
Symbolic Interpretation of Legacy Assembly Language

Jacques Carette, Pulak Kumar Chowdhury
Dept. of Computing and Software

McMaster University
Hamilton, Ontario L8S 4K1

Abstract

We apply static analysis and symbolic interpretation
techniques to reverse engineering the semantics of legacy
assembler code. We examine the case of IBM-1800 pro-
grams in detail. From the documented operational seman-
tics of the IBM-1800, we simultaneously obtain an emula-
tor and a symbolic analysis program. Augmented with some
control flow information, we can use the symbolic analysis
to provide both complete and generic semantics for some
interesting code sequences. Based on this, path conditions
and generated “correctness” conditions allow us to derive
a mixture of denotational and axiomatic semantics for some
interesting subsets of assembly programs.

1 Introduction

Symbolic analysis of a program is a static analysis tech-
nique that executes the instructions of a program with some
of the values (of registers, input channels or memory loca-
tion) as unknown symbols. This generates an ordered se-
quence of dataflow equations which, if solved, gives a pre-
cise mathematical representation of the computations done
in that program. Existing symbolic analysis tools do not
always give accurate representations of the meaning of the
program because they tend to introduce approximations to
the semantics very early in the processing. By working with
systems of symbolic, conditional dataflow equations instead
of with sets of solutions, we can be more accurate.

While various static analyses, including abstract and
symbolic interpretation, have been successfully used for
high-level programming languages, the problem becomes
considerably more difficult for assembly language pro-
grams, and even more so for legacy software. In particular,
while the control structures in most modern high-level lan-
guages (sequencing, if-then-else, while, etc) have
very well understood semantics and effect the control flow
in predictable fashion, assembly programs liberally use go-
tos. Frequently, branching code is written that cannot be

easily translated to a sequence of high-level structures, at
least not without code duplication. Other complications (to
be detailed later) include lack of data/code seperation, fre-
quent computed gotos, and even some (relatively mild) in-
stances of self-modifying code.

What we are attempting to do here is, via symbolic inter-
pretation, control flow analysis, and condition propagation,
to represent a program’s semantics by a system of condi-
tional symbolic dataflow equations. If this system of equa-
tions can then be solved in a space of semantically meaning-
ful expressions, this gives an understandable representation
of the underlying semantics. To a certain extent, we are
free to choose our solution space; this allows us to choose
spaces with very rich semantics. In particular, instead of
choosing a high-level programming language (which would
only “move” our understanding problem up some levels in-
stead of resolving it), we choose a variety of specification
languages and mathematical languages. In particular, we
are looking at producing output that can be read natively by
both PVS [12] and Maple [8].

This work is just one part of a bigger project at McMas-
ter of reverse engineering the requirements of some legacy
safety-critical real-time software. Our part in this project
limits itself strictly to understanding what a program does,
and ignores completely the larger subjective issue of what
the program is supposed to do.

2 Problem Definition

Given a (legacy) assembly code, with complex control
flow, no data/code separation, etc, we want to understand
what the program does. For this work, we shall take for
granted that a formal specification, written in a specification
language with consistent semantics (including the language
of mathematics), is a definite step forward in “understand-
ing” what a program does.

In our approach, we have an IBM-1800 assembly lan-
guage program, given as assembler source, and we would
like to automatically understand what the program does.
We have an extremely complete and detailed description of

the operational semantics of the machine language [1]. The
source code of the assembler program contains the follow-
ing information:

• op codes and corresponding data (symbolic or imme-
diate, as appropriate),

• relative addresses of the instructions,

• names for code blocks,

• names for “data” memory locations (in comments).

One important aspect of those source programs is that they
are heavily commented; this is extremely helpful for the
larger reverse engineering effort. Unfortunately, little au-
tomated use can be made of these comments, as:

• when the programs were maintained, the correspond-
ing comments were not always updated,

• block comments are not always in meaningful loca-
tions, so that they cannot be used to identify meaning-
ful blocks of code (i.e. functions),

• line comments do not always correspond to the corre-
sponding instruction.

Needless to say, with the notable exception of “data” mem-
ory locations, the comments do not exhibit enough structure
to be reliably used in an automated process.
A human reading of those programs and operational speci-
fications finds that

• there is no separation between code and data;

• there are many indirect (computed) jumps;

• there is no “subroutine” concept;

• there is self modifying code, which however only mod-
ifies the content of addresses or registers, in other
words operands of the instructions;

• there is no stack, only memory;

• there is no exception handling (carry, overflow etc.);

• there is fixed, known data size (16 bits, 32 bits).

The first 4 items are definite complications for program un-
derstanding. The last 3 items are certainly a definite imped-
iment to writing programs, but turn out to be quite useful
in program understanding! They provide hard, definite con-
straints that must hold true for the program to be meaning-
ful. For example, as there is no carry or overflow check,
then it must be the case that all arithmetic operations must
not cause either carries or overflows; this implies that some
side predicates must always be true for the program to be

meaningful. We will later see that this turns out to be quite
helpful in generating pre- and post-conditions.

