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Abstract

Having been convinced of the potential benefits of partial evaluation, we wanted to apply
these techniques to code written in Maple, our Computer Algebra System of choice. Maple
is a very large language, with a number of non-standard features. When we tried to im-
plement a partial evaluator for it, we ran into a number of difficulties for which we could
find no solution in the literature. Undaunted, we persevered and ultimately implemented a
working partial evaluator with which we were able to very successfully conduct our exper-
iments, first on small codes, and now on actual routines taken from Maple’s own library.
Here, we document the techniques we had to invent or adapt to achieve these results.
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1 Introduction

While symbolic computation is a mainstay of partial evaluation, partial evaluation
is not a common technique in symbolic computation, even less so in computer al-
gebra. The authors were convinced that partial evaluation (and metaprogramming
in general [1,2]), should be a very powerful tool when combined with a Computer
Algebra System (CAS). Certainly code generation from a CAS had already shown
itself [3,4] to be a successful technique. Eventually, our high hopes were proven

Email addresses: carette@mcmaster.ca (Jacques Carette),
mkucera@ca.ibm.com (Michael Kucera).

URL: http://www.cas.mcmaster.ca/˜carette (Jacques Carette).
1 Supported in part by NSERC Discovery Grant RPG262084-03.
2 The content in this document is based on investigations undertaken prior to employment
with IBM.

Preprint submitted to Science of Computer Programming 23 October 2007



correct, as reported previously [5,6]. But what that paper does not really say is how
difficult this turned out to be. The basic theory and practice of partial evaluation
is lucidly explained in [7], and various papers [8–12] provided welcome additional
techniques. And yet, we needed to invent a number of techniques to be able to han-
dle interesting Maple programs. Here our goal is mainly to explore those techniques
that were needed to make an effective partial evaluator for Maple, our Computer Al-
gebra System of choice. Note that since doing any kind of static analysis of Maple
programs seems outlandishly difficult [13,14], we felt that we had no choice but to
write an online partial evaluator.

First, a few words on what motivated us to write this partial evaluator for Maple.
This can be summed up by the slogans “efficient genericity” and “residual theo-
rems”.

Generic programming is not a new idea in computer algebra, where it was used
long before its current resurgence in the C++ and functional programming com-
munities, as reading Musser and Stepanov’s classic paper [15] attests. But in a
dynamically typed, interpreted language (such as Maple), the interpretation over-
head of such abstractions is so prohibitive that otherwise successful projects in
generic programming [16] did not become standard practice. We wanted to keep
that programming style, but without the efficiency cost. While [1] shows that typed
metaprogramming (in MetaOCaml) can deal with this, we wanted to accomplish
the same in Maple. More importantly, we wanted to have a pleasant programming
experience while writing generic programs, which is (currently) not the case for
C++ template programming nor, unfortunately, for MetaOCaml programming. It is
important to note that we are not using partial evaluation as a method to get our
programs to run faster, but rather to be able to conveniently write generic programs
that run no slower than previous code. We have nevertheless obtained some sig-
nificant speedups. We believe this is an important shift in perspective that should
increase the areas of applicability of partial evaluation and program transformation.

“Residual theorems” is the term we coined to refer to expressing the result of sym-
bolic computations on symbolic input as programs with (potentially many) residual
conditions on the validity of the result. The underlying motivation is that there is
a huge amount of information embedded in Computer Algebra libraries, a lot of
which encodes special cases for the validity of computations in analysis. However,
these special cases are only triggered when the coefficients of the problems at hand
are exact constants, and not when they are parametric. As we show in [5], it is not
necessary to invent parametric algorithms to deal with this, as current algorithms
combined with partial evaluation is sufficient.

We assume that the average reader is not very familiar with CASes, and even if they
have some knowledge of them, it is probably restricted to their use as a glorified
calculator rather than as a full-fledged programming language. As such, we give
a programming language oriented introduction to Maple in the next section. We
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focus on those areas of the language which are not standard (i.e. for which clear
similarities cannot be found as well-known features in any of Scheme, Java, C,
Ocaml or Haskell). One particularity of CASes is that they are designed to deal
with open terms (which they simply call expressions) as a fundamental data type.
What this means is that in Maple, the over-used power example is doubly irrelevant:
First, because the powering operator is built-in, and second because
s t a g e b i n := proc ( n : : p o s i n t , f ) l o c a l r e s , g , x ;

g := proc ( x , n ) l o c a l y ;
i f n=0 then 1
e l i f n=1 then x
e l i f n mod 2 = 0 then y := g ( x , n / 2 ) ; f ( y , y ) ;
e l s e f ( x , g ( x , n−1 ) ) ;
end i f ;

end proc ;
unapp ly ( g ( n , z ) , z ) ;

end proc ;

is a routine which given a positive integer n and a binary associative multiplication-
like operator f will return a new procedure that computes f applied n times via bi-
nary splitting. The “trick” is to manipulate open terms directly and use unapply to
get back a procedure. And yet it is hard to fool Maple, as stagebin (5, ‘∗‘) will sim-
ply return z −> zˆ5, as will stagebin (5, proc(a ,b) a ∗ b end). To obtain the desired
result it is necessary to resort to using an inert multiplication; stagebin (5, ‘&∗‘) will
then return the more familiar proc(z) ‘&∗‘(z,‘&∗‘(‘&∗‘(z ,z ),‘&∗‘( z ,z ))) end proc,
without doing any real metaprogramming or explicit program transformation. We
are, of course, doing some implicit program transformation using expression ma-
nipulation. In other words, the partial evaluation community is quite justified in its
belief that power is too simple to illustrate much of anything.

We are not aware of any previous work on trying to do partial evaluation of a Com-
puter Algebra language. The closest work in this area is on the purely numerical
language Matlab, where [8] also reports having to work rather hard to get their re-
sults. Of course all the work on partial evaluation for (full) Scheme (like [17]) is
quite relevant, as Maple is also a higher-order functional/imperative language with
good reification and reflection capabilities.

The main contributions of this paper are: 1) several new techniques in online partial
evaluation (see discussion below) and 2) the demonstration that partial evaluation
is an effective tool when applied to a Computer Algebra language. We have named
our partial evaluator MapleMIX. The need to support a non-trivial language (62
AST types) led to MapleMIX being divided into several distinct modules with well
defined boundaries. The techniques that we developed are the result of the modular-
ization requirement and by the need to support common Maple language features.
It is worth remembering that we did not seek to do research in partial evaluation, we
were attempting to use partial evaluation as a tool to solve problems; thus our im-
plementation is a mixture of well-known, conventional ideas and novel approaches.
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Our approach to modularizing the partial evaluator is to have certain modules com-
municate via a powerful abstract syntax that was designed specifically with partial
evaluation in mind. We have discovered that adding new constructs to the language
representation, instead of just simplifying the input language, can actually make
the specialization module more compact. (For example Maple has one syntactic
form for assignment whereas our intermediate representation has four.) We have
even taken the idea of syntax-directed partial evaluation to the next level by having
the specializer perform on-the-fly syntax transformations that further drive the spe-
cialization process. These on-the-fly transformations are very effective for handling
dynamic conditionals while performing static loop unrolling.

We use a variety of binding time lattices to deal with structures which are partially
static and partially dynamic. Note that since our partial evaluator is online, this
binding time information is collected as it is discovered during specialization, and is
used as the specialization (and residualization) progresses. This is especially useful
for dealing with partly static hash tables, static procedures which refer to (dynamic)
lexically scoped variables, and with variables which can revert to being static after
having been dynamic for part of the execution.

We have developed several techniques within the paradigm of online partial eval-
uation that show the power and accuracy that the online approach is capable of.
In particular, our design for the variable binding environment works well with a
new algorithm for handling if-statements. Furthermore the environment allows for
a completely online syntax-directed approach to handling partially static data struc-
tures, something rather common in CAS codes.

First we describe the context of our work by providing a description of the Maple
language in Section 2. An overview of MapleMIX is given in Section 3, and Section
4 goes into detail about the various designs and techniques used in the implemen-
tation. We give representative examples of our results in Section 5.

