
GOOL: A Generic Object-Oriented Language
Jacques Carette

Department of Computing and
Software

McMaster University
Hamilton, Ontario, Canada

carette@mcmaster.ca

Brooks MacLachlan
Department of Computing and

Software
McMaster University

Hamilton, Ontario, Canada
maclachb@mcmaster.ca

Spencer Smith
Department of Computing and

Software
McMaster University

Hamilton, Ontario, Canada
smiths@mcmaster.ca

Abstract
We present GOOL, a Generic Object-Oriented Language.
GOOL shows that with the right abstractions, a language
can capture the essence of object-oriented programs. GOOL
generates human-readable, documented and idiomatic code
in Python, Java, C#, and C++. In it, we can express common
programming idioms and patterns.

CCSConcepts • Software and its engineering→ Source
code generation;Abstraction, modeling and modularity;Ob-
ject oriented languages.

Keywords Code Generation, Domain Specific Language,
Haskell, Documentation

ACM Reference Format:
Jacques Carette, Brooks MacLachlan, and Spencer Smith. 2020.
GOOL: A Generic Object-Oriented Language. In Proceedings of
the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation (PEPM ’20), January 20, 2020, New Orleans, LA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3372884.3373159

1 Introduction
Java or C#? As languages, this is close to a non-question: the
two are so similar that only ecosystem issues would be the
deciding factor. Unlike the question “C or Prolog?”, which
is almost non-sensical, as the kinds of applications where
each is well-suited are vastly different. But, given a single
paradigm, such as Object-Oriented (OO), would it be possible
to write a meta-language that captures the essence of writing
OO programs? They generally all contain (mutable) variables,
statements, conditionals, loops, methods, classes, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PEPM ’20, January 20, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7096-7/20/01. . . $15.00
https://doi.org/10.1145/3372884.3373159

OO programs written in different languages appear, super-
ficially, quite dissimilar. But this is mostly due to syntactic
differences. Are they so different in the utterances that one
can make? Are OO programs akin to sentences in Romance
languages (French, Spanish, Portugese, etc.) which, although
syntactically different, are structurally very similar?

This is what we set out to explore. One non-solution is to
pick a language and implement a translator to the others. It
is feasible — say by engineering a multi-language compiler
(such as gcc) to de-compile its Intermediate Representation
(IR) into most of its input languages. The end-results would
be wildly unidiomatic; roughly the equivalent of a novice in
a (spoken) language “translating” word-by-word.
So we set out to design a meta-language that embodies

the common semantic concepts of OO languages, encoded
so that the necessary information for translation is present.
This language is agnostic of the eventual target language –
and free of the idiosyncratic details of any given language. In
fact, with proper care, one can go even further and teach the
translator about idiomatic patterns of each target language.
Trying to capture all the subtleties of each language is

hopeless — akin to capturing the rhythm, puns, metaphors,
similes, and cultural allusions of a sublime poem in transla-
tion. But programming languages are most often used for
muchmore prosaic tasks: writing programs for getting things
done. This is closer to translating technical textbooks, mak-
ing sure that all of the meaningful material is preserved.
We want to capture the conceptual meaning of OO pro-

grams, so as to fully automate the translation from the “con-
ceptual” to human-readable, idiomatic code, in mainstream
languages. At some level, this is not new. Domain-Specific
Languages (DSLs) are high-level languages with syntax and
semantics tailored to a specific domain [17]. A DSL abstracts
over the details of “code”, providing notation to specify
domain-specific knowledge in a natural manner. DSL imple-
mentations often work via translation to a General Purpose
programming Language (GPL) for execution. Some generate
human-readable code [5, 12, 18, 24]. This is what we do, for
the domain of OO programs.
While designing a generic OO language is a worthwhile

endeavour, we had a second motive: we needed a means to
do exactly that as part of our Drasil project [22, 23]. The
idea of Drasil is to generate all the requirements documenta-
tion and code from expert-provided domain knowledge. The

45

https://doi.org/10.1145/3372884.3373159
https://doi.org/10.1145/3372884.3373159
https://doi.org/10.1145/3372884.3373159

PEPM ’20, January 20, 2020, New Orleans, LA, USA Jacques Carette, Brooks MacLachlan, and Spencer Smith

generated code needs to be human readable so that experts
can certify that it matches their requirements. We largely
rewrote SAGA [5] to create GOOL1. It is implemented as
a Haskell embedded DSL (EDSL) that can currently gener-
ate code in Python, Java, C#, and C++. Others can be added,
with the implementation effort being commensurate to the
(semantic) distance to the languages already supported.