To make the discussion more precise, here is a small code
segment of IBM-1800 assembly which will be used as a
running example:

0676 * FDBCK DELX = K(TB)*(ERR(N)*1.067-ERR(N-3))/5861
0ADDR REL OBJ. S.NO. LABEL OPCD FT OPRNDS
35B6 0 C129 0677 TRBFB LD 1 41 ERR B15
35B7 0 A12A 0678 M 1 42 ERR*1.067 B17
35B8 0 1082 0679 SLT 2 B15
35B9 0 912B 0680 S 1 43 ERR*1.067 -

LAST ERR B15
35BA 0 A12C 0681 M 1 44 *GAIN K B31
35BB 0 108F 0682 SLT 15 B16
35BC 0 A92D 0683 D 1 45 NORMALISED

DELX(FB) B00
35BD 0 D12E 0684 STO 1 46

Ultimately, we are aiming to (automatically) identify
functions, extract nice closed-form formulas and pre/post-
conditions that express the actual (or idealized) semantics
of those functions.

3 Process overview

Figure 1 gives the steps of our overall symbolic interpre-
tation process. More specifically, these are:

• Use the complete operational semantics of IBM-1800
to derive (human assisted)

– an emulator, as an explicit state transformer. This
emulator will take a .lst code file as input, a
starting state, and finds the final state of the ma-
chine after the execution of that code file.

– a one-step symbolic emulator. This finds the
complete symbolic interpretation of any instruc-
tions, given as the state transformer induced by
the operational semantics.

• Use the .lst code file to derive an approximated
Control Flow Graph (CFG).

• Combine the CFG and one-step symbolic emulator to
derive a marked-up CFG. In this derived graph, each
edge of the CFG will contain the complete one-step
symbolic interpretation of all the instruction contained
in the source node of the corresponding edge.

• Find execution paths in the CFG.

• Combine the marked-up CFG and the execution paths
to find the dataflow equations (DFE) for the assembler
program. In this combination process, we find all the
splits and joins in the paths to find the high level con-
trol structure of the code.

• Simplify the DFEs.

Figure 1. The steps for symbolic interpretation

• Solve those simplified DFEs to find the closed form
representations and accompanying preconditions.

In the next several sections, we describe each of these steps
in more detail, but first we describe the IBM-1800.

4 The IBM-1800

The IBM-1800 Data Acquisition and Control System [1]
was developed to handle a wide variety of real time applica-
tions such as process control and data acquisition. The fol-
lowing section is a (slightly modernized) extract from [1].

The registers of the IBM-1800 are

• Accumulator (A): Stores one factor of an arithmetic
operation; the (internal) D register contains the other
factor. It contains the result of an arithmetic operation
and can be shifted right or left.

• Accumulator Extension Register (Q): An extenstion
of the low order end of the accumulator; 16 bits. It
stores the 16 least significant bits of a multiplication
operation and the remainder of a division operation.

• Instruction Address Register (I): A 16 bit register,
maintains the address of the next instruction.

• Index Registers (XR): Three Index Registers (XR1,
XR2, XR3), mainly used for address modification.

For the IBM-1800, core storage array are available in two
sizes, 4096 (4K) words and 8192 (8K) words. Each word
consists of 18 bits (of which 16 are visible to the program).
Some instructions can store 32 bits in A and Q simultane-
ously, which is then called AQ.

Two basic instruction formats are used: a single-word
instruction and a two-word instruction.

Single-word:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OP |D|F| T | DISP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Two-word:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OP |D|F| T |I|B| COND |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ADDRESS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
OP = OpCode of the instruction
D = 5th Bit
F = Format (0 = One-Word, 1 = Two-Word)
T = Tag Value
I = Indirect Addressing (0 = Direct,1 = Indirect)
B = Branch Out (0 = BSC, 1 = BOSC)
COND = Condition flags checked on a BSC or BSI instruction
DISP = 8 bit displacement address
ADDRESS = Address of the core storage location

A two-word instruction contains the full core storage ad-
dress in the 16 bits of the low order word. A single-word
instruction is used when it is not necessary to furnish the
full core-storage address, but only to modify (displace) a
base address already existing in a designated 16-bit register.
The displacement bits, 8 through 15, can be used to address
a range of core storage locations from 127 adresseses above
the base address to 128 below the base address. The address
portion of a two-word instruction can also be modified by
adding to the contents of a designated 16-bit index register.
The core storage address is called the effective address.

For example, for instruction 0xC382, the displacement
value is 0x82 and the tag value is 0x3. The opcode 0xC
is the Load instruction, with effective address XR3 + 82,
where XR3 stands for the content of Index Register 3. So
this instruction transfers the content of core storage location
specified by the effective address into the accumulator (A).

Another instruction is 0x7500 8532, an MDX in-
struction with the address value 0x8532. As the tag value
is 1, this instruction adds the address to Index Register 1
(XR1) and stores the modified word back into XR1. Then it

will skip the next instruction if the modified word reaches
zero or changes sign.

5 From the operational semantics

As a first step, it is clear that every single instruction (for
this and most other processors) has a complete operational
description. By complete, we mean that every instruction
has a premise-free description. Furthermore this operational
description straightforwardly induces a denotational seman-
tics, as a pure state transformer, where our state includes the
whole memory as well as all registers. Lastly both of these
semantics are (by definition) compositional.