This paper is an extension of [18]. We have made the description of the Maple
programming language more thorough, to give a better sense of the scale of the task
that we face. We have similarly improved the description of the partial evaluator
itself; we present a description of the current implementation of MapleMIX which
has evolved since we last reported on it. This evolution has been generally driven by
getting larger examples of real Maple code (mostly taken from the Maple library) to
properly specialize. We needed to completely rethink how we approached closures,
had to deal with procname recursion, simplified the handling of routines with
special evaluation rules, properly residualize dynamic errors, deal with multiple
assignments, rtables, functional variants of builtins (like ‘if‘ and ‘+‘) and typed
locals, as well as making sure that boolean operators are evaluated using McCarthy
semantics, even in mixed static/dynamic cases. We will present new examples in
Section 5 which needed these changes.
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c ::= Z | Q | F | string | identifier

e ::= c | +(e) | ∗(e) | −e | ee | e ∧ e | e ∨ e | ¬e | e xor e | e ⇒ e | e[e] |
′e′ | ‘e‘ | e :: e | e = e | e 6= e | e < e | e ≤ e | {e} | [e] |

e..e | e||e | e(e) | e:-e | args | nargs | hashtab(e) | , (e)

procname

n ::= , (identifier) | , (identifier :: e)

s ::= e | s; s | e := e | try s (catch e: s)∗ finally s | break | next |

(for e)? (from e)? (to e)? (by e)? (while e)? do s |

error e | return e | for e in e (while e)? do s |

if e then s (elif e then s )∗ (else s)? |

proc(n) local n global n description e option e retttype e ; s |

module() local n global n export n description e ; s

Fig. 1. Simplified Maple Abstract Grammar

2 Maple

Maple is principally used as a mathematical assistant, in other words as an inter-
active calculator that allows one to do both routine computations (albeit at a high
level of mathematical sophistication) and as an aid to mathematical exploration.
However, at its heart still lies a sophisticated programming language [19].

That programming language is a mixed imperative/functional dynamically typed,
eager evaluation language, with higher order functions, first-class modules, first-
class (dynamic) types, proper closures and lexical scoping, error handling primi-
tives, arbitrary precision arithmetic (integer, rational and floating point), and a full
IEEE-754 compliant implementation of hardware floating point arithmetic. Its fun-
damental structured data types are the array, the set, the “expression sequence” and
the hash table; and since Maple 6, the so-called “rectangular table”. It also has ex-
tensive I/O libraries, a solid Foreign Function Interface (which includes not just
C but also Java, and Fortran), fancy parameter processing primitives (somewhat
akin to Python’s) and, naturally, a very extensive library of mathematical types and
operations.

In Figure 1 is a grammar describing Maple’s abstract syntax although not its con-
crete syntax, but influenced by it. This grammar is a slightly simplified version for
expository purposes, and uses standard regular expression syntax in the definition
of s. Most of it is quite straightforward, so we will outline only those non-standard
features. We denote by c the literal constants, e the expressions and s the state-
ments; n is an auxiliary production which denotes expression sequences of specific
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x ∈ σ ¬LNE (σx)

σx

x ∈ σ LNE (σx)

x

x /∈ σ

x

e1 ⇒ e3 e2 ⇒ e4

e1+e2 ⇒ e3+e4 i1+ i2 ⇒ i1+i2
i1, i2 ∈ Z

z1+ z2 ⇒ z1+z2

z1, z2 ∈ F
e1 ⇒ e2

x+e1 ⇒ x+e2

x ∈ identifier

′e′ ⇒∗ e

e1 ⇒ e3 e2 ⇒ e4

e1 = e2 ⇒ e3 = e4

evalb(b) ⇒ true

if b then s1 else s2 ⇒ s1

Fig. 2. Operational Semantics fragment

terms (identifiers or type-decorated identifiers in this case). An expression sequence
is the name given to an ordered sequence of either 0 or ≥ 2 expressions, as 1 el-
ement expression sequences automatically “flatten” to the expression itself. This
is a pervasive structure in Maple, and is used as the “contents” of lists, sets and
(unevaluated) function calls. We use the +(e) notation to denote an n-ary opera-
tor (in this case +, ∗, function application and the expression sequence constructor
, are all n-ary). F denotes the floating point numbers, and string denotes string
literals. The single biggest difference between Maple and other languages is that
some of its fundamental operations (like + and ∗) can return unevaluated. In other
words, while 1+3 naturally evaluates to 4, x+5+ y +3 evaluates to x+ y +8 if x
and y are symbols. In Maple, symbols are simply identifiers with no assigned value!
The language even has a construct for this, called uneval quotes; for example while
sin(π/2) evaluates to 1, ′sin′(π/2) evaluates to the expression sin(π/2) (which, if
further evaluated, will give 1). Furthermore, it is common to have routines that look
like
proc ( x ) i f t y p e ( x , ’ numeric ’ ) then

# some numer ic c o m p u t a t i o n
e l s e

’ procname ’ ( a r g s )
end proc
which evaluates to a numeric value given a numeric argument, but otherwise eval-
uates to itself (via its name, given by procname, and its expression sequence of
arguments, given by args). These first-class expressions really are models of open
terms, which few languages possess, as is the concept of returning an unevaluated
version of a function call as a “result”.

Figure 2 gives a few of the unusual rules for the operational semantics for Maple.
The first three rules detail the evaluation of identifiers, and are some of the strangest
in any programming language. The third rule basically says that unassigned identi-
fiers are fine in Maple, they stand for themselves. The first two rules use the predi-
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cate LNE, which is short for “last name evaluation”; basically, if x is an identifier
which has a value in the current store σ, then x will evaluate to its value unless it
satisfies the predicate LNE. Currently, LNE returns true if the value assigned to
x is a table, a procedure or a module; in other words, for tables, procedures and
modules assigned to an identifier, the “value” associated to that identifier is again
“itself” by the default evaluation mechanism, rather than the underlying value. This
is a very large source of complexity in the partial evaluator. Note that the historical
motivation for this rather strange rule was printing: in many cases, one is more in-
terested in the name of an LNE object than its actual value. It is also worthwhile
noting that unassigned local identifiers obey the same rules; in particular, it is possi-
ble for a named closure to escape its definition context – a mechanism which turns
out to be frequently used for name generation.

The next 3 rules are the usual ones for +, but the last one on the third line says
that adding an identifier to anything will simply return an unevaluated +. We then
have a rule saying that the unevaluation quotes do just that, they prevent further
evaluation. The next rule expresses that = is just a data-constructor, so that when
a boolean is needed (for example by if as in the next rule), an implicit call to the
built-in function evalb is performed, and this function will either return a boolean
or throw an exception.

On top of these unusual aspects to the semantics, many of the built-in functions
(there are 217 in Maple 10, given in Appendix A.3) have unusual semantics as well.
For example the built-in assigned is call-by-name even though Maple is gener-
ally call-by-value (this function tests if an identifier is assigned), the function op
is a polymorphic deconstructor which works over any value, map is polymorphic
over all values, unapply will take an expression and will abstract out identifiers
and return a procedure, subs will perform pure syntactic substitution even if that
implies name-capture, DEBUG will invoke the debugger, jvm starts a Java Virtual
Machine, evalhf is an interpreter for an embedded sub-language which corre-
sponds roughly to Fortran but using Maple syntax [and thus creates an environment
in which programs have different semantics], pointto returns an integer which is
actually the pointer to a Maple object (!), etc. Furthermore, there are common en-
vironment variables (see A.2), also called fluid variables (as available in Common
Lisp and now Ruby as well) such as Digits to control the number of (decimal!)
digits to use for the evaluation of floating point expressions, and Order to control
the order of expansion of a series. There are also builtin routines like ‘+‘, ‘*‘,
assign and ‘if‘ which are functional equivalents of builtin syntactic operators
and statements.

It is rather unfortunate, but there is no canonical reference for the semantics of
Maple (operational or otherwise). While the reference documentation [19] and the
even more extensive online documentation built into the product do give informal
operational descriptions of most of the language, these are incomplete and some-
times ambiguous. However, since expression reduction is done by calling the un-
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derlying language, this part of our partial evaluator is always faithful. While we
would have liked to give the complete operational semantics that we have built in
to our tool, this would have taken over a dozen pages.

3 A Partial Evaluator for Maple

This section presents an overview of the architecture and design of MapleMIX.

We decided early on that our partial evaluator would not only be syntax-directed,
but that a number of features would be implemented via transformations on abstract
syntax trees. This had major repercussions on the design of various modules. Over-
all, the system is structured as a specific sequence of program transformations, with
a special emphasis on particular transformations occurring before and after the spe-
cialization phase. This is inspired in part by the design of some compilers [20]. We
believe that this approach leads to a highly modular architecture for practical online
partial evaluators for complex languages. We view MapleMIX as being essentially
an interpreter that has the additional functionality of generating residual code for
deferred computations. It contains an expression reducer that was influenced by
the cogen approach [11] to partial evaluation. Furthermore we have implemented
a novel online approach to handling partially static data-structures such as polyno-
mials with known monomials but unknown coefficients.