In Section 2, we outline the high-level requirements for
GOOL, followed by an outline of the syntax in Section 3, to
enable concrete examples. The interesting design details are
given in Section 4. How we capture idioms and patterns is in
Section 5. We close with a discussion of related work, plans
for future improvements and conclusions.

2 Requirements
Our requirements are as follows:

mainstream Generate code inmainstreamOO languages.
readable The generated code should be human-readable.
idiomatic The generated code should be idiomatic.
documented The generated code should be documented.
patterns Common OO patterns should be expressible.
expressivity The language should be rich enough to

express a set of existing OO programs, which act as
test cases for the language.

common Language commonalities should be abstracted.
Targeting OO languages (mainstream) reflects their pop-

ularity, thus the most potential users — one reason that the
makers of Scala and Kotlin chose to target the JVM to lever-
age the Java ecosystem, and Typescript for Javascript.
The readable requirement is not as obvious. We aim to

write high-level OO code once and have it be available in
many GPLs. One use case is to generate libraries of functions
for a narrow domain. As needs evolve and language popular-
ity changes, it is useful to have it immediately available in a
number of languages. We use it to get extremely well docu-
mented code that would be unrealistic to do by hand, as part
of Drasil [22, 23]. readable is also a proxy for understandable,
which is helpful for debugging.

The same underlying reasons for readable also drive id-
iomatic and documented, as they contribute to the human-
understandability of the generated code. idiomatic is im-
portant as readers would otherwise find the code “foreign”.
Documentation spans informal one-liners meant for humans
to formal, structured comments for generating API docu-
mentation with tools like Doxygen, or static analysis. Read-
ability (and thus understandability) are improved when code
is pretty-printed [7]. Thus layout, redundant parentheses,
well-chosen variable names, and using a common style with
lines that are not too long, are just as useful for generated
code as for human-written code. GOOL does not prevent
bad code, it just simplifies creating readable, idiomatic and
documented code in multiple languages.
1Available at https://github.com/JacquesCarette/Drasil as a sub-package.

The patterns requirement is typical of DSLs: common
idioms can be reified into a linguistic form instead of being
informal. Even some of the design patterns of [10] can become
part of the language. This makes writing some OO code even
easier in GOOL than in GPLs, but it also helps keep GOOL
language-agnostic and facilitates generating idiomatic code.

expressivity is about GOOL capturing the ideas con-
tained in OO programs. We test GOOL against real-world
examples from the Drasil project, such as software for de-
termining whether glass withstands a nearby explosion and
software for simulating projectile motion.

The last requirement (common) that language common-
alities be abstracted, is internal: we noticed too much code
duplication in our initial backends.

3 Creating GOOL
To create a “generic” OO language, we chose an incremental
abstraction approach: start from programs written in two dif-
ferent languages, and unify them conceptually. We abstract
from concrete programs, not just for expressivity, but also
because that is our “domain”. Although what can be said
in any given OO language is quite broad, what we actually
want to say is often much more restricted. And what we need
to say is often even more concise. For example, Java offers
introspection features, but C++ doesn’t, so abstracting from
portable OO will not feature introspection (although gener-
ating idiomatic Java may do so). C++ templates are different:
while other languages do not necessarily have comparable
meta-programming features, it is not only feasible but easy
to provide template-like features in GOOL, as well as some
partial evaluation. Thus we do not need to generate tem-
plates. We are trying to abstract over the fundamental ideas
expressed via OO programs, rather than abstracting over the
languages. We believe the end result captures the essence of
OO programs. Some features, such as static types, which is
not a feature of Python but required in Java, will be present
as doing full type inference is unrealistic.
Some features of OO programs are not operational: com-

ments and formatting decisions amongst them. To us, pro-
grams are a bidirectional means of communication; they
must be valid and executable, but also readable and under-
standable by humans. Generating code for interpretation by
machines is well understood, but generating code for human
consumption has been given less attention. We paid close at-
tention to readability features — such as when programmers
write long methods, they write them as blocks separated by
blank lines, often with comments. Thus in GOOL, bodies
are not just a sequence of statements, but a list of blocks, to
represent the actual structure of OO programs.

