
A Library of Reversible Circuit Transformations
(Work in Progress)

Christian Hutslar1, Jacques Carette2, and Amr Sabry3

1 Indiana University chutslar@indiana.edu
2 McMaster University carette@mcmaster.ca

3 Indiana University sabry@indiana.edu

Abstract. Isomorphisms between finite types directly correspond to
combinational, reversible, logical gates. Categorically they are morphisms
in special classes of (bi-)monoidal categories. The coherence conditions
for these categories determine sound and complete equivalences between
isomorphisms. These equivalences were previously shown to correspond
to a second-level of isomorphisms between the gate-modeling isomor-
phisms. In this work-in-progress report, we explore the use of that second
level of isomorphisms to express semantic-preserving transformations and
optimizations between reversible logical circuits. The transformations we
explore are, by design, sound and complete therefore providing the ba-
sis for a complete library. Furthermore, we propose in future work, that
attaching cost annotations to each level-2 transformation allows the de-
velopment of strategies to transform circuits to optimal ones according
to user-defined cost functions.

1 Introduction

Proving the equivalence of two combinational circuits is a common task. Most
current approaches address it by proving the extensional equivalence of the cir-
cuits, i.e., by checking the equivalence of an exponential number of input-output
pairs either directly or via an encoding to SAT [8, 6, 15]. We instead propose to
apply our recent work [1] on type isomorphisms and their equivalences to this
problem domain. Our approach produces equivalences of circuits using a sound
and complete rewriting system with novel tradeoffs: the sizes of the proofs (i.e.,
rewriting sequences) are not necessarily proportional to the number of input-
output pairs, thus directly exploiting any common structure between the cir-
cuits. Perhaps more interestingly, we propose future work in which the primitive
rewriting steps can be annotated with cost parameters to rewrite circuits based
on user-defined cost functions. We have currently implemented a naïve search
strategy that can be used to prove some circuit equivalences and are experiment-
ing with more advanced and more general strategies.

2 Π Family of Languages

Focusing on finite types, the building blocks of type theory are: the empty type
(0), the unit type (1), the sum type (+), and the product (×) type. Before get-



id↔: τ ↔ τ : id↔

unite+l : 0 + τ ↔ τ : uniti+l
swap+ : τ1 + τ2 ↔ τ2 + τ1 : swap+

assocl+ : τ1 + (τ2 + τ3) ↔ (τ1 + τ2) + τ3 : assocr+

unite∗l : 1 ∗ τ ↔ τ : uniti∗l
swap∗ : τ1 ∗ τ2 ↔ τ2 ∗ τ1 : swap∗
assocl∗ : τ1 ∗ (τ2 ∗ τ3) ↔ (τ1 ∗ τ2) ∗ τ3 : assocr∗

absorbr : 0 ∗ τ ↔ 0 : factorzl
dist : (τ1 + τ2) ∗ τ3 ↔ (τ1 ∗ τ3) + (τ2 ∗ τ3) : factor

` c1 : τ1 ↔ τ2 ` c2 : τ2 ↔ τ3

` c1 � c2 : τ1 ↔ τ3
` c1 : τ1 ↔ τ2 ` c2 : τ3 ↔ τ4

` c1 ⊕ c2 : τ1 + τ3 ↔ τ2 + τ4

` c1 : τ1 ↔ τ2 ` c2 : τ3 ↔ τ4

` c1 ⊗ c2 : τ1 ∗ τ3 ↔ τ2 ∗ τ4

Fig. 1. Π-terms and combinators.

ting into the formal theory, let’s consider the intuition that types are modeled by
(topological) spaces and that type equivalence is modeled by possible deforma-
tions of such spaces. Consider the space (1+0)×(1+1). This space is the product
of two subspaces: the subspace (1+0) which itself is the sum of the space 1 con-
taining one point tt and the empty space 0 and the subspace (1 + 1) which is
the sum of two spaces each containing the one point tt. Any deformation of this
space must at least preserve the number of points: we can neither create nor
destroy points during any continuous deformation. Seeing that the number of
points in our example space is 2, a reasonable hypothesis is that we can deform
the space above to any other space with 2 points such as 1 + 1 or 1 + (1 + 0).
What this really means is that we are treating the sum and product structure
as malleable. Imagining a product structure as arranged in a grid, by stretching
we can turn this structure to a sum structure arranged in a line, change the
orientation of the grid by exchanging the axes, as well as other transformations
that preserve the number of points using various “symmetries.” These symme-
tries capture, in a stylized manner, a rich collection of space-time tradeoffs [12].
We formalize this intuition by saying that types form a commutative semiring
(up to type isomorphism).

