginning of burn-in in
Figure 10. We were unable to improve the overall picture by reducing or disabling burn-in.

6.2 Benefits of Each Optimization

We perform an ablation study to show how much our optimizations benefit speed. Table 2 shows
the run time of one sweep of Gibbs sampling with the larger data size used in Figure 10. We
compare the time with different optimizations disabled. We disable one optimization at a time,
except LICM and loop fusion because loop fusion requires LICM (Section 5.1). We never disable
simplification (Section 3) because it is necessary to compile the new class of algorithms at all.
Although these optimizations have a combined effect, these times give us a general idea of how
individual optimizations affect overall performance.
The measurements show that our performance is made competitive by no single optimization,

but rather by the conjunction of the histogram transformation and LICM: the two optimizations
deliver < 2× speedup separately but 100× speedup together! Also, run-time specialization and
loop fusion yield 10× and 2× speedups respectively. We reiterate that it is in the domain of array
inference algorithms that our optimizations can be aggressive and profitable.
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Fig. 13. PSI performance on exact-inference benchmarks, using build-release.sh and the --nocheck flag

6.3 Exact Inference

To benchmark exact inference, we use the ClinicalTrial and LinearRegression examples from
the R2 system [Nori et al. 2014]. The ClinicalTrial example infers whether a treatment is
effective from the Boolean symptoms of a control group and a treated group of patients. The
LinearRegression example fits a line to a collection of data points. In both benchmarks, Bayesian
inference efficiently preserves and tracks the uncertainty of the quantities inferred. This information
can be useful for making decisions under risk, and is not available through maximum-likelihood
and maximum-a-posteriori estimation (such as ordinary regression).
For both benchmarks, we compare the code generated by our compilation pipeline against the

code generated by the same pipeline except replacing the Sham backend (Section 5) by a previous
backend that emits Haskell code. The latter code is representative of the specialized program that a
practitioner would write by hand in a GPL, because array simplification (Section 3) already delivers
that code as a closed-form formula in both pipelines.

• For the ClinicalTrial benchmark, the exact solution on 10000 data points takes 115.9 µs to
compute (standard deviation 0.1 µs over 2000 trials). In contrast, the Haskell pipeline takes
an average of 409.8 µs, which is 3× slower.

• For the LinearRegression benchmark, the exact solution on 10000 data points takes 33 µs
to compute (standard deviation 4 ns over 2000 trials). In contrast, the Haskell pipeline takes
an average of 363.4 µs, which is 11× slower.

These times are orders of magnitude less than even just the startup times of any approximate
inference procedure.
We also compare the performance of PSI [Gehr et al. 2016], a system for exact inference that

supports arrays, on the two benchmarks. Figure 13 plots PSI’s run times, which increase with the
data size and quickly become prohibitive, because PSI does not perform compilation and unrolls
all random choices in arrays before reasoning about them. In both benchmarks, Hakaru is over
5000000× faster while handling over 10× more data. Again, the key to this efficiency is Hakaru’s
combination of array transformations and loop optimizations. However, also contributing to the
speed difference is PSI’s use of exact rational arithmetic throughout. In contrast, although Hakaru
uses exact arithmetic, it generates code that uses floating-point arithmetic.
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7 RELATED WORK

To situate our work in probabilistic programming, we consider which components we specialize
using a domain-specific language and which components we reuse off the shelf.

The difficulty of inference is exacerbated by the ease of composing models. To address this, some
systems provide a few general-purpose inference algorithms [de Salvo Braz et al. 2007; Goodman
et al. 2008; Goodman and Stuhlmüller 2014; Kiselyov 2016; Lunn et al. 2000; Milch et al. 2007; Nori
et al. 2014; Wingate et al. 2011; Wu et al. 2016] or restrict the language to distributions that are
continuous [Carpenter et al. 2017], discrete [Kiselyov and Shan 2009; Pfeffer 2007], or relatively
low-dimensional [Gehr et al. 2016]. Other systems provide a toolbox or language of inference
techniques, so as to specialize inference to the given model [Fischer and Schumann 2003; Huang
et al. 2017; Mansinghka et al. 2014; Pfeffer 2016; Tran et al. 2017; Tristan et al. 2014; Wood et al. 2014].
We follow the latter approach. In particular, by building on prior work on Hakaru [Narayanan et al.
2016; Zinkov and Shan 2017], we support a mix of exact and approximate inference by reusing
program transformations such as simplification and disintegration on model and inference alike.
Many sophisticated probabilistic programming systems end up (re)implementing computer

algebra [de Salvo Braz and O’Reilly 2017; de Salvo Braz et al. 2016; Fischer and Schumann 2003;
Gehr et al. 2016; Huang et al. 2017; Tristan et al. 2014]. Reusing an existing computer algebra system
and specializing it to the language of patently linear expressions makes it possible to eliminate latent
variables and recognize primitive distributions without hard-coding patterns such as conjugacy
relationships [Carette and Shan 2016]. We extend the latter approach to arrays, further reusing
computer algebra to solve equations in our key unproduct operation. Our histogram optimization
seems related to transforming loops into list homomorphisms (map-reduce), but we could not find
or reuse any work that makes this relationship clear.
Most probabilistic programming systems either interpret their programs, or compile or embed

them through a GPL. Generating GPU code has also been shown beneficial [Huang et al. 2017;
Tristan et al. 2014]. In contrast, we generate optimized code through LLVM, but specialize our code
generation to take advantage of pure array programs and map-reduce loops.
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