More precisely, we want to model the effect of executing
an instruction as a total function on states [[]] to be a total
function on states:

[[Instruction]] : (State→ State)

We define the State to be the (partial) function which con-
tains the full Memory, the Instruction Register (I), Accu-
mulator (A), Accumulator Extension Register (Q), all Index
Registers (XR1, XR2,XR3) and the Overflow and Carry
bits in its domain, and the range is either a 16-bit value
(most cases) or a one-bit value (for Overflow and Carry).

We need some notation to represent
the operational semantics of the instruc-
tions of IBM-1800 assembly language [1].
Inst(I) Contents of core storage at the location

specified by I (Instruction Register)
DB D (5th) bit of the instruction.
FB Format bit of the instruction.
displ Displacement associated to the instruc-

tion
∧y Contents of state component y

δy(f)(x) Short for y ← f(∧y, x) – “update”
Sy(x) Short for y ← x – “set”
O6−8(Inst) checks bits 6–8 of the opcode, then ac-

cording to bits 7&8, return the contents
of I, XR1, XR2, XR3 if bit 6 is 0,
otherwise return 0,XR1,XR2,XR3.

X O6−8(Inst(I))
loc(X) If Inst is indirect then ∧(X + I) else

X + I
where DB, FB, and displ are implicitly functions of Inst,
f ranges over a few builtin operations (arithmetic and
logical), y can be any of the components of the domain of
State, and 0 denotes an abstract location with constant
value 0.

We can then straightforwardly provide a translation of
the operational semantics from [1] using the above prim-
itives. Using � to represent (non-commutative) composi-
tion of state transformers, I as the identity transformer, and

? : as the notation for if-then-else, this can be written as

[[Inst]]s =δI(+)(1 + FB)�

SA(FB = 1 ? ∧(X + displ) : ∧loc(X))

� (DB = 1 ? SQ(FB = 1 ?
∧(X + displ+ 1) : ∧(loc(X) + 1))) : I)

One can then clearly see that in all cases both I and A are
modified, and in some cases so is Q.

5.1 Emulator

If we have a complete State, then by using a complete
translation of the operational semantics of the IBM-1800,
we can create a complete emulator. We “load up” a com-
plete state via reading in a .lst file, and creating a repre-
sentation of the state, including the (initial) value of all of
memory as an array with 216 entries.

We have compared the output of this emulator and the
output of an independently written C emulator for the IBM-
1800, and obtained the same results. This certainly in-
creases our confidence that our implementation is correct.

5.2 One Step Symbolic Emulator

By the symbolic analysis of a program, we mean exe-
cuting the program with the value of (parts of) the state as
arbitrary. We represent these arbitrary values by symbols,
and execute as much of the program as is possible. Since a
program may branch on the value of one of these symbols,
we are forced to represent the results by using piecewise
functions of the symbols. We also “lift” all the basic arith-
metic and logical operations to function symbols represent-
ing them – as is routinely done in mathematics, but also in
Computer Algebra Systems (CAS).

As the result of such a symbolic analysis reflects vari-
ables’ values and a programs’ behaviour, symbolic analysis
can be seen as a compiler that translates a program into a
different language. As a target language we employ (sym-
bolic) arithmetic and logical expressions, (symbolic repre-
sentations of) piecewise functions and (symbolic represen-
tations of) linear recurrence equations.

Since we are dealing with the symbolic interpretation of
assembly programs which do not have predefined control
structures in the program syntax, control must be inferred
in some other way. As we would like to obtain large scale
semantics, this cannot be done via (straightforward) emula-
tion. See the next section for how we achieve this.

We start the symbolic analysis of IBM-1800 assembly
language programs by designing a one-step symbolic emu-
lator. This will interpret each instruction in a program exe-
cution path and find the symbolic representation of each in-
structions. For all statements of the program, our symbolic

analysis uses exactly the same description of the semantics
as in the previous section, but allows the values of any non-
instruction part of the state to be symbolic. Of course, in-
stead of returning a value, this step produces a representa-
tion (as an abstract data-structure) of the state-transformer
which corresponds to the current instruction.

The one-step symbolic emulator produces the symbolic
representation of the state transformer induced by each of
the instructions. After execution of each instruction, it will
output a state transformer representation that contains ex-
pressions of the variables that are being changed by the ex-
ecution of this instruction, and a symbolic path condition
representation that reflects possible branching behaviour of
the instruction.

Here we give some sample output of the one-step sym-
bolic emulator. For the instruction LD 1 41 (opcode
C129), a textual representation of the output of the one-step
symbolic interpreter will be:

(True, [A := C(XR1+41)])

We can take a look at one of the MDX instructions (opcode
7500 000D). The output will be:

(XR1+13(Reaches Zero or Changes Sign)==True,
[I += 3, XR1 += 13])

(XR1+13(Reaches Zero or Changes Sign)==False,
[I += 2, XR1 += 13])

As can be seen for the above, the results are a set of pairs,
where the first component is a guard predicate, and the sec-
ond component is a list of representations of changes of in-
dividual state components. It is guaranteed that the guard
predicates will be both complete and independent. See sec-
tion 6 for a more precise definition of this output.