3.1 Characteristics

MapleMIX has the following characteristics:

• Online. No pre-analysis of the code is performed. The goal is to exploit as much
static information as possible in order to achieve good specialization. Further-
more we have implemented a novel online approach to handling partially static
data-structures such as lists and polynomials.

• Written in Maple. This allows direct access to the excellent reification/reflection
functions of Maple (i.e. FromInert and ToInert) as well as access to the
underlying interpreter. This permits us to stay as close to the semantics of Maple
as possible. Additionally, scanning and parsing of Maple programs does not need
to be considered. Maple’s automatic simplification feature, instead of hindering
us, sometimes helps to slightly clean up residual code 3 .

• No annotations necessary. As well as being online, MapleMIX requires no an-
notations at all. This was really the only possible choice as we wanted to be able

3 The computer algebra literature is replete with examples of so-called premature simpli-
fication which lead to incorrect results [21].
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to specialize part of Maple’s own library, which is much too large and complex
to be annotated.

• Not self-applicable. We are more concerned with manipulating Maple code than
with producing generating extensions. Thus we focus on offering the largest
amount of features and supporting the largest subset of Maple as possible. This
is made much easier by not placing restrictions on what language features were
used used when first writing the partial evaluator. Nevertheless, we may eventu-
ally be able to apply the partial evaluator to itself.

• Standard approach. Since we are not concerned with producing generating ex-
tensions we are free to take the standard approach to PE. This allows the PE to be
written in a direct way similar to an interpreter which will make it easier to refine
and add new features to the partial evaluator in the future. Having said that, the
specializer contains an expression reducer that has been inspired by the online
cogen approach.

• Function-point polyvariant. Whenever necessary, the partial evaluator will gen-
erate several specialized versions of a function.

• Syntax-directed. Maple allows easy access to the abstract syntax tree of a term
through its ToInert function. In this way the entire core library of Maple may
be easily retrieved. Furthermore we have used transformations on the abstract
syntax to facilitate the specialization process. We believe this approach leads to
a highly modular design for practical online partial evaluators.

3.2 Architecture

MapleMIX consists of several modules, whose overall structure is illustrated in
Figure 3:

• Inert form to M-form Translator. Takes an AST that has been output by ToInert
and transforms it into an M-form AST. The M-form translator is called on every
function that is pulled in by the specializer. M-form ASTs are cached so that even
if a function needs to be specialized many times, it is only transformed once.

• M-form to Inert form Translator. The reverse transformation that is needed to
convert M-form back to Inert form.

• The Specializer The specializer drives the entire partial evaluation process. It
contains specialization routines for each statement form, generates specialized
functions and decides when to reuse them, maintains a call stack of environ-
ments, decides when a specialized function should be unfolded and maintains a
table that stores the generated residual code.

• The Expression Reducer When given the M-form of an expression the reducer
will evaluate it as far as possible using the static information provided by the
environment. It may return a static value or a dynamic M-form. Builtin functions
are handled by the reducer as expressions and are called at partial evaluation time
if all the arguments are static. The reducer has handlers for certain Maple builtin
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functions that have non-standard semantics, such as seq which acts as sequence
comprehension. The implementation of the expression reducer is inspired by the
online cogen approach to partial evaluation.

• The Online Environment Stores values of static variables and partially static
tables. It also stores structure information for variables that are assigned to par-
tially static data such as lists, which is part of our online approach for handling
partially static data and will be discussed in detail later. The online environment
has a unique implementation that allows for easy treatment of dynamic if state-
ments.

• The Function Unfolder In expression oriented languages unfolding a function
is a trivial operation. This is not the case in Maple as there are many caveats
to function unfolding. Firstly certain Maple keywords such as return, args,
nargs and procname depend on the context of the function that contains them
and must be handled with care. Secondly if the return value of the function is
assigned to a variable then any returns in the function must be converted into
assignment statements by the unfolding, and this must be done in a controlled
way that preserves semantics. We will not describe the function unfolding trans-
formation in detail but it is important to note that it is complicated enough to
warrant its own module.

• DAG Transformer Our approach for handling dynamic if-statements and static
loops requires a transformation that converts an M-form AST into a DAG (Di-
rected Acyclic Graph). This transformation is done on-the-fly inside the special-
izer and will be described in more detail later.

• The Unique Name Generator Responsible for generating new unique names
for use during M-form translation and during specialization.

• The Module Packager When the specializer is done it will have produced a set
of specialized functions in M-form. Before being converted back to active maple
code the residual functions are subjected to a dead code removal transformation.
Then each function is converted to inert form and then converted to active Maple
code that can then be run. The module packager is responsible for building a
Maple module that contains all the residual functions. This way MapleMIX can
return a single object that encapsulates the results of partial evaluation.

We followed what seemed to be the “most natural design” for each of the above
modules. Fairly predictably, this lead to most of the modules having a purely func-
tional interface, with local state used in the implementation for efficiency and to
follow normal Maple style. Somewhat surprising (to us) was that the most natural
design for the online environment was a pure object-oriented design. The online
environment is implemented as an object, using the Singleton pattern. Internally,
it implements a stack of frames, corresponding to the current lexical scope being
reduced.
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Fig. 3. Architecture of MapleMIX
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3.3 Input and Output

Traditionally the input to a partial evaluator is a complete program. But since
MapleMIX has direct access to the source of the full Maple library, as well as any
other definitions in the current session (not including builtin routines), this gives
us scope for considerably more specialization. However, one would not want to
specialize everything in the “current session” as that would include the 1,000,000
lines of the Maple library. The specialization process must therefore be initiated in
a controlled manner. Input to MapleMIX is a single function, called the goal func-
tion, which will be treated as the starting point of specialization. The parameter list
of the goal function will be the dynamic inputs of the resulting specialized pro-
gram. MapleMIX may generate several residual functions, which will be packaged
together with the specialized goal function, and returned as a Maple module. The
specialized goal function will become the main entry point of the returned module.
Other than preparing a goal function, there is no need to perform any annotations,
language transformations, etc. MapleMIX works on normal Maple programs as
long as they are written in the supported subset of the language. In theory, this now
includes the complete language, however the set of fully supported builtin functions
and constants is more restricted. As long as the semantics of the builtin functions
which are used (but not yet fully supported) is standard, this mostly results in sub-
optimal residual code rather than in incorrect code.

3.4 M-form

The Maple reification function ToInert will return the abstract syntax tree of
any Maple term, referred to as its inert form, which essentially corresponds to the
abstract grammar of Figure 1. The AST produced by ToInert was not designed
with partial evaluation in mind. We have chosen to transform it into another for-
mat, which we have named M-form, that has been designed to be convenient for
specialization. In simple cases, it is essentially isomorphic to the inert form:
> i n r t := T o I n e r t ( x + y ) ;

i n r t := Iner t SUM ( Inert NAME ( ” x ” ) , Inert NAME ( ” y ” ) )
> m := M[ToM( i n r t ) ] ;

m := MSum(MName( ” x ” ) , MName( ” y ” ) )

Traditionally many existing partial evaluators first transform their input into a sim-
pler core language (for example the C-mix partial evaluator transforms C to CoreC
[22]). This approach reduces the syntactic forms that the specializer must support,
for example by transforming loops into into unstructured code with gotos. However
there may be a cost for this apparent simplification: it is possible to lose certain in-
variants inherent with certain syntactic forms. For example some languages (like
Fortran 77) have for loops that are guaranteed to terminate.
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M-form both simplifies and adds to the inert form. Adding syntactic forms does not
make the specializer more complex (or longer) but in fact makes it more compact.
This seems to be because the removal of certain redundant syntactic forms may
actually add complexity since the specializer will have to infer the information that
was removed by such a “simplifying” transformation. In the end, while the inert
form has 62 cases, M-form has 75.

Since MapleMIX is syntax-directed, it is natural to use syntax transformations and
new syntactic forms to direct the specializer. Some syntactic constructs in M-form
are in fact only introduced by the specializer, which performs on-the-fly insertion
of these constructs to proceed (see section 4.7). The design goals of the M-form is
to keep all static information available in the inert form intact, while keeping the
translation between these forms straightforward, and to help with specialization.
Below, we detail the main differences between inert form and M-form.

3.4.1 Assignments

Maple is an imperative language with global state and side-effecting expressions.
Statements cannot occur in an expression context, so the only expression which
might create side-effects is a function call. In order to separate the concerns of
expression reduction and environment update, M-form adds the stipulation that all
expressions must be side-effect free.