46

https://github.com/JacquesCarette/Drasil

GOOL: A Generic Object-Oriented Language PEPM ’20, January 20, 2020, New Orleans, LA, USA

Table 1. The GOOL Language - brackets indicate shortcuts for common cases

Types bool, int, float, char, string, infile (read mode), outfile (write mode), listType, obj
Variables var, extVar, classVar, objVar, $-> (infix operator for objVar), self, [listVar]
Values valueOf (value from variable), litTrue, litFalse, litInt, litFloat, litChar, litString, ?!, ?&&,

?<, ?<=, ?>, ?>=, ?==, ?!=, #~, #/^, #|, #+, #-, #*, #/, #^, inlineIf, funcApp, extFuncApp, newObj,
objMethodCall, [selfFuncApp, objMethodCallNoParams]

Statements varDec, varDecDef, assign, &=, &+=, &-=, &++, &~-, break, continue, returnState, throw, free, comment,
ifCond, ifNoElse, switch, for, forRange, forEach, while, tryCatch, block, body [bodyStatements
(single-block body), oneLiner (single-statement body)]

List API listAccess, at (same as listAccess), listSet, listAppend, listIndexExists, indexOf, listSlice
Scope public, private
Binding static_, dynamic_
Functions function, method, param, pointerParam, mainFunction, docFunc, [pubMethod, privMethod]
State Variables stateVar, constVar, [privMVar, pubMVar (dynamic), pubGVar (static)]
Classes buildClass, docClass, [pubClass, privClass]
Packages buildModule, fileDoc, docMod, prog, package, doxConfig, makefile

The GOOL language is shown in Table 1. We distinguish
a variable from its value2, motivated by semantic considera-
tions; it is beneficial for stricter typing and enables conve-
nient syntax for patterns for more idiomatic code.

We might eventually give GOOL its own external syntax,
but for now it workswell as aHaskell EDSL, especially as part
of Drasil. We can, with judicious use of smart constructors,
somewhat mimic the syntax of OO languages. We also use
smart constructors for common idioms, like privMVar to
denote a private dynamic state variable, and pubClass for a
public class. Note that many of the constructs (see Table 1)
have doc versions. We can also generate Makefiles and
Doxygen config files.

4 GOOL Implementation
There are three standard methods of encoding EDSLs in
Haskell: deep (a set of GADTs), shallow (a set of functions),
or “finally tagless” (a set of methods in classes). GOOL uses a
“sophisticated” version of tagless [8] involving type families.

Tagless encodes a language as a generalized fold over any
representation of the language. Thus what look like GOOL
“keywords” are actually methods, typically instantiated to
language renderers, but also to static analysis passes. By
using type families, each instance can choose different un-
derlying data structures for GOOL’s types. For example the
C++ instance stores destructor statements with state vari-
ables, which is not needed by the other languages. GOOL
is defined by 328 methods across a hierarchy of 43 classes
(see Figure 1) , grouped by functionality — it is not a small
language!

For example, here is part of the class for variables:

class (TypeSym repr) => VariableSym repr where
type Variable repr

2as befits the use-mention distinction from analytic philosophy

var :: Label −> repr (Type repr)
−> repr (Variable repr)

As variables are typed, their representation must be too and
thus that capability (the TypeSym class) is a constraint. The
associated type type Variable repr is a representation-
dependent type-level function. Each instance can define its
own representation of what a Variable is.
We have defined 300 functions that abstract over com-

monalities between target languages, making writing new
renderers fairly straightforward. GOOL’s Java and C# ren-
derers show this: out of the 328 total methods, 229 are shared.
That is 40% more common instances than between Python
and Java, for example. A further 37 are partially shared —
they call the same common function but with different pa-
rameters.