5.3 Control Flow Graph (CFG)

We use a tool which, given the same operational seman-
tics as used by the previous components, produces an ap-
proximate control flow graph for a program. This program
proceeds by looking at only looking at updates to I and se-
lected memory locations (as used by branching instructions)
to approximate the control flow. In general, this approxi-
mation is very good, but in a few cases where the code is
self-modifying, this automated step fails. This is not nec-
essarily a problem, as we can also provide hand-written or
hand-corrected CFGs as input to the next step.

For each instruction to be executed, we obtain a node
in the graph. By traversing the list of instructions, all the
possible next addresses from each instruction are found, and
edges to those nodes from the current node. A node contains
various information such as its address, the stored opcode,
any available textual labels, and the path-condition (to be
defined later) of the corresponding instruction. See [3] for
more details.

Input and output of the resulting control flow graph is
done via GXL (Graph eXchange Language) [16], so that

standard tools may be re-used to manipulate and display
these graphs. Note that our internal representation of graphs
does not use GXL as that would be quite inconvenient, but a
graph format which contains only the necessary information
for symbolic interpretation of the code.

6 Marked-up Control Flow Graph

Given a control flow graph, we want to use the results
of the one-step symbolic interpreter to mark-up the edges
of the graph with the symbolic representation of the state-
transformer corresponding to that edge. The main difficulty
is that while the complete interpretation of an instruction
can be done symbolically, this cannot be done for even
medium sized programs because the resulting output would
be so large as to be useless.

Another aspect to consider is that we are only really
interested in the semantics of larger chunks of programs,
which hopefully correspond to natural functions. These
larger chunks invariably contain conditionals, and it makes
no sense to interpret the meaning of one branch of the con-
ditional in a context which does not include the reason why
this particular branch was chosen, in other words the truth-
value of the boolean condition that caused the program to
choose that particular branch.

These two aspects have a common remedy. Inspired by
[4] where similar techniques are used for (very) high-level
programs, we define a program context to be [p, s] where p

is a path condition and s is a state.
The path condition p describes the condition under

which control flow reaches a given program statement from
a given starting point. Every instruction (see subsection 5.2)
induces a condition under which each outgoing edge in the
control flow graph is followed. For sequential instructions,
this condition is just TRUE, and for branch instructions this
condition is a logical formula that encodes the condition ex-
pressed by the operational semantics. The path condition at
a particular node is the disjunction of the path conditions
of all the path conditions of the ingoing edges of that node.
The path condition along an outgoing edge is the conjunc-
tion of the path condition at the source node and the path
condition given by the one-step symbolic emulator.

We use a combinator which weaves a Graph Walker (in
our case a depth-first graph traversal) with the one-step
symbolic emulator to produce a new function which, given
a CFG, will return a marked-up CFG with the edges labelled
by a program context.

Using the code first shown in section2, here is a textual
representation of the marked-up control flow graph
<nodeID ="test35b6",OpCode = 49449>

<EdgeFrom ="test35b6",
Annotation:(True, [A := C(XR1 + 41)]),
EdgeTo = "test35b7">

<nodeID ="test35b7",OpCode = 41258>
<EdgeFrom ="test35b7",

Annotation:(True, [A = A*C(XR1 + 42)]),
EdgeTo = "test35b8">

<nodeID ="test35b8",OpCode = 4226>
<EdgeFrom ="test35b8",
Annotation:(True, [A <<:= 2]),
EdgeTo = "test35b9">

<nodeID ="test35b9",OpCode = 37163>
<EdgeFrom ="test35b9",
Annotation:(True,[A := A-C(XR1 + 43)]),
EdgeTo = "test35ba">

<nodeID ="test35ba",OpCode = 41260>
<EdgeFrom ="test35ba",
Annotation:(True, [AQ = A*C(XR1 + 44)]),
EdgeTo = "test35bb">

<nodeID ="test35bb",OpCode = 4239>
<EdgeFrom ="test35bb",
Annotation:(True, [AQ <<:= 15]),
EdgeTo = "test35bc">

<nodeID ="test35bc",OpCode = 43309>
<EdgeFrom ="test35bc",
Annotation:[(True, [A := AQ/C(XR1 + 45),

Q := AQ%C(XR1 + 45)]),
EdgeTo = "test35bd">

<nodeID ="test35bd",OpCode = 53550>
<EdgeFrom ="test35bd",
Annotation:(True, [C(XR1 + 46) := A]),
EdgeTo = "test35be">

7 Finding Paths in the Control Flow Graph

There can be many different types of control flow in as-
sembler code. Given a (connected) subgraph S of a com-
plete CFG C, we say that

• S is single-entry if all edges from C \ S to S go to
a single node of S; this node is called the entry point
of S. We also require that all nodes of S be reachable
from the entry point.

• S is single-exit if all edges from S to C \ S go from a
single node of S, and this node is called the exit point
of S. We also require that the dual of a single-exit
graph be a single-entry graph.

• E is an execution path of S if E is a single-entry,
single-exit connected subgraph of S where all nodes
except the entry point have in-degree 1 and all nodes
except the exit point have out-degree 1.