Another model of types is to view each type A as a collection of physical wires
that can transmit ‖A‖ distinct values where ‖A‖ is the size of a type, computed
as: ‖0‖ = 0; ‖1‖ = 1; ‖A+B‖ = ‖A‖+‖B‖; and ‖A×B‖ = ‖A‖∗‖B‖. Thus the
type B = 1+1 corresponds to a wire that can transmit two values, i.e., bits, and
the type B× B× B corresponds to a collection of wires that can transmit three
bits. From that perspective, a type isomorphism between types A and B (such
that ‖A‖ = ‖B‖ = n) models a reversible combinational circuit that permutes



the n different values. These type isomorphisms are collected in Fig. 1. We call
the resulting language Π. It is known that these type isomorphisms are sound
and complete for all permutations on finite types [4, 3] and hence that they are
complete for expressing combinational circuits [5, 7, 13].

So far, the types encode conventional data structures, i.e, sets of values and
structured trees of values and the isomorphisms act on such conventional data
structures. Universal computation models however fundamentally rely on the
fact that programs are (or can be encoded as) data, e.g., a Turing machine can
be encoded as a string that another Turing machine (or even the same machine)
can manipulate. In our setting, we ask whether the type isomorphisms in Fig. 1
can themselves be subject to (higher-level) reversible deformations? Before de-
veloping the theory, let’s consider a small example consisting of two deformations
between the types A+B and C +D:

A

B

C

D

c2

c1

c1

c2

The top path is the Π program (c1 ⊕ c2) � swap+ which deforms the type A
by c1, deforms the type B by c2, and deforms the resulting space by a twist that
exchanges the two injections into the sum type. The bottom path performs the
twist first and then deforms the type A by c1 and the type B by c2 as before. If
one could imagine the paths as physical wires and the deformations c1 and c2 as
arbitrary deformations on these wires then, holding the points A, B, C, and D
fixed, it is possible to rotate the top part of the diagram to become identical to
the bottom one. That rotation can be undone (reversed), which takes the bottom
part of the diagram into the top part. In other words, there exists a deformation
of the program (c1 ⊕ c2) � swap+ to the program swap+ � (c2 ⊕ c1). We
can also show that this means that, as permutations, (c1 ⊕ c2) � swap+ and
swap+ � (c2 ⊕ c1) are equal. This relation is non-trivial, as not all programs
between the same types can be deformed into one another. The simplest example
of inequivalent deformations are the two automorphisms of 1 + 1, namely id↔
and swap+.

Developing a collection of “templates” for such higher-level equivalences is
reasonably straightforward (see for example the work of Miller et al [10]). To find
a complete set of equivalences is much more difficult. The idea developed in our
previous work [1] relies on “categorification” and a classical result by Laplaza [9].
We refer the interested reader to our previous work for the full set of complete
“templates.” A related idea [2] for a sound and complete set of equivalences on
control-not gates is also developed in the context of the same monoidal categories
as the ones we use suggesting that these categorical structures provide a common
framework for reasoning about various classes of reversible circuits.



3 Reversible Circuit Equivalences

We illustrate our methodology using a small example. Consider a circuit that
takes an input type consisting of three values a b c and swaps the leftmost value

with the rightmost value to produce c b a . We can implement two such circuits

using our Agda library for Π:

swap-fl1 swap-fl2 : {a b c : U} → PLUS a (PLUS b c) ↔ PLUS c (PLUS b a)
swap-fl1 = assocl+ � swap+ � (id↔ ⊕ swap+)

swap-fl2 = (id↔ ⊕ swap+) �
assocl+ �
(swap+ ⊕ id↔) �
assocr+ �
(id↔ ⊕ swap+)

The first implementation rewrites the incoming values as follows:

a b c → a b c → c a b → c b a .