The M-form translator maintains a list of known intrinsic functions. An intrinsic
function will never be specialized, instead any call to an intrinsic function will be
treated as an atomic operation that may be performed at partial evaluation time.
Most built-in functions are considered intrinsic, except for side-effecting I/O func-
tions. Some library functions are also considered intrinsic (like the Vector and Ma-
trix constructors) in order to simplify the residual code.

All non-intrinsic function calls are removed from expressions by generating a new
assignment statement for each call and then replacing the original calls by the
names generated 4 . We call this a splitting transformation:

Original Code Transformed Code

a := f ( g ( x ) ) + h ( x ) ; m1 := g ( x ) ;
m2 := f (m1 ) ;
m3 := h ( x ) ;
a := m2 + m3 ;

A new syntactic form of assignment, MAssignToFunction, is generated by this
transformation to specifically represent assignment of a function call to a variable.

4 This is essentially let insertion for an imperative language.
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In this way the specializer can decide, based on syntax alone, to do a simple reduc-
tion, or perform specialization on a function body. The splitting transformation has
the unfortunate effect of possibly creating many new assignment statements. How-
ever, we know that the new variable is only assigned to once and only used once.
Thus if the specializer decides not to unfold a split function call, or if the function
unfolds into a single assignment statement, then this knowledge can be used later.
In particular, when translating from M-form back to Maple, such expressions will
always be inlined.

Maple allows expressions to be used in statement context, often used in conjunc-
tion with Maple’s implicit return mechanism. However we do not want the state-
ment specializer to have to account for every expression form. The solution is to
tag standalone expressions and standalone function calls (so that the tag implicitly
becomes a new statement form).

3.4.2 If Statements

Original Code Transformed Code

i f f ( x ) then
S1

e l i f g ( x ) then
S2

end i f

m1 := f ( x ) ;
i f m1 then

S1
e l s e

m2 := g ( x ) ;
i f m2 then

S2
e l s e
end i f

end i f

An if statement in Maple may
have arbitrarily many elif blocks
and an optional else block. M-
form has a simpler MIfThenElse con-
struct that always consists solely of
a conditional expression and two
branches. Any Maple if statement
with a list of elif blocks is
converted into nested MIfThenElse
statements. Empty else blocks are
added as necessary. This transfor-
mation works hand-in-hand with the
splitting transformation in order to

correctly maintain the ordering of function calls in conditional expressions.

3.4.3 Loops

Inert form has two kinds of loop, both variations of for loops.

• Inert FORFROM Represents a common for loop of the form:
f o r i from 3 to 11 by 2 do . . . end do

• Inert FORIN Represents a loop that accesses all elements of a linear data struc-
ture such as a list or set, also commonly called a foreach loop.

f o r e in [ 1 , 2 , 3 ] do . . . end do

Both kinds of loop have an optional while clause, which is checked at the start
of each iteration, causing the loop to exit if the expression is false. Most parts of a
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loop definition have defaults and can be omitted in concrete syntax, but are always
present in the AST. For example, a while loop is actually a for-from loop with all
clauses left to default values except the while clause.

There is different static information contained in for loops and while loops. Un-
like a while loop, a proper for loop where all write access to the loop index
variable is controlled by the loop statement itself will not (by itself) be a source of
non-termination. This is crucial if the partial evaluator is to reliably unroll loops
without risking non-termination. While it is possible to have the specializer check
this dynamically, it is simpler to transfer the burden to the M-form translator. There-
fore in M-form we support three types of loops instead of two 5 . These are the gen-
eral while loop, a for-from loop with an optional while condition, and the for-in
loop with optional while condition. Note that the for-from loop can be unrolled, but
the while condition (if present) must be checked on each iteration; if it evaluates to
false, unrolling is stopped.

Original Code Transformed Code

whi le f ( x ) do
. . .

end do

m1 := f ( x ) ;
whi le m1 do

. . . ;
m1 := f ( x ) ;

end do

Fig. 4. Splitting of while condition

Any assignments that are generated
by splitting function calls out of a
while condition expression are in-
serted both before the loop and in the
body of the loop at the bottom.

Currently MapleMIX does not sup-
port the use of next or break in-
side of a loop. If one is encountered
during translation to M-form, an ex-
ception is thrown. There is however

one case where a simple transformation is performed to remove the use of next:

Original Code Transformed Code

. . . do
i f C then n e x t end i f ;
S1 ;

end do ;

. . . do
i f not C then

S1 ;
end i f ;

end do ;

Fig. 5. Removal of next

3.4.4 Other Syntactic Forms

There are many other lesser transformations that are performed when converting
from inert form to M-form. For example, the abstract syntax for function parameter
lists can become quite convoluted in inert form. In M-form it has been cleaned up

5 Assignment to the loop index variable is currently not supported.
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significantly for the sole purpose of making it easier to deal with this construct in
the specializer. This is an example of a simplifying transformation.

Other transformations have to do with tables, which are a built-in Maple datatype
with language support. For example, Maple allows the creation and initialization of
a table at the same time using the built-in table function. Dynamic uses of this
particular function are transformed into a series of table index assignment state-
ments. This relieves the specializer from having to deal with the table function
as a special case. Some of the resulting assignments may be static and some may
be dynamic at specialization time and will be treated accordingly.

3.4.5 Summary

The following table outlines the differences between Inert form and M-form.

Construct Inert form M-form

if statements elif branches and op-
tional else branch.

Exactly two branches

loops for and foreach,
both with optional
while condition.

for, foreach and while loop.

names Locals, params, lexicals
and pre-assigned

Add two: generated names, and single-
use.

expressions Several expression
forms.

In statement context, only MStandalone
and MStandaloneFunction.

assignment one form 4 cases: from an expression, from a func-
tion, from a nested table, and where lvalue
is a tableref.

procedures unique (but version de-
pendent)

version independent; additional fields to
encode args and nargs usage.

Furthermore the following constructs are available only in M-form.

Construct M-form

commands Embedded commans (&onpe("command")) for debugging

DAG pointers MRef, for sharing

loop drivers Computed goto inserted by specializer to unroll statis loops.
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3.5 Options

As partial evaluation is a rather complex process, there is ample room for varia-
tions. MapleMIX supports various options to give the user some control over this.A
The simplest option allows one to declare that a function is PURE, INTRINSIC
or DYNAMIC. One can also control function sharing, how dynamic variables are
propagated, and whether assignments should be inlined (when possible).

4 Techniques

In this section, we deal with the techniques we used in implementing MapleMIX.
If we used a standard technique, this is either mentioned quickly or sometimes that
aspect is not covered at all. We concentrate instead on what we perceive to be either
novel techniques or interesting variations on older techniques.

4.1 Expression Reduction

The expression reducer serves the role of evaluating expressions as far as possible
given the available information stored in the environment. The reducer supports
operations on most Maple data types from simple numbers and strings to lists,
polynomials, higher-order functions, arrays and tables. The implementation of the
reducer is inspired by an online cogen approach to PE as outlined by Sumii and
Kobayashi [9]. The idea is to replace the underlying operators of the language with
smarter ones that correctly handle dynamic arguments. They first proposed this
idea as a solution to the limitations of type-directed partial evaluation. Here we use
the essence of the idea in a syntax-directed online setting. A reduction function
is created for each pure Maple operator which works as follows: if all arguments
are static then apply the underlying Maple operator on the arguments, essentially
handing control over to the Maple interpreter to perform the actual static operation;
otherwise build a dynamic expression and return it. Reduction of static expressions
is thus guaranteed to be identical to the already existing semantics of Maple ex-
pressions.

4.2 Online Approach to Partially Static Data

In the context of Computer Algebra, it is very common to have partially static
data. For a program specializer to produce good results it must use as much static
information as possible. In many situations, while the exact value is not known,
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type information and/or the “shape” of the value might still be statically known.
For example a list may have dynamic elements, however its length might be static.
Avoiding unnecessary approximations is key to preserving static information [23].
Our approach to supporting partially static data is to take the idea of “smart op-
erators” a step further, by extending certain intrinsic functions with the additional
ability to properly handle dynamic terms. Take for example the list [a, b, 2]
where a and b are dynamic; clearly the length of this list 6 does not depend on the
values (or types) of a and b. We can determine the length of the list at reduction
time by examining the structure of the M-form and counting the number of “holes”
for data. In particular, the built-in Maple nops function can be used to return the
number of elements (operands) in a list. We have extended nops with the ability to
return a static result in the case where it is given a partially static list as a dynamic
input. This approach generalizes, and we thus exploit the static information present
within the dynamic representation. Several of Maple’s intrinsic functions (most no-
tably op, degree, and coeff, as well as nops) have been extended in this way
to add support for partially static lists and polynomials. Syntactic constructs such
as indexing and list concatenation have also been extended in a similar way.