• a loop L is a single-entry, single-exit connected sub-
graph of C where all nodes have in-degree 1 and out-
degree 1 except for one node which has out-degree 2.
Note that we include the “exit point” in the loop.

For the purposes of this paper, we will only treat single-
entry single-exit subgraphs. Given this restriction, we di-
vide control flow graphs into three broad categories (see
Figure 2 for a pictorial representation):

• Straight-Line Code (SC): In other words, an execu-
tion path.

• Generalized Straight-Line Code (GSC): May con-
tain a branch or jump, but that branch or jump will

have all the outgoing edges to different nodes inside
that code segment. In other words, globally this code is
single-entry single-exit, but may contain multiple exe-
cution paths.

• Looping code (LC): An execution path which ends in
a loop; the exit point of the loop may be extended by a
(possibly empty) exectution path.

We want to represent a (single-entry single-exit) program
as a system of dataflow equations. But to be able to do this,
we need to be able to identify the set of all execution paths
through a particular program. Note that we only consider
paths that go from the starting point to the exit point. Our
implementation takes a CFG as input, and returns a com-
plete set of execution paths.

8 Finding Data Flow Equations

In a modern high level language, non sequential control
flow is encapsulated in a small number of statements that
implement variations on the control flow patterns of itera-
tion and alternation. In an assembler program there are no
restrictions on the control flow patterns that may be used by
the programmer. We therefore need a more general mecha-
nism to describe control flow. As we described in an earlier
section, here we use the set of execution paths to model the
control flow of a program.

For each path, we gather all the annotations of the edges
in an execution path. We use a stack for this purpose, to
accumulate an “environment” in which we can look up the
values of any parts of the state at any point of the execu-
tion path. As we are interested in finding dataflow equa-
tions at this point, the representation used in the output of
the one-step symbolic emulator is not the best. We need
to see the assignments as the top-level operation, and thus
need to “push in” the conditionals. This is a straightforward
operation.

We also need to define the inputs and outputs along an
execution path. The inputs are the state components which
are read along an execution path, and the outputs are those
state components which are modified along the same execu-
tion path. For specificity, our implementation (in Haskell)
reads

data TypeCast = Upper16 | Lower16
data Exp = Constant Word8

| MemoryConstant MemRef
| Variable StateComp
| VariableX Tag
| UnaryOperation (TypeCast,Exp)
| BinaryOperation (Exp,Operator,Exp)
| ConditionalValue ((CondFunc,Exp), (CondFunc,Exp))

deriving (Eq)
data StateRef = SC StateComp | SCX Tag

| Mem MemRef deriving (Eq)
data Stmt

= Assign (StateRef,Exp) deriving (Eq)

Figure 2. Pictorial representation of code categories

type Input = [StateRef]
type Output = [StateRef]

For each type of control flow graph noted above, we use
a different strategy to find the corresponding dataflow equa-
tions.

Straight-Line Code (SC): We gather all the annotations
of the edges of the single execution path. We use sequential
composition E1; E2 to represent this.

Modelling the control flow and finding the semantic con-
text of straight-line code is simple. In particular, there are
no new path conditions that are imposed. we just need
to find the state transformer corresponding to each state-
ment, and using a stack to keep track of the current envi-
ronment, we sequentially compose all the expressions rep-
resenting these state transformers. Since each state trans-
former obtained from the previous stage is always of the
form V ′ = f(S) where V ′ is a single state component, and
S is a finite set of state components, we get a very nice rep-
resentation of a set of the simplest kind of dataflow equa-
tions.

Using the same example as before, we would get some-
thing like the following ordered system of equations:

A := C(XR1 + 41)]
AQ := A*C(XR1 + 42)
AQ <<= 2
A -= C(XR1 + 43)
AQ := A*C(XR1 + 44)
AQ <<= 15
A := AQ/C(XR1 + 45)
Q := AQ%C(XR1 + 45)
C(XR1 + 46) := A

Such a “system” is naturally trivial to “solve”, as it can sim-
ply be unwound. Also, remark that such a system also cor-
responds to an (obvious) state transformer.

Generalized Straight-Line Code (GSC): For GSC (re-
fer to middle graph in Figure 2), we proceed as follows:

• find the nodes in the code that correspond to a split (a
branch instruction) and a join (the meeting point of two
different paths which started at a split). This divides

the CFG as several SCs, which we label E1, E2a , E2b

, E3.

• for each of the SCs, we generate the system of dataflow
equations. We use E1 to also denote the resulting sys-
tem (context will ensure no confusion will occur).

• Write the system of dataflow equations for the whole
code as E1; (gt → E2a||¬gt → E2b); E3 where gt

denotes the guard which corresponds to the choice for
branch t and || denotes parallel composition.

Note that sequential and parallel composition commute [6].
these equations can be rewritten as

[(E1; gt → E2a)||(E1;¬gt → E2b)]; E3.

Guards do not generally commute with sequential compo-
sition, however since the guard t is in terms of state compo-
nents, from solving E1 we can derive another expression t′

such that E1(t
′) = t. Using this relation, in two more steps

the above equation can be rewritten as

[gt′ → (E1; E2a; E3)||¬gt′ → (E1; E2b; E3)].