The second implementation rewrites the incoming values as follows:

a b c → a c b → a c b → c a b → c a b → c b a .

The two circuits are extensionally equal. Using the level-2 isomorphisms we
can explicitly construct a sequence of rewriting steps that transforms the second
circuit to the first. The proof can be read as follows: the first three lines “refocus”
from a right-associated isomorphism onto the (left-associated) composition of
the first 3 isomorphisms; then apply a complex rewrite on these (the “hexagon”
coherence condition of symmetric braided monoidal categories); this exposes
two inverse combinators next to each other — so we have to refocus on these to
eliminate them; we finally re-associate to get the result.

swap-fl2⇔swap-fl1 : {a b c : U} → swap-fl2 {a} {b} {c} ⇔ swap-fl1
swap-fl2⇔swap-fl1 =

((id↔ ⊕ swap+) � assocl+ � (swap+ ⊕ id↔) � assocr+ � (id↔ ⊕ swap+))
⇔〈 id⇔ � assoc�l 〉
((id↔ ⊕ swap+) � (assocl+ � (swap+ ⊕ id↔)) � assocr+ � (id↔ ⊕ swap+))
⇔〈 assoc�l 〉
(((id↔ ⊕ swap+) � assocl+ � (swap+ ⊕ id↔)) � assocr+ � (id↔ ⊕ swap+))
⇔〈 assoc�l � id⇔ 〉
((((id↔ ⊕ swap+) � assocl+) � (swap+ ⊕ id↔)) � assocr+ � (id↔ ⊕ swap+))
⇔〈 hexagonl⊕r � id⇔ 〉
(((assocl+ � swap+) � assocl+) � assocr+ � (id↔ ⊕ swap+))
⇔〈 assoc�r 〉
((assocl+ � swap+) � assocl+ � assocr+ � (id↔ ⊕ swap+))
⇔〈 id⇔ � assoc�l 〉
((assocl+ � swap+) � (assocl+ � assocr+) � (id↔ ⊕ swap+))



⇔〈 id⇔ � (linv�l � id⇔) 〉
((assocl+ � swap+) � id↔ � (id↔ ⊕ swap+))
⇔〈 id⇔ � idl�l 〉
((assocl+ � swap+) � (id↔ ⊕ swap+))
⇔〈 assoc�r 〉
((assocl+ � swap+ � (id↔ ⊕ swap+)) �)

4 Circuit Examples and Cost Semantics

We can now apply our approach to more realistic examples from the literature.
For example, consider the following figure from a paper by Shende et al [11]:

The figure shows two equivalences (a) and (b) of circuits. We can express such
circuits as (level-1) type isomorphisms and express the equivalences between
them as (level-2) isomorphisms between type isomorphisms. The full code for
the circuits in part (a) and their equivalence takes 2-3 pages of Agda code and
is not included for lack of space. Even for such small circuits, the proofs are by
no means “obvious”, and require a good deal of experience to develop. The main
difficulty is that it is often necessary to make the circuits larger in intermediate
steps in order to expose some structure that can later be simplified. To aid in the
development of larger proofs, we have implemented a simple search procedure
that produces a list of candidate level-2 isomorphisms to apply at each step. We
conjecture that techniques quite familiar from AI search could help prune the
search space and produce “good” candidates for completing proofs.

We are additionally experimenting with user annotations that can guide the
search. Each level-2 combinator can be annotated with various “cost” annotations
indicating whether it reduces the number of gates, reduces the number of choice
points, or other cost functions. Then one can ask for a proof that takes no more
than a certain number of steps or a proof that does not create more than a
certain number of additional wires etc. We illustrate these ideas by defining a
simple cost function and using it to annotate level-2 combinators.

