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Abstract
Direct reflection is a form of meta-programming in which pro-
gram terms can intensionally analyze other program terms. Pre-
vious work defined a big-step semantics for a directly reflective
language called Archon, with a conservative approach to variable
scoping based on operations for opening a lambda-abstraction and
swapping the order of nested lambda-abstractions. In this short pa-
per, we give a small-step semantics for a revised version of Archon,
based on operations for opening and closing lambda abstractions.
We then discuss challenges for designing a static type system for
this language, which is our ultimate goal.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Languages, Types

Keywords Meta-Programming, Reflection, Small-Step Seman-
tics, Symbolic Computation

1. Introduction
We are interested in typed, directly reflective, meta-programming
languages with binders. By “directly reflective”, we mean that we
can not only inspect all terms, but decompose them all as well.
In other words, we would like a language in which all well-typed
terms are simultaneously extensional and intensional. Furthermore,
we would like to do this for as small an extension of the classical
λ-calculus as possible.

In previous work [12], the second author defined a directly re-
flective language called Archon, via a big-step operational seman-
tics. This used a very conservative approach to variable scoping
based on operations for opening a lambda-abstraction and swap-
ping the order of nested lambda-abstractions. Here, we give a
small-step semantics for a revised version of Archon, based on op-
erations for opening and closing lambda abstractions.

If we were interested in a combinatory calculus for this task,
we would have to search no further than the recent work of Jay
and Palsberg [7], about which we will say more in the next section.
From our point of view, their language is missing a crucial ingredi-
ent: binders. We want to be able to do direct reflection, in a hygienic
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manner, on terms with binders. And, as the authors readily admit,
their treatment of typing for the E combinator is unsatisfactory.

An interesting side-effect of allowing direct reflection on a
language with free variables, is that we get symbolic computation
“for free”, at least operationally.

Our work belongs to a rich tradition of investigations on reflec-
tion, intensionality, open code, and typed meta-programming, thus
we first give an (unfortunately brief) overview of some of these
strands. We present two versions of Archon: first the one from [12],
and then a new one which we believe to be more convenient to work
with. We then present our work-in-progress on a type system for
(revised) Archon.

2. Related Work
Jay and Palsberg [7] achieve something closely related, but for
a combinatory calculus. They start from the pure factorisation
calculus [6], augmented with some usual combinators from the SK
combinatory calculus, as well as two new combinators, B and E,
respectively for blocking computation and for deciding equality of
operators. They then proceed to add syntactic sugar for the identity
combinator, λ-abstraction, let and let rec. They furthermore
add pattern-matching with path polymorphism [5], but this too can
be de-sugared. This is a remarkable piece of work. Unfortunately, it
does not achieve our goals: while it is possible to program in their
system as if one were in a λ-calculus, introspection can only be
done at the level of the underlying combinatory calculus. This is in
every way similar to the situation of introspection in Java, whereby
one can only examine (and modify) the byte code of a Java class,
but not its source code. And, as they mention in section 7.1, the
typing of the E combinator is not entirely satisfactory.

Closer still to achieving part of what we want is the work
of Rendel, Ostermann and Hofer [10], who define a typed self-
representation of the (pure) λ-calculus. To achieve this, they first
leverage a technique from [2] whereby they abstract over a type
constructor, and then repeat this at the type level (to introduce
kind-polymorphism). This necessitates an extension of system Fω ,
which they call F ?

ω , with a rule which amounts to kind:kind. While
this is not as bad as type:type, it is nevertheless quite discom-
forting. Furthermore, while they do indeed achieve typed self-
interpretation, it is not direct as they only interpret quoted terms
(their terms are not self-quoting), nor do they allow reflection.

Another interesting strand concerns intensional logic, and in
particular the work of Paul Gilmore on Intensional Type Theory
(ITT) [3]. Terms in ITT have two types, an extensional and an
intensional type; closed terms in ITT have these two types coincide.
We see this as a very valuable insight.

There is a huge amount of work on typed staged languages,
which allow a restricted amount of code manipulation, but no
reflection, direct or indirect. Most influential on us has been the
work of Rhiger [11] on a typed language with first-class open and
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T ::= x | λx.T | λ̄x.T | T T | open T T | vcomp T T

| swap T | T : T T T T T T T

Figure 1. The Syntax of HOSC-Archon Terms

T2 x T1 ⇓ R y 6∈ FV(λ∗x.T1) ∪ FV(T2)

open (λ∗x.T1) T2 ⇓ λ∗x.R
E-OPENLAM

T ⇓ λ1x.λ2y.R

swap T ⇓ λ2y.λ1x.R
E-SWAPLAM

Figure 2. HOSC-Archon Rules for Open and Swap

closed code fragments. He cleverly moves the typing context into
the types, to allow for a very fine-grained tracking of dependency in
an explicitly staged language. Kim, Yi and Calcagno [8] essentially
extend this with many more features, include variable-capturing
substitution at “higher levels”.