The inner systems are now reduced to be straight-line code
(SC). Both of these forms of the equations will be used
when we try to solve such systems.

Looping Code (LC): One significant challenge in mod-
elling any program, symbolically or otherwise, is to cor-
rectly model loops. Since in general it is uncomputable to
automatically derive the necessary invariants for expressing
the Hoare semantics of a loop [10], it is best to accept right
at the outset that some implicit representation of the seman-
tics is necessary. This is what drove us, amongst other rea-
sons, to choose a “systems of equations” approach to mod-
elling semantics. For loops, we will use (symbolic) recur-
rence equations as a model [4]. If we are lucky, these recur-
rences will be solveable in closed form, but even if they are
not, we can continue with this implicit representation. Fre-
quently, properties of the solution of recurrence equations

can be derived from the recurrence itself without needing
the closed-form solution.

To make the discussion more concrete, we will use the
following simple example:
0ADDR REL OBJ. ST.N. LABEL OPCD FT OPRNDS
35CE 0 1001 0708 SLA 1
35CF 0 72FF 0709 MDX 2 -1
35D0 0 70FD 0710 MDX *-3

In this simple loop, the accumulator A value is shifted
left by one and XR2 is decreased by one at each loop exe-
cution. We can express this change in terms of recurrences:
An+1 = 2∗An and XR2n+1 = XR2n−1, which expresses
that the value of the accumulator and XR2at time n + 1 are
a function of their values at time n, where n ≥ 0. As on
loop entry, both A and XR2 have a value, this gives us the
necessary initial conditions for this first-order recurrence.
We will use A and XR2 to denote these initial values. We
can represent the symbolic meaning of the loop using these
recurrence equations and the initial conditions.

To determine the value of A after the loop, we need to
know if and when the loop will stop. We define a stop-
ping criterion φ : State → B which will symbolically
determine the number of iterations for the loop. This stop-
ping criterion naturally corresponds with the loop condition
– which for our simple loop is φ = XR2 > 0. The recur-
rence equation, initial condition and stopping criterion are
sufficient to completely describe all the loop information
symbolically.

For each component of the state v which is modified in a
loop, we represent the corresponding information as a func-
tion µ(v, s, c), from the variable, state and a program con-
text c (see Section 6). The stopping criteria is given by the
path condition of the program context c, and the initial con-
dition is determined from s. The result of µ is a representa-
tion of the recurrence equation for that state component.

The next section introduces some techniques for solving
dataflow equations, include recurrences, as well as “solv-
ing” the equations given by the stopping criterion.

9 Solving Data Flow Equations

Straight-line code induces dataflow equations which is
essentially already solved - one just needs to “unroll” the
equations sequentially. More precisely, consider the or-
dered equations A = F (X, Y); B = G(A, X, Z). Initially,
the empty code sequence has neither input nor output. By
proceeding inductively, the first equation tells us that X, Y

are part of the “input”, and A the output. The second equa-
tion has A, X, Z as input, but since A is already known to
be an output of the system, it can be eliminated. More pre-
cisely, the inputs of equation n are the free variables of the
right-hand side of equation n, minus the outputs from stage
n− 1, union the inputs from stage n− 1. The output vari-
ables at stage n is the output of stage n−1 union the variable

on the left-hand side of stage n. Working this through, the
above has X, Y, Z as inputs and A, B as outputs. To work
out the actual equations, pure sequential substitution of the
equations from stage n− 1 into the right-hand side of stage
n is sufficient.

By solving the above equations for the straight-line code
previously shown, as well as (automatically) using the sym-
bolic names associated with the memory locations that are
found to be inputs and outputs, we get

Input: C(XR1 + 41) : ERR
C(XR1 + 42) : 1.067
C(XR1 + 43) : PREV_ERR
C(XR1 + 44) : K
C(XR1 + 45) : 5861

Output: C(XR1 + 46) : DELX
System Of Equations:
DELX = (((Lower16((ERR*1.067)<<2)-PREV_ERR)*K)<<15)

/5861
Q = (((Lower16((ERR*1.067)<<2)-PREV_ERR)*K)<<15)

%5861
A = (((Lower16((ERR*1.067)<<2)-PREV_ERR)*K)<<15)

/5861

These could be further simplified by appropriately using
“let” statements to factor out common sub-expressions.

For programs with simples branches (GSC), by apply-
ing the appropriate commutation relations, the problem is
reduced to pure dataflow equations. It is also possible to
solve the parallel composition equations “directly”. More
precisely, given [g1 → E1||¬g1 → E2], for any variable
v which is modified by either E1 or E2, the result can be
given as v = g1 ? E1(v) | E2(v).

For loops, we try to solve the recurrence equations from
the “body” of the loop. First, we need to solve for the
stopping criterion, to show that the loop terminates. This
translates to finding the least n such that φ−1(XR2n) =
min{n | XR2n > 0}. However we know that XR2n+1 =
XR2n − 1 and XR20 = XR2, so that XR2n = XR2− n. In
other words, φ−1(XR2n) = XR2 < ∞. It is important to
remark that we do not need to know anything about An to
derive this. We can also solve the recurrence for An, giving
An = A ∗ 2n. As we know that at loop end n = XR2, this
means that at loop end XR2 = 0 and A = A ∗ 2XR2.