We define the length L(c) of a composite circuit c as follows: the length of
a sequential composition of circuits is the sum of the lengths of the subcircuits
L(f � g) = L(f) + L(g); and the length of choice or parallel composition is the
maximum of either branch L(f⊕g) = L(f⊗g) = max(L(f), L(g)). For primitive
gates, the length needs to be postulated to reflect the “length” of the computation
involved in applying that primitive. As examples, consider the following two
level-2 combinators:



linv�l’ : {t1 t2 : U} {c : t1 ↔ t2} → (c � ! c) ⇔ id↔
idl�l’ : {t1 t2 : U} {c : t1 ↔ t2} → (id↔ � c) ⇔ c

Assuming that id ↔ takes a unit length of computation, the first can be anno-
tated with L(c) ∗ 2 ⇔ 1 and the second with L(c) + 1 ⇔ L(c) indicating that
the first combinator reduces the length of the circuit from twice the length of c
to 1 and the second combinator reduces the length of the circuit by 1. Such an-
notations can then be used to constrain or guide the search for transformations
between circuits.

5 Conclusion and Future Work

We propose a purely algebraic perspective for reasoning about the equivalence of
reversible circuits. Our approach is founded on deep ideas from category theory
and includes a complete set of rewrite rules, i.e., if two circuits are equivalent
then there exists a sequence of rewriting steps using the level-2 isomorphisms
from one circuit to the other. Searching for one such sequence is difficult but
can benefit from the well-developed AI search technology and from possible
user annotations to constrain and guide the search. It is possible to define sev-
eral “canonical” representations of circuits, e.g., sequences of transpositions, and
have a deterministic algorithm for reducing circuits to these canonical represen-
tations. These approaches are however typically computationally expensive [14]
and might not produce an effective procedure for deciding circuit equivalence
using further heuristics.

Acknowledgments. We thank the anonymous reviewers for their valuable com-
ments and Kyle Carter for insights on the cost semantics.

References

1. Jacques Carette and Amr Sabry. Computing with Semirings and Weak Rig
Groupoids. In ESOP, volume 9632 of Lecture Notes in Computer Science, pages
123–148. Springer, 2016.

2. J. Robin B. Cockett, Cole Comfort, and Priyaa Srinivasan. The category CNOT.
In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Con-
ference on Quantum Physics and Logic, QPL 2017, Nijmegen, The Netherlands,
3-7 July 2017., volume 266 of EPTCS, pages 258–293, 2017.

3. M. P. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomorphisms in typed
calculi with empty and sum types. Annals of Pure and Applied Logic, 141(1-2):35–
50, 2006.

4. Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In POPL,
pages 77–88. ACM, 2004.

5. E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21(3):219–253, 1982.

6. Eugene Goldberg and Yakov Novikov. How good can a resolution based SAT-
solver be? In Enrico Giunchiglia and Armando Tacchella, editors, Theory and Ap-
plications of Satisfiability Testing, pages 37–52, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.



7. Roshan P. James and Amr Sabry. Information effects. In POPL, pages 73–84.
ACM, 2012.

8. A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust boolean reasoning
for equivalence checking and functional property verification. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 21(12):1377–1394, November 2006.

9. Miguel L. Laplaza. Coherence for distributivity. In G.M. Kelly, M. Laplaza,
G. Lewis, and Saunders Mac Lane, editors, Coherence in Categories, volume 281
of Lecture Notes in Mathematics, pages 29–65. Springer Verlag, Berlin, 1972.

10. D. Michael Miller, Dmitri Maslov, and Gerhard W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Proceedings of the 40th Annual Design
Automation Conference, DAC ’03, pages 318–323, New York, NY, USA, 2003.
ACM.

11. V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible
logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(6):710–722, June 2003.

12. Zachary Sparks and Amr Sabry. Superstructural reversible logic. In 3rd Interna-
tional Workshop on Linearity, 2014.

13. Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on
Automata, Languages and Programming, pages 632–644. Springer-Verlag, 1980.

14. Siyao Xu. Reversible Logic Synthesis with Minimal Usage of Ancilla Bits. PhD
thesis, MIT, 2015.

15. Shigeru Yamashita and Igor L. Markov. Fast equivalence-checking for quantum
circuits. In Proceedings of the 2010 IEEE/ACM International Symposium on
Nanoscale Architectures, NANOARCH ’10, pages 23–28, Piscataway, NJ, USA,
2010. IEEE Press.