5 Idioms and Patterns
5.1 Idioms
Command line arguments Accessing these differs signf-
icantly across languages. Thus we abstract over the details
through an argsList that represents the list of arguments,
with a dedicated API.

Lists As with command line arguments, list APIs vary con-
siderably. We thus reverse engineer the “useful” API for lists
from actual use cases. Lists in OO languages are rarely linked
lists (unlike Haskell), but more like dynamically sized vectors.
In particular, indexing a list by position, which is a horrifying
idea for linked lists, is extremely common. The result is a
small set of functions and statements, shown in Table 1 on
the line labelled List API.

List slicing (the listSlice statement) is interesting as the
code it generates varies a lot by language. For example

listSlice someAges (valueOf ages) (Just $ litInt 1)

47

PEPM ’20, January 20, 2020, New Orleans, LA, USA Jacques Carette, Brooks MacLachlan, and Spencer Smith

Figure 1. Dependency graph of all of GOOL’s type classes

(Just $ litInt 3) Nothing

in Python is rendered as:

someAges = ages [1:3:]

while in Java it is

ArrayList<Double> temp = new ArrayList<Double>(0);
for (int i_temp = 1; i_temp < 3; i_temp++) {

temp.add(ages . get (i_temp));
}
someAges = temp;

Idiomatic code generation is enabled by having appropriate
high-level information driving the generation.

Printing is also target dependent. Again Python is more
“expressive” so that printing a list (via printLn ages) gener-
ates print(ages), but in other languages we must generate
a loop. There is also similar functionality for reading input.

Procedures with I/O/B parameters Our hand-written tar-
get codes had methods that used their parameters differently:
as inputs, outputs, or both. This is a semantic pattern that is
not necessarily obvious in any of the implementations. Once
noticed, we created an encoding of that information to gen-
erate better, more idiomatic code. Concretely, the following
Python code

def applyDiscount(price , discount):
price = price − discount
isAffordable = price < 20

return price , isAffordable

can be captured in GOOL with the inOutFunc idiom:

inOutFunc "applyDiscount" public static_
[discount] [isAffordable] [price]
(bodyStatements [
price &−= valueOf discount,
isAffordable &= valueOf price ?< litFloat 20.0])

We can produce the following C#

public static void applyDiscount(ref int price , \
int discount , out Boolean isAffordable) {
price = price − discount ;
isAffordable = price < 20;

}

and C++

void applyDiscount(int &price, \
int discount , bool &isAffordable) {
price = price − discount ;
isAffordable = price < 20;

}

48

GOOL: A Generic Object-Oriented Language PEPM ’20, January 20, 2020, New Orleans, LA, USA

to capture the same idea. The Java version (not shown) is
more awkward. A natural task-level “feature” — different
kinds of parameters — ends up being rendered differently, but
hopefully idiomatically, in each target language. GOOL man-
ages the tedious aspects of generating any needed variable
declarations and return statements. To call an inOutFunc
function, one must use inOutCall so that GOOL can “line
up” all the pieces properly.

Getters and setters are common in OO programs (regard-
less of whether these actually achieve encapsulation), and
mechanical to write. In GOOL, getMethod "FooClass" foo
and setMethod "FooClass" foo are sufficient to generate
that code, which can be called with get and set, and yet
abstracts over the idiosyncracies of each target language.

Design Patterns GOOL currently handles three design pat-
terns: Observer, State, and Strategy [10].