Generally, if we consider Figure 2 then we can express
the dataflow equations for loops as I ; µ(L)|n=φ−1(v); F
where φ−1(v) = min{n | φ(vn)} and µ(L) represents the
recurrence equations (and initial conditions) for each of the
state variables modified by L. The closed form of these
dataflow equations can be given by the solution of µ i.e.
vn = µ(L). As long we we can solve for φ−1, that is suf-
ficient to continue with (implicit) representations of the re-
sults of a loop.

10 Finding Preconditions

Often we are interested about the partial correctness of
programs. A program can be defined as partially correct,
with respect to a given precondition and a postcondition, if

the initial state satisfies the precondition and if the program
terminates, the final state satisfies the postconditions. Now
if we are given postconditions for the program, we can try
to use the dataflow equations to “push backwards” (as in
backwards state transformers) these predicates to find pre-
conditions.

Additionally, as no exceptions (in other words carry,
overflow etc.) are handled by the programs we reviewed,
we can add these as post-conditions as well, and also prop-
agate them backwards through the dataflow equations. Let
us consider the control flow graph in Figure 3. Suppose that
a, b, c are all state variables in this context. At node Q, the
initial state is I = {a 7→ a0, b 7→ b0, c 7→ c0}, and at node
P, assume that we have c = a + b. As we know that c must
be a valid value (< 216 on the IBM-1800), we can conclude
that a + b < 216 is true at P. We can push this backwards to
(potentially) derive additional necessary conditions at Q, as
well as pushing it forward to (potentially) find a more pre-
cise description of the state at R, by potentially removing
some infeasible paths.

Figure 3. Finding Preconditions

11 Related Work

Morris and Filman [9] developed a system called MAN-
DRAKE to translate IBM-370 code into a high-level lan-
guage. As IBM-370 code contains many GOTOs, Morris
and Filman mainly focus on removing these GOTOs, and
then work on introducing high-level procedure-like struc-
tures for that code. In their tool they converted the IBM-370
programs into a higher level program for better understand-
ing. In our approach, we instead found the (mathematical)
system of equations statisfied by the state of the machine.

Feldman and Friedman [5] also described a system
(BOGART) for interpreting IBM 370 assembly. Like
MANDRAKE, they adopted a flow analysis technique
(much as we do). Explicit control flow graph is not a part of
their input values. BOGART needs extensive manual mod-
ification of the code before it can be applied. The BOG-
ART system gives less emphasis on detailed steps of 370

assembler. This is due to the fact that for both BOGART
and MANDRAKE, the assembly they analyse is higher-
level and better structured than the IBM-1800 code we look
at. BOGART system produces code for direct execution
whereas MANDRAKE produces code for human consump-
tion (i.e. better understanding). In our approach we mainly
focus on producing mathematical descriptions of the se-
mantics of the programs, so that the results can be used for
higher-level understand as well as for automated property
proving and verification.

Ward [14] described a case study of an automated plus
manual process to convert an IBM-370 assembler program
to high level specifications using the FermaT transforma-
tion system. Via a “Wide Spectrum Language” (WSL)
which simultaneously incorporates low-level coding fea-
tures and high-level specification features, they (automat-
ically) translated assembler programs to WSL before intro-
ducing specification-level abstractions in subsequent passes
using the human-assisted FermaT transformation system.
During the FermaT transformation process, the WSL code
is further refined using some predefined constructs for con-
trol structures. At this point the code becomes more un-
derstandable and high level specifications can be gener-
ated in the same WSL language. This method explicitly
makes many approximations, some of which rule out ana-
lyzing IBM-1800 code (like ignoring self-modifying code
and register-indexed branching).

Watson and Fidge [15] have described a technique for as-
sembler semantics that is based on advanced compiler the-
ory and technology, as well as programming language se-
mantics. Their work is close to ours, except that while they
are describing a theoretical framework, we have a working
reverse-engineering tool. As we do, they used execution
paths to find the semantics of assembly language programs.
They divided programs into basic blocks (our straight-line
code) and a path is described as a sequence of basic blocks.
Path semantics is the association of the semantics of all the
basic blocks in that path. In their paper, they illustrated an
approach to generate weakest liberal precondition (WLP)
semantics of some abstract code and then demonstrated the
correctness of compilation of high level code fragments to
assembler code, using path semantics and WLP. They did
not address the issue of reverse engineering.

Lake and Blanchard [7] discussed a model-based ap-
proach to transform assembler program into a high-level
language. They make some simplifying assumptions which
do not hold in our case, and use another programming lan-
guage instead of a mathematical language for expressing
their results. While the Portable Reverse Engineering En-
vironment (PARE) for assembler programs of Roberts, Pi-
azza and Katz [13] seems interesting, they too assume more
structure from their assembler programs than we do.