Atkey, Lindley and Yallop [1] take a different tack: rather than
deal with self-representation, especially of embedded languages,
they really work with language pairs (L1, L2), with explicit equiva-
lences between the languages. They achieve reflection because one
language is always represented (in the host language) as a first-
order datatype, on which intensional analysis may be performed.
While quite pragmatic, this is theoretically unsatisfying.

3. HOSC-Archon
Previous work of the second author defined a directly reflective
meta-programming language called Archon [12]. We will refer
to that language as HOSC-Archon in this paper. The syntax for
HOSC-Archon terms is given in Figure 1. We retain the same syn-
tax in this section as in the original paper on Archon, though in
the next section we will depart from this somewhat. Here, the con-
struct λ̄ is for call-by-name λ-abstraction, while λ is reserved for
call-by-value abstraction. The vcomp construct is for comparing
two variables for equality. The : construct is for intensional case-
analysis, called decomposition, on the form of an unevaluated term,
and includes terms to apply for each of the seven possible forms
(one for each syntactic construct) of the scrutinized term to the left
of the colon.

We will give a full semantics for our revised version of this lan-
guage in the next section. First, for comparison, we consider the
semantics of HOSC-Archon’s open and swap, in Figure 2. Eval-
uation of a swap-term (the rule E-SWAPLAM) evaluates the sub-
term T and then, if it is a consecutively nested λ-abstraction, swaps
the order of the λ-bindings. The E-OPENLAM shows the situation
where open has an unevaluated λ-abstraction (λ∗ indicates either
λ or λ̄), and evaluation applies a term T2 to the bound variable and
the body of that λ-abstraction. It is assumed that variables are re-
named before the λ-abstraction is opened, so that the variable x is
not free in T2. After evaluation of that application completes, the
result is rebound with λx, thus preventing variables from escaping
their scopes. It is this behavior we will relax in the next section. It
is possible to define highly intensional meta-programming opera-
tions like testing terms for alpha-equivalence, or Mogensen-Scott
decoding and encoding functions, in HOSC-Archon [12].

4. Revised Archon: Syntax and Semantics
Figure 3 gives the syntax for terms in our revised version of Ar-
chon. Contexts C are defined for the operational semantics, defined
in Figures 4 and 5. Note that we allow symbolic computation in

convention θ ::= v | n

term t ::= x | t t ′ | λθx .t
| open t t ′ | closeθx t
| veq t t ′ | t : t1 t2 t3 t4 t5 t6 t7

context C ::= ∗ | C t | v C

concreteValue v ::= λθx .t | hv

headValue hv ::= x | hv v

Figure 3. Syntax for (Revised) Archon Terms

both HOSC-Archon and revised Archon, so the notion of values
v includes (via headValue) applications of variables x to values.
There are a number of minor differences between the syntax here
and in the previous section. We use (calling) convention markers θ
to indicate whether λ-abstractions are call-by-name (n) or call-by-
value (v). The most important change, of course, is that we have
removed swap and replaced it with close.

C[(λvx .t) v ] → C[[v/x ]t ]
CONC BETAV

C[(λnx .t) t ′] → C[[t ′/x ]t ]
CONC BETA

x ′ 6 ∈ FV (C[t t ′])

C[open (λθx .t) t ′] → C[((t ′ x ′) [x ′/x ]t)]
CONC OPEN

C[closeθx t ] → C[λθx .t ]
CONC CLOSE

x 6= x ′

C[veq x x ′] → C[ff ]
CONC VARDIFF

C[veq x x ] → C[tt]
CONC VARSAME

Figure 4. Small-Step Semantics for (Revised) Archon, Non-
Decomp Rules

The rules of Figures 4 and 5 define a small-step operational
semantics for Archon terms. This semantics bans variable capture
during substitution, just like HOSC-Archon, but it now permits
variables to escape their scopes. So if we have t →+ t′, then it can
happen that the set FV(t′) of free variables of t′ is not a subset of
FV(t). New free variables may appear during reduction, because
unlike in HOSC-Archon, revised Archon does not insist that a
variable x which is freed by open must always be re-bound around
a resulting term which might contain x free. One could certainly
implement this re-binding discipline on top of open and close:
one can just require all terms to use open′ defined as follows. For
simplicity we always re-bind the variable as call-by-name; using
decomposition one could re-bind the variable to match its original
convention θ.
open′ :=
λnx .λnx ′.open x (λny .λny ′.((λvx ′′.closevy x ′′) (x ′ y y ′)))