For Strategy, we ensure that the set of strategies that will
be used are statically known at generation time, and then
generate code only for those that will be used. runStrategy
is the user-facing function.
For Observer, initObserverList generates an observer,

given a list of initial values; it generates a declaration of an
observer list variable, initially containing the given values.
addObserver can be used to add a value to the observer
list, and notifyObservers will call a method on each of the
observers. Currently, the name of the observer list variable is
fixed, so there can only be one observer list in a given scope.
The State pattern is specialized to Finite State Machines

with fairly general transition functions. Transitions happen
on checking, not on changing the state. initState takes
a name and a state label and generates a declaration of
a variable. changeState changes the state of the variable.
checkState is more complex: it takes the name of the state
variable, a list of value-body pairs, and a fallback body; it
generates a conditional (usually a switch statement) that
checks the state and runs the corresponding body, or the
fallback body, if none of the states match.

The design patterns could have been coded in GOOL, but
having these as language features is useful for two reasons:
1) the GOOL-level code is clearer in its intent (and more
concise), and 2) the resulting code can be more idiomatic.

Figure 2 shows a larger example. The recommended style
is to name all strings (to avoid hard-to-debug typos) and
variables, then write the code proper.

6 Related Work
6.1 General-Purpose Code Generation
Haxe [3] is a general-purpose multi-paradigm language and
cross-platform compiler. It compiles to all of the languages
GOOL does, and many others. However, it is designed as a
more traditional programming language, and does not offer
the high-level abstractions that GOOL provides. Furthermore

patternTest :: (MethodSym repr) =>
repr (Method repr)

patternTest = let fsmName = "myFSM"
offState = "Off" onState = "On"
noState = "Neither" obsName = "Observer"
obs1Name = "obs1" obs2Name = "obs2"
printNum = "printNum" nName = "n"
obsType = obj obsName
n = var n int
obs1 = var obs1Name obsType
obs2 = var obs2Name obsType
newObs = extNewObj obsName obsType [] in

mainFunction (body [block [
varDec n,

initState fsmName offState ,
changeState fsmName onState,
checkState fsmName
[(litString offState ,

oneLiner $ printStrLn offState),
(litString onState ,

oneLiner $ printStrLn onState)]
(oneLiner $ printStrLn noState)],

block [
varDecDef obs1 newObs,
varDecDef obs2 newObs],

block [
initObserverList obsType [valueOf obs1],
addObserver $ valueOf obs2,
notifyObservers (func printNum void []) obsType]])

Figure 2. GOOL sample code

Haxe strips comments and generates source code around a
custom framework; the effort of learning this framework
and the lack of comments makes the generated code not
particularly readable. The internal organization of Haxe does
not seem to be well documented.

Protokit [14] is a DSL and code generator for Java and
C++, where the generator is designed to produce general-
purpose imperative or object-oriented code. The Protokit
generator is model-driven and uses a final “output model”
from which actual code can be generated. Since the “out-
put model” is quite similar to the generated code, it pre-
sented challenges with regards to semantic, conventional,
and library-related differences between the target languages

49

PEPM ’20, January 20, 2020, New Orleans, LA, USA Jacques Carette, Brooks MacLachlan, and Spencer Smith

[14]. GOOL’s design helps overcome differences between
target languages.

ThingML [11] is a DSL for model-driven engineering
targeting C, C++, Java, and JavaScript. It is specialized to
deal with distributed reactive systems (a nevertheless broad
range of application domains). This means that it is not quite
a general-purpose DSL, unlike GOOL. ThingML’s modelling-
related syntax and abstractions stand in contrast to GOOL’s
object-oriented syntax and abstractions. The generated code
lacks some of the pretty-printing provided by GOOL, specif-
ically indentation, which detracts from readability.

6.2 Object-Oriented Generators
There are code generators which multiple target OO lan-
guages, but all are domain-specific.

Google protocol buffers [2] is a DSL for serializing struc-
tured data, which can be compiled into Java, Python, Objec-
tive C, and C++. Thrift [20] is a Facebook-developed tool
for generating code in multiple languages and even multiple
paradigms based on language-neutral descriptions of data
types and interfaces. Clearwater [21] is an approach for
implementing DSLs with multiple target languages for com-
ponents of distributed systems. The Time Weaver tool [9]
uses a multi-language code generator to generate “glue” code
for real-time embedded systems. The domain of mobile ap-
plications is host to a bevy of DSLs with multiple target
languages, of whichMobDSL [15] and XIS-Mobile [19] are
two examples. Conjure [1] is a DSL for generating APIs. It
reads YML descriptions of APIs and can generate code in
Java, TypeScript, Python, and Rust.