In order to propagate dynamic terms through the program they are stored in the
environment alongside static values. When the reducer encounters a variable, it
retrieves its representation from the environment, which may store a static value,
a dynamic representation or not have a binding at all. If the variable is bound to
a dynamic representation then it is substituted. Special care must be taken not to
introduce duplicate computations in this way. A special syntactic form MSubst
is introduced by the reducer to track such substitutions, consisting of the variable
name and the dynamic representation retrieved from the environment, basically rep-
resenting a let insertion. If the dynamic expression is not consumed during further
reduction then the entire MSubst will be output by the reducer. Later, when the
M-form representation of the residual program is being transformed back to inert
form, the dynamic part of the MSubstwill be discarded and the name used instead.

Support for partially static terms has been explored mostly within the context of
offline PE. One approach is to use a binding time analysis (BTA) to determine the
binding times of individual elements of a partially static data structure [7]. Another
approach uses an abstract interpretation as a shape analysis to gather static shape
information as a pre-phase [8]. Our approach is completely online and has the po-
tential to exploit the full information available during specialization. However, it
must be noted that quite a bit of custom support for various dynamic representa-
tions had to be programmed into the reducer in order to achieve good results. This
is a tedious task, and more research is needed to better understand what is involved.
In the context of symbolic computation, our current conjecture is that if the origi-
nal function is applied to the reified (open) term obtained by replacing the dynamic
parts of a partially static by a fresh name, and the result is correct under all sub-

6 The similarity with parametric polymorphism is not accidental!
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stitutions of values for those fresh names, then this is a correct reduction. All of
our implementations follow that pattern, but with a caveat: for example, degree
will not return “the” degree, but rather a guaranteed upper-bound for the degree. In
other cases, like length, this scheme always gives the correct result.

In traditional PE, especially when a BTA is used, it is very common for values to go
from static to dynamic. This can cause a snowball effect in which more and more
constructs become dynamic as specialization progresses. With our approach it is
possible for reduction involving a dynamic term to result in a static value. One side
effect of this approach is that the PE tends to generate residual code which becomes
dead code when dynamic data leads to static results. Such dead code is removed by
a simple post-phase cleanup.

All function calls within the expression must be to functions that are considered
intrinsic. These are pure functions that the specializer will treat as atomic in the
sense that it will never try to specialize them. If a call to an intrinsic function has
all arguments static then the function will be applied at partial evaluation time.
Since any side-effects will go unnoticed it is essential that the function be side-
effect free. Most built-in functions are pure except for some I/O functions such as
print and read. These will not be considered intrinsic but will still be detected
as built-in and so are treated as a special case by the specializer. I/O functions will
be split out of expressions and always residualized. Many non-built-in functions
can also be treated as intrinsic such as curry, which performs partial application.
Some library functions have non-standard semantics such as seq (the function for
sequence comprehensions), which are also treated as special cases by the reducer 7 .
The reducer contains a table of handlers for these “special” functions. For example,
all calls to the eval family of functions (eval, evalb and evalf) are always
residualized.

4.3 Closures

MapleMIX now fully supports closures in the subject programs. Any lexically
nested procedure which contains references to its outer environment is treated as
being essentially static. A new tag, MEssentiallyStatic, which introduces
a new binding time, is introduced to represent this. An MEssentiallyStatic
structure always contains the dynamic representation of a procedure. However, we
know that the only dynamic parts of such a procedure are the lexical references,
which are few – thus the “essentially static”. What is done is that the procedure
definition, instead of being stored as a static element in the environment, is stored
in its dynamic form. Then, whenever an actual call is made to that procedure, the

7 Maple is a language that has “evolved” over 25 years, mostly by non-programming-
language experts and, unsurprisingly, has many constructs which are “special”.
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lexical bindings are looked up in the current environment; if these are static, then
the procedure can be reified as fully static, otherwise it needs to be residualized.

This allows the partial evaluator to support higher-order functions, especially in
the forms that frequently occur in Maple code. The only drawback is that this can
involve a fair bit of reification, which is inefficient, but unavoidable.

4.4 Side Effects and Termination

Pure functional languages are characterized by referential transparency, meaning
that multiple calls to a function with the same arguments will always produce the
same result. This property allows a specialization strategy where the partial eval-
uator does not have to be concerned with the order of specialization of function
points [7]. The presence of side-effects and global state puts a restriction on the spe-
cialization strategy. The ordering of statement execution must be respected during
specialization and be preserved in the residual code [22]. The result is a depth-first
specialization strategy where every time a function call is encountered it must be
specialized immediately. Because of nesting, there may be several functions in the
process of specialization at the same time.

MapleMIX uses a simple function sharing scheme for two purposes: to reuse spe-
cialized functions in cases where multiple calls to the same function with the same
static arguments are encountered, and to avoid termination problems inherent with
recursive procedures. When a function call is encountered its call signature is com-
puted. It will consist of values of static arguments and placeholders for dynamic
ones. If the call signature has not been encountered before then the function is spe-
cialized. The call signature is then saved along with the specialized code. The next
time the same call signature is encountered the specialized code is simply retrieved
and reused.

This strategy also improves termination properties of the partial evaluator as call
signatures are used to help detect static recursion. The depth-first online special-
ization strategy makes it possible for several functions to be in the process of de-
ferred specialization. If one of those functions is recursive (or multiple functions
are mutually recursive) then the problem of infinite specialization arises. The partial
evaluator can tell when a call signature refers to a function that is currently in the
process of being specialized. When such static recursion is detected, a call to the
recursive function is simply residualized. This strategy relies on detection of iden-
tical call signatures, thus if some static value is changing under dynamic control,
infinite specialization is still likely [7].
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4.5 If Statements and the Online Environment

Partial evaluation of an if statement is done by fist reducing the conditional ex-
pression. If it statically reduces to a boolean value then the appropriate branch is
simply fed to the statement sequence specializer. The much more interesting case
is when the conditional reduces to a dynamic expression. The partial evaluator does
not know which branch to follow, so it must follow both.

Handling of if statements is very different than handling if expressions in partial
evaluation of expression oriented languages. There are two main challenges: First,
each branch must be able to mutate the environment independently, leading to the
creation of two likely different environments, and second, code that is below the if
statement must be handled correctly. The first problem can be handled by copying
the environment [22,8]. However, for efficiency reasons we do not wish to create
two environments by copying (all or part of) the initial environment. We also wish
to have a solution that scales to handling nested if statements in a straightfor-
ward manner. Furthermore, code that comes after an if statement may have to be
specialized with respect to two different environments. We have implemented the
online environment specifically with these two challenges in mind.

Our online environment is implemented as a stack of variable bindings. We shall
call each element of this stack a setting. The stack will grow with each branch of
a dynamic conditional. Any modifications to the environment are recorded in the
topmost setting. An environment lookup initiates a linear search for the binding
starting with the topmost setting and working downwards. Thus a binding in a set-
ting will override any bindings of the same name in settings below it. Each setting
maintains a dynamic mask to represent static variables that become dynamic. After
the first branch of a dynamic conditional has modified the environment it can be
trivially restored to its previous state via a simple pop.

Specialization of a dynamic if statement requires that all the code that could ex-
ecute after the if statement be specialized with respect to each branch. In order
to facilitate this, M-form is further translated before specialization into a DAG
(Directed Acyclic Graph) representation. This is especially easy in Maple as the
internal representation for expressions is as DAGs [19]. A pointer is added to the
bottom of each branch that will point to the code that comes below the if state-
ment. The code that comes below is then removed from its original location. This
transformation is then performed recursively on each branch. The result is a DAG
representation in which all code that can be executed after a branch of an if state-
ment can be easily visited by simply following pointers, schematically represented
in Figure 6.
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if B1 then
    if B2 then
        x := 1;

    else
        x := 2;

    end if;
    
else
    x := 3;

end if

   x := x * 10;

print(x);

if B1 then
    if B2 then
        x := 1;
    else
        x := 2;
    end if;
    x := x * 10;
else
    x := 3;
end if
print(x);

Fig. 6. DAGform

4.5.1 Specialization Algorithm

The specialization algorithm for if statements, using the online environment, pro-
ceeds as follows: Specialization of the first branch begins by pushing a new empty
setting onto the environment. All effects of the statements in the first branch are
recorded in this new setting. Simply popping the stack restores the environment
to the state it was in before specializing the first branch. A new empty setting is
then pushed, and the second branch is specialized with respect to the initial envi-
ronment. If we keep a copy of each of these newly popped settings, we can now
easily compare the effects of each branch on the current state. In pseudo-Maple, if
the input was if B then C1 else C2 end if ; S, the algorithm is
Br := r e d u c e (B ) ;
i f t y p e ( Br , ’ dynamic ’ ) then

