A normal form algorithm for piecewise functions

Jacques Carette

carette@mcmaster.ca

McMaster University

Overview

- Observations
- Definitions
- Arithmetic and normal form
- Complexity
- Niceties
- Extensions

Observations

- \mathbb{R} is linearly ordered
\Rightarrow induces an order on domain decompositions

Observations

- \mathbb{R} is linearly ordered
\Rightarrow induces an order on domain decompositions
- x is used twice in

$$
f(x)= \begin{cases}-x & x<0 \\ x & \text { otherwise } .\end{cases}
$$

Observations

- Algebraic properties of functions come (mostly) from those of the codomain.

$$
+: Y \times Y \rightarrow Y
$$

induces a function

$$
+:(X \rightarrow Y) \times(X \rightarrow Y) \rightarrow(X \rightarrow Y)
$$

by

$$
(f+g)(x)=f(x)+g(x)
$$

Observations

- Algebraic properties of functions come (mostly) from those of the codomain.

$$
+: Y \times Y \rightarrow Y
$$

induces a function

$$
+:(X \rightarrow Y) \times(X \rightarrow Y) \rightarrow(X \rightarrow Y)
$$

by

$$
(f+g)(x)=f(x)+g(x)
$$

- Composition ruins everything!

Observations

Eager evaluation can be a problem:

$$
f(x)= \begin{cases}1 / x & x<0 \\ 23 & x=0 \\ 2 / x & \text { otherwise }\end{cases}
$$

Definitions

Definition. A range partition \mathcal{R} of a linearly ordered set Λ is a finite set B of points $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$, along with the natural decomposition of Λ into disjoint subsets $\Lambda_{1}, \ldots, \Lambda_{n+1}$ where

$$
\begin{gathered}
\Lambda_{1}:=\left\{x \in \Lambda \mid x<\lambda_{1}\right\} \\
\Lambda_{i}:=\left\{x \in \Lambda \mid \lambda_{i-1}<x<\lambda_{i}\right\}, i=2, \ldots, n \\
\Lambda_{n+1}:=\left\{x \in \Lambda \mid \lambda_{n}<x\right\} .
\end{gathered}
$$

Definitions

Definition. A piecewise expression is a function from a range partition to a set S.
Example. Taking $\Lambda=\mathbb{R}$, the range partition \mathcal{R} generated by $\{0\}$, and $S=\left\{x^{2}, x^{3}\right\}$ then $f: \mathcal{R} \rightarrow S$ defined by

$$
f(z)= \begin{cases}x^{2} & z=\Lambda_{1} \\ x^{3} & z=0 \\ x^{3} & z=\Lambda_{2}\end{cases}
$$

is a piecewise expression.

Definitions

Definition. Let S be a set of functions. Then a piecewise expression $f: \mathcal{R} \rightarrow S$ will be called a piecewise operator.
Using $\tilde{S}=\{y \mapsto-y, y \mapsto 0, y \mapsto y\}$, we can write abs as the following piecewise operator:

$$
a \tilde{b} s(x)= \begin{cases}y \mapsto-y & x<0 \\ y \mapsto 0 & x=0 \\ y \mapsto y & x>0\end{cases}
$$

Of course we really want $f(x)(x)$.

On notation

$$
\begin{cases}h_{1}(x) & x<\lambda_{1} \\ \beta_{1} & x=\lambda_{1} \\ h_{2}(x) & x<\lambda_{2} \\ \beta_{2} & x=\lambda_{2} \\ \vdots & \vdots \\ \beta_{n} & x=\lambda_{n} \\ h_{n+1}(x) & \lambda_{n}<x\end{cases}
$$

usual

$$
\begin{cases}g_{1} & x \in \Lambda_{1} \\ g_{2} & x=\lambda_{1} \\ g_{3} & x \in \Lambda_{2} \\ g_{4} & x=\lambda_{2} \\ \vdots & \vdots \\ g_{2 n} & x=\lambda_{n} \\ g_{2 n+1} & x \in \Lambda_{n+1}\end{cases}
$$

precise

Definitions

Definition. An effective domain D is a pair (F, \sim), where

1. $F: O^{n} \rightarrow V$ is a set of functions (of varied arity n)
2. \sim is a function on F that decides extensional equivalence.