This term takes in a term x to open and a function x′ to apply to the
bound variable and body of x. It opens x, using a term which will
receive the bound variable of x as y and the body as y′. It then calls
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C[x : t1 t2 t3 t4 t5 t6 t7] → C[t1 x ]
CONC DVAR C[(λnx .t) : t1 t2 t3 t4 t5 t6 t7] → C[t2 ff (λnx .t)]

CONC DCBN

C[(t ′ t ′′) : t1 t2 t3 t4 t5 t6 t7] → C[t3 t ′ t ′′]
CONC DAPP C[(λvx .t) : t1 t2 t3 t4 t5 t6 t7] → C[t2 tt (λvx .t)]

CONC DCBV

C[(open t ′ t ′′) : t1 t2 t3 t4 t5 t6 t7] → C[t4 t ′ t ′′]
CONC DOPEN

C[(closevx t ′) : t1 t2 t3 t4 t5 t6 t7] → C[t5 tt x t ′]
CONC DCLOSES

C[(closenx t ′) : t1 t2 t3 t4 t5 t6 t7] → C[t5 ff x t ′]
CONC DCLOSED

C[(veq t ′ t ′′) : t1 t2 t3 t4 t5 t6 t7] → C[t6 t ′ t ′′]
CONC DVEQ

C[(t ′ : t ′1 t ′2 t ′3 t ′4 t ′5 t ′6 t ′7) : t1 t2 t3 t4 t5 t6 t7] → C[t7 t ′ t ′1 t ′2 t ′3 t ′4 t ′5 t ′6 t ′7]
CONC DD

Figure 5. Small-Step Semantics for (Revised) Archon, Decomp Rules

the original function x′ on y and y′, obtaining the result as x′′. It
then re-binds y around that result x′′ using close.

For another example, Figure 6 shows how the swap operator
of HOSC-Archon can be implemented in revised Archon (we again
re-bind the two variables just as λn-abstractions, just for easier
readability; we could use decomposition to re-bind with the original
convention θ). The term given in the figure for swap takes in a
term x, assumed to be a doubly nested λ-abstraction of the form
λθ

1y .λθ
2y

′.x ′′; opens it twice (that is, opens it and then opens its
body) to obtain y, y′, and x′′; and then closes the variables in the
reverse order (with a call-by-value β-redex binding variable x′′′ to
force evaluation of the first close-term). This results in the term
λny ′.λny .x ′′, which indeed has swapped the order of the bound
variables, as desired.

The fact that revised Archon can simulate swap from HOSC-
Archon shows that revised Archon is at least as expressive as
HOSC-Archon. To make this more precise, suppose we have de-
fined a translation | · | from HOSC-Archon terms to revised Ar-
chon terms, in the obvious way, using the definition of Figure 6 for
swap. Then we have the following theorem:

THEOREM 1. If t ⇓ t′ in HOSC-Archon, then we also have |t| →∗

|t′| in revised Archon.

Proof. The proof is by straightforward induction on the structure of
the derivation of the HOSC-Archon evaluation judgment. It makes
use of the fact that if t ⇓ t′, then t′ is an HOSC-Archon value,
which translates to a revised Archon value. It also makes use of
a standard derived congruence lemma for revised Archon, stating
that t →∗ t′ implies C[t] →∗ C[t′]. End proof.

5. Types
Our goal is to devise a static type system for revised Archon,
which will ensure that open cannot be called on a term which
is not a λ-abstraction; veq can only be called on terms which are
variables; and where the free variables of terms can be tracked by
the type system. Note that we mean “is not a λ-abstraction” and
not “evaluates to a λ-abstraction”, implying that staging properties,
although implicit, are nevertheless very important. Tracking of free
variables can be useful if one wished to enforce statically some
additional policy about free variables. For example, we might want
to require that in a top-level definition, the defining term is closed;

or we might want to disallow evaluation of terms with free variables
unless they are statically guaranteed to be λ-abstractions.

As perhaps should not be surprising given the complexity of
the type systems in related works, it turns out to be quite subtle
to design a liberal but sound type system to meet the above goals.
Here, we highlight challenges and sketch ideas in that direction,
starting with some simple examples which such a type system
should allow or reject. Note that eventually, one would like to
have a system of annotated (Church-style) terms with a decidable
type-checking problem; but for purposes of the examples below,
we work with unannotated (Curry-style) terms, as this allows us to
avoid attempting to define the syntax for types at this point.