C1 ’ := g r o w a n d s p e c i a l i z e ( C1 ) ;
i f b o t t o m r e a c h a b l e ( C1 ’ ) then

S1 := g r o w a n d s p e c i a l i z e ( S ) ;
pop ( ) ;

end i f ;
s e t 1 := t o p ( ) ; pop ( ) ;
C2 ’ := g r o w a n d s p e c i a l i z e ( C2 ) ;
s e t 2 := t o p ( ) ;
i f s e t 1 = s e t 2 or not b o t t o m r e a c h a b l e ( C2 ’ ) then

pop ( ) ; c a s e 1
e l s e

S1 := s p e c i a l i z e ( S ) ;
pop ( ) ; c a s e 2

end i f ;
e l s e

# Br i s s t a t i c , r e d u c e p r o p e r b r an c h
end i f ;
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t

Original Code Specialized Code

i f <dynamic> then
i f <dynamic> then

x := 1 ;
p r i n t ( x ) ;

e l s e
x := 2 ;

end i f ;
p r i n t ( x ∗1 0 ) ;

e l s e
x := 3 ;

end i f ;
p r i n t ( x ∗1 0 0 ) ;

i f <dynamic> then
i f <dynamic> then

p r i n t ( 1 ) ;
p r i n t ( 1 0 ) ;
p r i n t ( 1 0 0 )

e l s e
p r i n t ( 2 0 ) ;
p r i n t ( 2 0 0 )

end i f
e l s e

p r i n t ( 3 0 0 )
end i f

Fig. 7. Example of if statement specialization

In the above pseudocode, case1 indicates that the residual code
if B’ then C1’ else C2’ end if ; S1
is produced, while case2 corresponds to
if B’ then C1’; S1 else C2’; S2 end if ; .
The routine bottom reachable ensures that there is no escaping control flow
(like a return or an error), so that S is never unnecessarily specialized. In
other words, it checks that there is at least one edge in the control flow graph which
goes from C1 to S. Duplication of S is avoided in situations where execution of
either branch would effect the environment in the same way. This is common with
error checking code where the body of the if simply has an error statement. In
the situation where each branch produces a different state we get two specialized
versions of S, which results in a high level of polyvariance. The DAG form ensures
that no code is specialized in an invalid environment. An example of the results
of this algorithm (where <dynamic> stands for an arbitrary dynamic boolean
expression) can be seen in Figure 7.

4.5.2 Comparison with other methods

A natural approach to specializing if statements is by merging environments [8].
The initial environment is duplicated by copying it, then each branch of the dy-
namic conditional is specialized. The two environments are then merged at the end
in such a way that only commonalities between the two environments are preserved.
For code like if <dynamic> then x := 1; else x := 2; end if , the two specialization
environments will record different values for x. The merged environment would
then store as much static data as possible such as type, shape or a set of values.
We could store that x is a positive integer or that it may have a value from the
set {1, 2}. This way certain expressions involving x may still be static such as
type(x, integer) or x < 5, while others will be dynamic such as x > 1.
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This approach discards static data by making approximations, which may lead to an
unsatisfactory level of specialization. Furthermore the merging process may be very
complex, it requires copies of environments, and the reducer is more complex. Our
approach does not make approximations and it never copies environments. How-
ever our approach may result in overspecialization in that the differences between
the code specialized in each branch may be minimal.

Offline methods perform a Binding Time Analysis, which is essentially a worst case
analysis. Since it is safe to approximate everything as dynamic and very difficult to
guarantee that a result will be static, any dynamic value tends to propagate through
the program creating a snowball effect. The same is mostly true for online methods
in a functional setting. However in an online imperative setting it is possible for a
variable to change binding time! For example it is possible for a static variable to
become dynamic due to assignment to a dynamic expression or assignment within
a dynamic context. However with our online partial evaluator, it is possible for a
dynamic variable to become static (however unlikely it may be to find code that
does this). For example in
x := <dynamic>; ...; x := 5; the last assignment causes x to be bound to the static
value 5 in the online environment, regardless of the fact that x was previously dy-
namic.

4.6 Tables and rtables

MapleMIX fully supports both tables (i.e. hash tables) and rtables (i.e. various
shaped n-dimensional arrays) as a partially static data-type. Below, we will call
both of these table. Partially static here means that some elements of a table may
be static while others are dynamic. Also tables require special treatment because a
variable of type table is actually a reference to a table. Therefore it is possible for
a function to be side-effecting through its input parameters. Support for tables is
implemented as an extension to the design of the online environment. The environ-
ment will provide as part of its interface methods for manipulating regular variables
and separate methods for manipulating table elements.

Each environment consists of a stack of settings. Bindings for tables will be kept
separate from bindings for regular values. The idea for handling tables is to be able
to represent only part of a table in one particular setting. The complete table may be
rebuilt by starting at the top of the stack and working downwards. The environment
provides methods for directly querying and retrieving the elements of specific table
indices. The point is to avoid traversal or rebuilding of the entire table whenever
possible.

One distinction must be made between tables and rtables: tables have last name
evaluation rules, while rtables have normal evaluation rules.
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4.7 Static Loops

When all the control clauses of a for loop definition are static, the loop may be
unrolled, since in Maple for loops are guaranteed to terminate whenever the body
of the loop does not contain an assignment to the loop index variable. In that latter
case, the entire loop would effectively become dynamic. As MapleMIX is online
and we do not want to perform useless computation and then backtrack, this in-
formation needs to be detected syntactically, which is why assignments to the loop
index is not supported by MapleMIX. This is the only restriction on the body of
loops, all other side-effects are supported.

An interesting challenge arises when we consider the case of dynamic conditionals
within a static loop. Our if statement specialization algorithm relies on the ability
of the specializer to have access to the entire execution path that could occur after
a dynamic if statement, so that this path may be specialized with respect to both
branches. When a conditional is inside a loop then the execution path includes all of
the subsequent iterations of the loop! A dynamic conditional will essentially cause
the path of computations to split. The implementation of the online environment
makes it easy and efficient for the specializer to explore every possible computation
path.

Our solution to allow the computation path of a loop to split is to use a novel on-the-
fly syntax transformation technique. When a static for loop is encountered it is re-
moved and replaced with a set of loop drivers; in effect, we are replacing our loops
by smart gotos! The loop drivers are placed at the end of each DAG path in the body
of the loop. The loop index variable is then set to its initial value in the environment
and the newly transformed loop body is given to the statement sequence specializer.
For example, the Original Code in Figure 8, gets rewritten (in DAG M-form) as:

if d then
    x := x + 1;
    MForFromDriver(   ,   , i, 1, 2, true)
else
    x := x + 2;
    MForFromDriver(    ,   , i, 1, 2, true)
end if;

print(x);

There are two forms of loop drivers, one for for-from loops and one for for-in loops;
as they both work similarly, we will concentrate on the former. The MForFromDriver
consists of 6 pieces of information, namely: a pointer to the top of the loop body, a
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pointer to the code that comes after the loop, the name of the loop index variable,
the by value of the loop, the to value of the loop (i.e. the termination value), and the
while condition. When the specializer encounters a loop driver it will simply evalu-
ate the loop condition and follow the appropriate pointer. Note that the value of the
loop variable is retained in the environment after the loop has been fully unrolled,
as it is legal to refer to this variable in Maple after the loop has ended. If the loop
bounds are such that the loop will never iterate, then the entire loop is eliminated. If
a while condition exists, it is checked on each iteration; if it evaluates to false at any
point then the unrolling is stopped. The while condition must always be statically
reducible to a boolean value. If at any point it is dynamic 8 an error is issued and
specialization is aborted. MapleMIX currently does not support partial unrolling of
a loop.

The result is that the context of the loop is propagated into each computation path
in the body of the loop. The computation path may continue to split as long as
there are dynamic conditionals. The advantages to this approach are a high level
of specialization and the lack of any need to merge environments. The main dis-
advantage is a possible exponential blowup in the size of the residual code. In our
experiments we have not found this to be a problem, in fact we have found that this
scheme works well in situations where a conditional is dynamic on some iterations
and static on others. An example is iterating over a partially static list when the
loop contains a conditional that depends on the binding time of the list elements.
However, the code in Figure 8 would be of size O(2n) if the loop were from 1 to a
static positive integer n.