Two functions $f, g \in F$ are said to be extensionally equivalent if $\forall x \in O^{n}$, either f and g are both defined and $f(x)=g(x)$, or neither f nor g are defined. Denoted $f \simeq g$.

1. the functions in F can be partial,
2. ~ decides equivalence, not equality, and
3. \sim is defined for F, not O nor V.

Arithmetic

See picture...

Simplification

$$
\begin{aligned}
& \left\{\begin{array}{lll}
y \mapsto-y & x<0 \\
y \mapsto 0 & x=0 \\
y \mapsto y & \text { otherwise. }
\end{array}+\left\{\begin{array}{ll}
y \mapsto y & x<0 \\
y \mapsto 0 & x=0 \\
y \mapsto-y & \text { otherwise. }
\end{array}=\right.\right. \\
& \qquad \begin{cases}y \mapsto 0 & x<0 \\
y \mapsto 0 & x=0 \\
y \mapsto 0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

But also...

$$
\begin{cases}y \mapsto 0 & x<0 \\ y \mapsto y^{2} & x=0 \\ y \mapsto 0 & \\ \text { otherwise. }\end{cases}
$$

Algorithm 1

- Prototype algorithm quickly in Maple
- Code it again with static types for correctness

```
- type (' a,'b) endpiece = {fn : ('a -> 'b)} ; ;
type ('a,'b) middlepiece =
and ('a,'b) piecewise = ((' a,'b) middlepiece) array *
    ('a,'`b) endpiece ; ;
```


Algorithm 1

let normalform (normal:('a->'b) -> ('a->'b))

```
((a,e):('a,'b) piecewise) : ('a,'b) piecewise =
    let pnormal y =
    {y with left_fn = normal y.left_fn; pt_fn = normal y.pt_fn}
    and canmerge a b = a.left_fn == a.pt_fn && a.pt_fn == b.left_fn
    and merge a b =
    {left_fn = a.left_fn; pt_fn = b.pt_fn; right_pt = b.right_pt}
    in
let b = Array.map pnormal a
and newe = {fn = normal (e.fn)}
and j = ref 0
and n = Array.length a
in
```


Algorithm 1

```
if n=0 then
    (b, newe)
else begin
    for i=1 to n-1 do
        if canmerge b.(!j) b.(i) then
            b.(!j) <- merge b.(!j) b.(i)
        else
            j := ! j + 1;
    done;
    if b.(!j).left_fn==b.(!j).pt_fn &&
        b.(!j).pt_fn==newe.fn then
        (Array.sub b 0 !j, newe)
    else
    (Array.sub b 0 (!j+1), newe)
    end;;
```


Normal form

- Theorem: preserves extensional equivalence

Normal form

- Theorem: preserves extensional equivalence
- Is not a normal form

Normal form

- Theorem: preserves extensional equivalence
- Is not a normal form
- Is a normal form when functions at the isolated points are related to one neighbour.

Normal form

- Theorem: preserves extensional equivalence
- Is not a normal form
- Is a normal form when functions at the isolated points are related to one neighbour.
- In general: need to denest for a canonical form

Normal form

- For a normal form: must evaluate
- let canmerge a b = ($\left(a . l e f t _f n=b . l e f t _f n\right) ~ \& \&$ (a.left_fn a.right_pt == a.pt_fn a.right_pt))
- \quad Need \sim on the codomain

Complexity

- Previous work: based on step function
- Exponential complexity in number of breakpoints
- Ours: linear in number breakpoints
- But cost can still be dominated by base arithmetic

Niceties

- Normalization of user input
- Left-to-right semantics

Extensions

- General linearly ordered spaces
- Piecewise functions with mixed open, closed, clopen intervals
- Spaces given by finite decidable symbolic predicates
- Efficient denesting