6.3 Design Patterns
A number of languages for modeling design patterns have
been developed. TheDesign PatternModeling Language
(DPML) [16] is similar to the Unified Modeling Language
(UML) but designed specifically to overcome UML’s short-
comings. DPML consists of both specification diagrams and
instance diagrams for instantiations of design patterns, but
does not attempt to generate actual source code. The Role-
BasedMetamodeling Language [13] is also based on UML
but with changes to allow for better models of design pat-
terns, with specifications for the structure, interactions, and
state-based behaviour in patterns. Again, source code gen-
eration is not attempted. Another metamodel for design
patterns includes generation of Java code [4]. IBM developed
a DSL in the form of a visual user interface for generation of
OO code based on design patterns [6]. The languages that
generate code do so only for design patterns, not for any
general-purpose code, as GOOL does.

7 Future Work
Currently GOOL code is typed based on what it represents:
variable, value, type, or method, for example. The type sys-
tem does not go “deeper”, so that values (such as booleans
and strings) are simply “values”. This is sufficient to allow
us to generate well-formed code, but not to ensure that it is
well-typed. We have started to statically type GOOL.

We also want to improve the generated import statements,
via tracking actual dependencies on features used. In general,
we can do various kinds of static analyses to enhance the
code generation quality, such as being more precise about
throws Exception in Java.

We also want to interface with external libraries, such as
a variety of ODE solvers, since Drasil currently focuses on
scientific applications. The API for available solvers varies
considerably, so we will need to change the “shape” of gen-
erated code depending on the user’s choice.

Some implementation decisions, such as representing lists
in Java as ArrayList, are hard-coded. But we could have
used Vector instead. We would like such a choice to be user-
controlled. Another such decision point is to allow users to
choose which specific external library to use.

8 Conclusion
We currently successfully use GOOL to simultaneously gen-
erate code in all of our target languages for the glass and
projectile programs described in Section 2.
Conceptually, mainstream object-oriented languages are

similar enough that it is indeed feasible to create a single
“generic” object-oriented language that can be “compiled”
to them. Of course, these languages are syntactically quite
different in places, and each contains some unique ideas
as well. In other words, there exists a “conceptual” object-
oriented language that is more than just “pseudocode”: it is a
full-fledged executable language that captures the common
essence of mainstream OO languages.

GOOL is an unusual DSL, as its “domain” is actually that
of object-oriented programs. More precisely, of conceptual
programs that can be easily written in languages containing
a procedural core with an object-oriented layer on top —
which is what Java, Python, C++, and C# are.

Sincewe are capturing conceptual programs, we can achieve
several things that we believe are together new:

• generation of idiomatic code for each target language,
• turning coding patterns into language idioms,
• generation of human-readable, well-documented code.

We must also re-emphasize this last point: that for GOOL,
the generated code is meant for human consumption as
well as for computer consumption. This is why semanti-
cally meaningless concepts such as “blocks” exist: to be able
to chunk code into pieces meaningful for the human reader,
and provide documentation at that level as well.

50

GOOL: A Generic Object-Oriented Language PEPM ’20, January 20, 2020, New Orleans, LA, USA

References
[1] [n. d.]. Conjure: a code-generator for multi-language HTTP/JSON

clients and servers. https://palantir.github.io/conjure/#/ Accessed
2019-09-16.

[2] [n. d.]. Google Protocol Buffers. https://developers.google.com/
protocol-buffers/ Accessed 2019-09-16.

[3] [n. d.]. Haxe - The cross-platform toolkit. https://haxe.org Accessed
2019-09-13.

[4] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. 2001. Meta-modeling
design patterns: Application to pattern detection and code synthesis.
In Proceedings of ECOOP Workshop on Automating Object-Oriented
Software Development Methods.

[5] Lucas Beyak and Jacques Carette. 2011. SAGA: A DSL for story man-
agement. arXiv preprint arXiv:1109.0776 (2011).