Original Code Specialized Code

x := 1 ;
f o r i
from 1
to 2
whi le t rue
do

i f <dynamic> then
x := x + 1 ;

e l s e
x := x + 2 ;

end i f ;
end do ;
p r i n t ( x ) ;

i f <dynamic> then
i f <dynamic> then

p r i n t ( 3 )
e l s e

p r i n t ( 4 )
end i f

e l s e
i f <dynamic> then

p r i n t ( 4 )
e l s e

p r i n t ( 5 )
end i f

end i f ;

Fig. 8. Example of dynamic conditional in a static loop

8 It is possible to construct code in which this happens, but we have not encountered such
code used in practice.
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4.8 Dynamic Loops

Dynamic loops pose a significant challenge to specialization. Since it is unknown
how many times a dynamic loop will iterate, it must always be residualized. It
would be unsound to partially evaluate the body of the loop with respect to the
current environment. The problem is that the loop may contain a static assignment
which might be performed an unknown number of times, making the assignment
dynamic.

Partial evaluators for other imperative languages take novel and complex approaches
to analyzing dynamic loop bodies. For example the MATLAB partial evaluator per-
forms an iterative data-flow analysis involving abstract interpretation [8]. MapleMIX
takes a very conservative approach to specialization of dynamic loops. A simple
syntactic analysis is done on the body of the loop in order to detect unsupported
cases. However our approach is simple to implement and still works for many real-
world situations.

The following two cases are considered: First, any assignment statement would
effectively cause the target variable of the assignment to be dynamic. If a target
variable is already dynamic then there is no problem. If a target variable is cur-
rently static then its value must be made available to the residual program before
the loop executes. Its value is then removed from the environment and it becomes
dynamic. Thus, only statically invariant values are maintained in the environment
in that case. The second situation requires an analysis of the entire body of the loop
must be analyzed as well as any of the bodies of the functions that are called (and
so on), to see if there are statements which affect the global state. If the global state
is changed, the loop is not specialized. Besides being highly inefficient this ap-
proach would lead to termination problems when a dynamic loop contained a call
to a recursive procedure. For these practical reasons non-intrinsic function calls are
currently not allowed within dynamic loops.

Consider an iterative, imperative version of the power function.
i t e r p o w := proc ( x , n ) l o c a l temp , i ;

temp := 1 ;
f o r i from 1 to n do

temp := temp ∗ x ;
end do ;
re turn temp ;

end proc :

When specialized with respect to n = 5 the loop is static and is unrolled a fixed
number of times, as explained in the previous section, with the resulting code being
the obvious 6 sequential assignments. When specialized with respect to x = 5
the results are quite different. The loop is now dynamic because the value of n is
unknown. The first assignment to temp is initially removed by the specializer. Then
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when the loop body is analyzed it becomes known that the static value of the temp
variable is needed and so a new assignment statement is generated and inserted
before the loop. While loops are treated in a similar manner to for loops except
unrolling will never occur.
i t e r p o w n := proc ( n ) l o c a l temp1 , i 1 ;

temp1 := 1 ;
f o r i 1 to n do

temp1 := 5 ∗ temp1
end do ;
temp1

end proc

4.9 Static Data and Lifting

Sometimes a static value must be embedded within a dynamic context, this process
is known as lifting. Traditionally this is done by inserting a textual representation of
the value within the residual program. This is easily achieved for simple types such
as integers and strings but for more complex types lifting may be difficult or even
not possible [8]. Structured types may be difficult to rebuild, and may not have a
representation that can occur on one line.

Fortunately it is possible for MapleMIX to sidestep the problem of lifting static
data in most situations. MapleMIX does not generate residual code as text, instead
it generates an inert form representation that is converted by Maple itself directly
into an active (executable) internal representation. Inert form provides a very handy
construct Inert VERBATIM for embedding any Maple value within an inert rep-
resentation.
> F r o m I n e r t (

Iner t SUM ( Inert POWER ( Inert NAME ( ” x ” ) , Ine r t INTPOS ( 2 ) ) ,
Iner t INTNEG ( 5 ) ) ) ;

x ˆ2 − 5

> F r o m I n e r t ( Iner t SUM ( Inert VERBATIM ( x ˆ 2 ) ,
Inert VERBATIM ( −5 ) ) ) ;

x ˆ2 − 5

All static data is represented in M-form by wrapping it in an MStatic construc-
tor. The FromM translator will translate MStatic directly to Inert VERBATIM,
making the embedding of static data in the residual program an extremely simple
operation. Complex types such as static tables are simply embedded directly into
the residual program. Allowing a certain flexibility in the output language can often
be a convenient way to solve challenging problems in partial evaluation.
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5 Results

We show some MapleMIX results. We show examples which we felt representative
of our successes. Additional examples can be found in [5], and in the second au-
thor’s Master’s Thesis [6]. We cannot yet report on a truly broad evaluation of our
techniques as “typical” Maple library code as we only recently were able to support
essentially the full language, although we still have work to do to support the se-
mantics of more builtin functions, constants and predefined environment variables.
However, MapleMIX seems to have now reached the point where implementing
these features looks straightforward if somewhat tedious, rather than daunting.

Listing 1. In-place QuickSort
swap := proc (A, x , y ) l o c a l temp ;

temp := A[ x ] ; A[ x ] := A[ y ] ; A[ y ] := temp ;
end proc :

q u i c k s o r t := proc (A, m, n , piv , comp ) l o c a l p ;
i f m < n then

p := p a r t i t i o n (A, m, n , piv , comp ) ;
q u i c k s o r t (A, m, p−1, piv , comp ) ;
q u i c k s o r t (A, p +1 , n , piv , comp ) ;

end i f ;
end proc :

p a r t i t i o n := proc (A, m, n , p i v o t , compare )
l o c a l p i v o t I n d e x , p i v o t V a l u e ,

s t o r e I n d e x , i , temp ;
p i v o t I n d e x := p i v o t (A, m, n ) ;
p i v o t V a l u e := A[ p i v o t I n d e x ] ;
swap (A, p i v o t I n d e x , n ) ;
s t o r e I n d e x := m;
f o r i from m to n−1 do

i f compare (A[ i ] , p i v o t V a l u e ) then
swap (A, s t o r e I n d e x , i ) ;
s t o r e I n d e x := s t o r e I n d e x + 1 ;

end i f ;
end do ;
swap (A, n , s t o r e I n d e x ) ;
re turn s t o r e I n d e x ;

end proc :

5.1 Quicksort

There are two approaches when attempting to write a program that solves a fam-
ily of computational problems; write a family of specific subprograms for each
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problem, or write one generic program that solves all the problems. The generic
program is often easier to write, maintain and extend. However it will not be as
efficient as the specialized programs. Listing 1 presents an example of a parame-
terized in-place quicksort algorithm. Two design decisions have been abstracted as
functional parameters: the choice of pivot, which effects the complexity properties
of the algorithm, and the choice of comparison function.

Listing 2. Specialized QuickSort
q u i c k s o r t 1 := proc (A, m, n )

l o c a l p i v o t I n d e x 1 , p i v o t V a l u e 1 , temp1 ,
s t o r e I n d e x 1 , i1 , temp2 , temp3 , p ;

i f m < n then
p i v o t I n d e x 1 := n ;
p i v o t V a l u e 1 := A[ p i v o t I n d e x 1 ] ;
temp1 := A[ p i v o t I n d e x 1 ] ;
A[ p i v o t I n d e x 1 ] := A[ n ] ;
A[ n ] := temp1 ;
s t o r e I n d e x 1 := m;
f o r i 1 from m to n − 1 do

i f A[ i 1 ] <= p i v o t V a l u e 1 then
temp2 := A[ s t o r e I n d e x 1 ] ;
A[ s t o r e I n d e x 1 ] := A[ i 1 ] ;
A[ i 1 ] := temp2 ;
s t o r e I n d e x 1 := s t o r e I n d e x 1 + 1

end i f
end do ;
temp3 := A[ n ] ;
A[ n ] := A[ s t o r e I n d e x 1 ] ;
A[ s t o r e I n d e x 1 ] := temp3 ;
p := s t o r e I n d e x 1 ;
q u i c k s o r t 1 (A, m, p − 1 ) ;
q u i c k s o r t 1 (A, p + 1 , n )

end i f
end proc

Function qs1 which calls the quicksort function with static parameters for the
pivot and compare functions. The given pivot function will return the index of the
last element of the section of the array that is being sorted. Maple’s own built-in
<= function is used as the compare function.
qs1 := proc (A, m, n ) l o c a l p , c ;

p := (A, m, n ) −> n ; c := ‘ <= ‘;
q u i c k s o r t (A, m, n , p , c )

end proc :