Apart from the application of standard techniques from

(high-level) programming language semantics like opera-
tional and denotational semantics, the work that most influ-
enced ours is that of Fahringer and Scholz[4]. They devel-
oped an approach to find the symbolic interpretation of im-
perative programs written in a high-level language. We ap-
plied some of their constructs (path conditions, recurrence
equations) in our approach to interpret assembler programs.
As assembler programs do not have any predefined control
structures, we used an explicit control flow graph to find
execution paths, and used them to guide our symbolic inter-
pretation.

12 Contributions

We see our main contributions as adapting the tools from
symbolic computation, compiler construction (dataflow and
control flow graphs) and denotational semantics to the situa-
tion of understanding and reverse-engineering the semantics
of legacy assembler programs. An important contribution of
our approach is that we have made no simplifying assump-
tions, and yet managed to derive mathematical descriptions
of subprograms.

13 Future Work

The solution presented in this paper is still preliminary.
As we have indicated earlier, only some special kinds of
control flow is currently analysed. We are working on
analysing more complex control flow – quite a bit of weird
control flow can be recast in our setting by a simple dupli-
cation of some of the code, and we are actively pursuing
this. As well, we are working on simplifying the output ex-
pressions, and developing tools to push boolean conditions
through systems of (more complex) dataflow equations.

Another important aspect is that any time we can find
that some paths are infeasible, through whatever methods,
this simplifies the analysis tremendously. So our current
analysis should be seen as one step in a fixed-point analysis,
where each analysis pass provides a better approximation to
the complete semantics.

We are also exploring the use of redundant descriptions
of the semantics; for example a left-shift instruction can be
described either as a left-shift or as a multiplication by 2.
The “best” description usually depends on how that value is
used in other contexts. If it is used in a context of arithmetic
operations, then multiplication by 2 is likely more descrip-
tive, whereas if used in a context of bit operations, a shift is
likely better. The work of [6] is relevant here.

References

[1] IBM Field Engineering Theory of Operation, 1800 Data Ac-
quisition and Control System, Processor-Controller. IBM

Systems Development Division, Product Publications, De-
partment G24, San Jose, California 95114, 1970.

[2] D. L. Clutterbuck and B. A. Carre. The verification of
low-level code. Software Engineering Journal, 3(3):97–111,
May 1988.

[3] K. Everets. Assembly language representation and graph
generation in a pure functional programming language.
Master’s thesis, Dept. of Computing and Software, McMas-
ter University, December 2004.

[4] T. Fahringer and B. Scholz. Advanced Symbolic Analysis
for Compilers: New Techniques and Algorithms for Sym-
bolic Program Analysis and Optimization, volume 2628 of
Lecture Notes in Computer Science. Springer, 2003.

[5] Y. Feldman and D. A. Friedman. Portability by auto-
matic translation; a large scale case study. In Proc. 10th
Knowledge-Based Software Engineering Conference, 1995.

[6] W. Kahl, C. K. Anand, and J. Carette. Choices in data
flow for declarative assembly. In I. Düntsch, W. MacCaull,
and M. Winter, editors, 8th International Conference on Re-
lational Methods in Computer Science, RelMiCS 8, 2004.
(participants’ proceedings, to appear).

[7] T. Lake and T. Blanchard. Reverse engineering of assembler
programs: A model-based approach and its logical basis. In
Proceedings of the 3rd Working Conference on Reverse En-
gineering (WCRE’96). IEEE Computer Society, 1996.

[8] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn,
S. M. Vorkoetter, J. McCarron, and P. DeMarco. Maple 7
Programming Guide. Waterloo Maple Inc., 2001.

[9] P. Morris and R. Filman. Mandrake: A tool for reverse-
engineering ibm assembly code. In Proceedings of the 3rd
Working Conference on Reverse Engineering (WCRE’96),
pages 58–65, November 1996.

[10] H. R. Nielson and F. Nielson. Semantics With Applications:
A Formal Introduction. John Wiley and Sons, July 1999.

[11] I. M. O’Neill, D. L. Clutterbuck, P. F. Farrow, P. G. Sum-
mers, and W. C. Dolman. The formal verification of safety-
critical assembly code. In W. D. Ehrenberger, editor, Safety
of Computer Control Systems 1988, pages 115–120. Inter-
national Federation of Automatic Control, Pergamon Press,
November 1988.

[12] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert.
PVS System Guide, Language Reference and Prover Guide.
Computer Science Laboratory, SRI International, Menlo
Park, CA, November 2001.

[13] S. N. Roberts, R. L. Piazza, and D. G. Katz. A portable as-
sembler reverse engineering environment (PARE). In Pro-
ceedings of the 3rd Working Conference on Reverse Engi-
neering (WCRE’96). IEEE Computer Society, 1996.

[14] M. Ward. Reverse engineering from assembler to formal
specifications via program transformations. In Proceedings
of the Seventh Working Conference on Reverse Engineering
(WCRE’00), Nov. 2000.

[15] G. Watson and C. Fidge. Modelling assembler programs
with an application to compilation. Technical Report 03-
GW-1, Software Verification Research Centre, The Univer-
sity of Queensland, July 2003.

[16] A. Winter. Exchanging graphs with GXL. Technical Report
9-2001, Universität Koblenz-Landau, Institut für Informatik,
Rheinau 1,Koblenz, 2001. D-56075.