[6] Frank J. Budinsky, Marilyn A. Finnie, JohnM. Vlissides, and Patsy S. Yu.
1996. Automatic code generation from design patterns. IBM systems
Journal 35, 2 (1996), 151–171.

[7] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric
for code readability. IEEE Transactions on Software Engineering 36, 4
(2009), 546–558.

[8] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming 19, 5 (2009),
509–543.

[9] Dionisio de Niz and Raj Rajkumar. 2004. Glue code generation: Closing
the loophole in model-based development. In 10th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2004).
Workshop on Model-Driven Embedded Systems. Citeseer.

[10] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented
software. Pearson Education India.

[11] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
2016. Thingml: a language and code generation framework for het-
erogeneous targets. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems. ACM,
125–135.

[12] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012.
Green-Marl: a DSL for easy and efficient graph analysis. ACMSIGARCH
Computer Architecture News 40, 1 (2012), 349–362.

[13] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. 2003.
A uml-based metamodeling language to specify design patterns. In
Proceedings of Workshop on Software Model Engineering (WiSME), at

UML 2003. Citeseer.
[14] Gábor Kövesdán and László Lengyel. 2017. Multi-Platform Code Gen-

eration Supported by Domain-Specific Modeling. International Journal
of Information Technology and Computer Science 9, 12 (2017), 11–18.

[15] Dean Kramer, Tony Clark, and Samia Oussena. 2010. MobDSL: A
Domain Specific Language for multiple mobile platform deployment.
In 2010 IEEE International Conference on Networked Embedded Systems
for Enterprise Applications. IEEE, 1–7.

[16] David Mapelsden, John Hosking, and John Grundy. 2002. Design
pattern modelling and instantiation using DPML. In Proceedings of the
Fortieth International Conference on Tools Pacific: Objects for internet,
mobile and embedded applications. Australian Computer Society, Inc.,
3–11.

[17] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and
how to develop domain-specific languages. ACM computing surveys
(CSUR) 37, 4 (2005), 316–344.

[18] Arjan J Mooij, Jozef Hooman, and Rob Albers. 2013. Gaining indus-
trial confidence for the introduction of domain-specific languages. In
2013 IEEE 37th Annual Computer Software and Applications Conference
Workshops. IEEE, 662–667.

[19] André Ribeiro and Alberto Rodrigues da Silva. 2014. Xis-mobile: A
dsl for mobile applications. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing. ACM, 1316–1323.

[20] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift:
Scalable cross-language services implementation. Facebook White
Paper 5, 8 (2007).

[21] Galen S Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun
Koh, Qinyi Wu, Charles Consel, Akhil Sahai, and Koichi Moriyama.
2005. Clearwater: extensible, flexible, modular code generation. In Pro-
ceedings of the 20th IEEE/ACM international Conference on Automated
software engineering. ACM, 144–153.

[22] Daniel Szymczak, W. Spencer Smith, and Jacques Carette. 2016. Po-
sition Paper: A Knowledge-Based Approach to Scientific Software
Development. In Proceedings of SE4Science’16 in conjunction with the
International Conference on Software Engineering (ICSE). In conjunction
with ICSE 2016, Austin, Texas, United States. 4 pp.

[23] Drasil Team. 2019. Drasil Software: Generate All The Things (Focusing
on Scientific Software). https://github.com/JacquesCarette/Drasil.

[24] Daniel C Wang, Andrew W Appel, Jeffrey L Korn, and Christopher S
Serra. 1997. The Zephyr Abstract Syntax Description Language.. In
DSL, Vol. 97. 17–17.

51

https://palantir.github.io/conjure/#/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://haxe.org
https:// github.com/JacquesCarette/Drasil

	Abstract
	1 Introduction
	2 Requirements
	3 Creating GOOL
	4 GOOL Implementation
	5 Idioms and Patterns
	5.1 Idioms

	6 Related Work
	6.1 General-purpose Code Generation
	6.2 Object-oriented generators
	6.3 Design Patterns

	7 Future Work
	8 Conclusion
	References