5.1 Simple Examples
Basic swap example (accept). Let swap be as defined in Figure 6
above. Then swap itself should be typable, with a type that reflects
that its argument should be a doubly-nested λ-abstraction. So the
following term should be typable:

swap (λnx .λny .x )

This term simply swaps variables x and y. The type assigned to this
term should reflect the fact that the term is closed.

Indirect swap (accept). The term below should be typable where
the type of x expresses that it is a doubly-nested λ-abstraction:

λnx .swap x

Furthermore, typing should probably express that the sets of free
variables of the input and output of this λ-abstraction are the same.

Scoping and swap (reject). The following example should be
disallowed, even if the λ-abstraction is given a type like (T ⇒
T ) ⇒ T ⇒ T :

swap (λnx .x )

Decomp and open (accept). Typing for decomposition should
use some kind of type refinement, so that in each branch of a
decomposition, typing can take into account that the scrutinee term
has a known form. Thus

t : a (λnx .λny .open y t ′) b c d e f

should be typable, for typable scrutinee t, a suitable term t′ to
apply to the bound variable and body of t, and suitable other
decomposition branches a through f :
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swap := λnx .open x λny .λnx ′.open x ′ λny ′.λnx ′′.((λvx ′′′.closeny ′ x ′′′) (closeny x ′′))

Figure 6. Definition of swap Using Open and Close in Revised Archon

Variables ranging over variables (accept). The following term
should be typable, with a type expressing that if the arguments
supplied for x and y are variables, then the result of applying the
λ-abstraction is a boolean:

λnx .λny .veq x y

Note that this requires the type system to be able to express the
idea that a variable (like x) ranges over free variables, since if a
term of a different form is supplied for x, the application of this λ-
abstraction will have a stuck term (as veq t t ′ is stuck unless both
t and t′ are variables).
Application, variables and swap (reject). It is entirely possible
that a free variable has a type such that the left term below is well-
typed, while the right term is not.

f x y swap f

While f represents a function of 2 arguments, that does not imply
that is is a function of 2 arguments.

5.2 Ideas on Typing
Shapes and types. One idea that seems promising is to incorporate
both shapes and types into the type system. A shape is a type-like
expression which expresses more about the intensional form of a
term. An example shape is (T1 => T2) T1. This shape expresses
(among other things) that the term in question is an application;
that property is usually not expressible in a type system. Here, we
expect ideas in an emerging line of research on “small-step typing”
to help, since there, terms are rewritten in a small-step fashion to
their types, passing through shapes as intermediary forms [4, 9, 13].

Tracking free variables. Since an open term fundamentally
depends on the names of the free variables that it contains, if
we wish to enforce any policy which depends on the presence
or absence of (certain) free variables, we need to track this. For
example, internalizing capture-avoiding substitution requires this
feature. Binders Unbound [14] gives other examples of the utility
of this feature.

Denotations of types. Since types are specifications, it can be
useful to define a semantics for types in a denotational style, as
a guide for a decidable type system. Such a semantics determines
what types are supposed to mean. A basic example is the following
for function types T → T ′, from reducibility for normalization of
λ-calculi:

t ∈ [[T → T ′]] ⇔ ∀t′ ∈ [[T ]]. t t′ ∈ [[T ′]]

This type thus expresses an extensional view of terms: a term t is
in the meaning of the type T → T ′ iff for every input t′ in the
meaning of T , the application t t′ is in the interpretation of T ′. For
revised Archon, we anticipate needing types embodying this exten-
sional viewpoint, but also ones with a more intensional character.
For the terms λnx .x and λnx .λny .(x y) are indistinguishable ex-
tensionally when x is taken to range over functions; but we must
distinguish them somehow in order to allow the “indirect swap”
example above, while ruling out the “scoping and swap” example.

5.3 Other semantic differences
Open terms differ significantly from closed terms. While x+1 and
λvx.x + 1 may at first seem quite similar1, since they can be inter-

1 in an obvious extension of revised Archon

derived via closevx (x+1), and open (λvx.x+1) (λnv.λnb.b).
Nevertheless, we assert that x + 1 represents the “add 1 concept”,
while λvx.x+1 represents the action of adding 1. Another example
is that we can easily add a constant which represents the “halts”
concept (as applied to terms), but we would be hard-pressed to
instantiate it.

6. Conclusion
We believe that revised Archon has the “right” operational seman-
tics for a useful core calculus for (typed) meta-programming which
incorporates many useful features: binders, direct reflection, and
symbolic computation. Another significant advantage of direct re-
flection is that persistent code is no longer an issue, unlike in most
other calculi. Our ongoing work makes us quite optimistic that by
combining a shape system, type refinement with free variable track-
ing will culminate in a static “type” system for revised Archon.
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