Running MapleMIX on qs1 produces a highly specialized result as can be seen in
Listing 2. All non-recursive function calls have been in-lined and the higher order
functional parameters have been integrated into the residual program at their points
of use. The optimizations lead to a 500% performance increase.
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Figures 9 and 10 show an example of results of timing tests of both the original and
the specialized versions of quicksort (as given by Maple’s profile function).
Each algorithm was tested on an array of 10000 elements where each element is
a random integer in the range 1..5000. The specialized quicksort shows a huge
performance gain of almost 500 percent, most likely due to the elimination of the
overhead involved in the function calling mechanism.

function depth calls time time % bytes

partition 1 7044 3.285 69.61 46494668

swap 1 90928 0.859 18.20 25116568

quicksort 32 14089 0.575 12.18 12445516

qs1 1 1 0.000 0.00 716

total: 35 112062 4.719 100.00 84057468

Fig. 9. Timing results for generic quicksort qs1

function depth calls time time % bytes

quicksort 1 32 14185 0.953 100.00 23724852

total: 32 14185 0.953 100.00 23724852

Fig. 10. Timing results for specialized quicksort 1

5.2 Residual Theorems

All CASes use generic solutions in their approach to certain problems. For exam-
ple, when asked for the degree of a polynomial, degree(a∗xˆ2 + b∗x + c), Maple will
respond with 2 as an answer. However this answer ignores the case when a = 0. If
that expression is viewed as a polynomial in the domain Z[a, b, c][x], then Maple’s
answer is indeed correct. If instead one were to view it as a parametric polynomial
in Z[x] with parameters a, b, c ∈ C, this becomes a so-called generic solution, in
other words, correct except on a set of co-dimension at least 1. Interestingly enough
this is termed the specialization problem [24], and is encountered in any parametric
problem in which certain side-conditions on the parameters must hold so that the
answer to the global problem is correct. In particular we are looking for precise
answers of the following form:

degree(a · x2 + b · x + c, x) =


2 a 6= 0

1 a = 0 ∧ b 6= 0

0 otherwise.

In order to use partial evaluation toward this goal, one must first be willing to
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change the representation of answers. In our case we will use a residual program
to represent the answer to a parametric problem, as programs can be a better repre-
sentation of answers than expressions for many tasks. In our encoding of answers
the if-then-else statement will be used to represent the cases. The next list-
ing shows a program that computes the degree of a polynomial. It is safe to use
Maple’s built-in degree function because it will always return a conservative an-
swer as explained above.
c o e f f l i s t := proc ( p ) l o c a l d , i ;

d := d e g r e e ( p , x ) ;
re turn [ seq ( c o e f f ( p , x , d−i ) , i = 0 . . d ) ] ;

end proc :

mydegree := proc ( p , v ) l o c a l l s t , i , s ;
l s t := c o e f f l i s t ( p , v ) ; s := nops ( l s t ) ;
f o r i from 1 to s do

i f l s t [ i ] <> 0 then return s−i end i f ;
end do ;
re turn − i n f i n i t y ;

end proc :

In order to use PE to extract the cases we must treat the polynomial coefficients as
dynamic variables. Here most of the structure of the polynomial is static so a large
amount of specialization is possible. Our treatment of partially static data structures
is crucial toward getting a suitable result. In particular the coeff function has been
extended in the reducer to be able to return the dynamic coefficients of the partially
static polynomial. The function
goal :=(a ,b,c)−>mydegree(a∗xˆ5+b∗x+c, x) when called directly (with symbols for
a, b, c) will return 5, but residualizes to
proc ( a , b , c )

i f a <> 0 then 5
e l i f b <> 0 then 1
e l i f c <> 0 then 0
e l s e − i n f i n i t y end i f

end proc

5.3 Integration

Listing 3 shows a bit of code that we may expect to find somewhere in a symbolic
integrator. While actual integration code tends to be much more complex, the code
below is representative enough to illustrate our point. This code takes as input a
polynomial represented as a list of monomials, each of which are represented as a
coefficient and a pure power. We then use a sub-function to integrate pure powers of
a variable. Note that this sub-function contains calls to two large pieces of Maple
code: ln and int itself. In the first case, we have to tell the partial evaluator to
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always residualize code for ln (i.e. the partial evaluator does not look at the code,
although this could result in calls to ln(1) being residualized). In the second case,
there is nothing to do as this branch is never taken, and thus never examined.

Listing 3. Mock integrator
i n t p o w := proc ( i , v a r )

i f op ( 1 , i )= v a r then
i f op ( 2 , i )=−1 then

l n ( v a r )
e l s e

v a r ˆ ( op ( 2 , i ) + 1 ) / ( op ( 2 , i ) + 1 )
end i f

e l s e
i n t ( i , v a r )

end i f ;
end proc :

i n t s u m := proc ( l , v a r ) l o c a l r e s , x , i ;
r e s := 0 ;
f o r i from 1 to nops ( l ) do

x := op ( i , l ) ;
r e s := r e s + x [ 1 ]∗ i n t p o w ( x [ 2 ] , v a r ) ;

end do ;
r e s ;

end proc :

And, as expected, the result shows the cases we expect, depending on whether
n = −1 or not. As far as mathematical correctness goes, this result is frankly better
than the output of any CASes we know; Derive’s “correct in the limit” answer of
xn+1/(n + 1) − 1/(n + 1) is nice, but difficult to deal with since it is an inten-
sional rather than extensional result (i.e. one cannot just “plug in” values of n, the
expressions always have to be interpreted via limits).

Listing 4. Integrator result
g o a l := proc ( n ) l o c a l x ;

i n t s u m ( [ [ 5 , x ˆ 2 ] , [−7 , x ˆ n ] , [ 2 , x ˆ ( −1 ) ] ] , x )
end proc :

r e s u l t := proc ( n ) l o c a l m1 , re s1 , x ;
i f n = −1 then

m1 := l n ( x )
e l s e

m1 := x ˆ ( n + 1 ) / ( n + 1)
end i f ;
r e s 1 := 5 ∗ x ˆ 3 / 3 − 7 ∗ m1 ;
r e s 1 + 2 ∗ l n ( x ) ;

end proc
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It is also worthwhile noting that automatic expression arithmetic will take care of
the cases where n = 2 or n = −1, and the resulting expression will have the correct
terms, so that no additional cases need to be treated. In other words, if we are willing
to shift our representation to code instead of expressions, then our straightforward
algorithms already contain all the necessary information for all the cases, which a
partial evaluator can “dig out”.

5.4 Generic Linear Algebra

After experimenting with very generic programming [16], Monagan et al. [25] im-
plemented a simpler mechanism for generic linear algebra in Maple, and made the
resulting code publicly available [26]. From this, we extracted the code for matrix
multiplication, as well as the implementation of Berkowitz’s Algorithm.

In Appendix B, we show the full code for generic matrix multiplication, the com-
mands necessary to specialize it to the integers, and the resulting code. It should be
clear that all the overhead has been eliminated. For example, on 200x200 matrices,
the specialized version was 2.1 times faster, and used 5 times less memory; this
gets asymptotically better as the sizes of the matrices is increased.

The results for the much more complex Berkowitz Algorithm are similar, so we
omit the details.

5.5 Further examples

We have many more examples of increasingly large pieces of code which can
be successfully handled by MapleMIX. We are in the process of building a web
site [27] to make these examples easily available.

There we also show variations on one of the most interesting examples from [5],
namely Gaussian Elimination on a matrix with some generic elements, yielding
an answer (as code) which contains exactly the right conditionals for all of the
subcases. It involves 2 static loops over a partially static data-structure, where the
inner loop contains a dynamic if statement. However, using a completely vanilla
Gaussian Elimination routine and our partial evaluator, we were able to reproduce
the results of [24] without having to invent a specialized algorithm!

We also show a new example, that of the reduction of a code generator for the 4
Weierstrass functions (which are doubly-elliptic functions, quite important in cer-
tain areas of mathematics). These 4 routines were so similar that, in the Maple
library, the first author used lexically scoped higher-order functions to “generate”
them. While elegant, the drawback with this approach is having to dereference and
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execute static code at run-time. We show how MapleMIX, when applied to the gen-
erator, eliminates this overhead and automatically residualizes these 4 routines to
what had previously been hand-written code with considerable duplication.

As a more classical test of our partial evaluator, we also wrote an interpreter (in
Maple) for a small imperative language with recursive calls. Our partial evaluator
was able to remove almost all of the interpreter overhead (only environment ma-
nipulation remained); in particular, it was able to specialize a recursive (purely
functional) binary powering function into an equivalent straight-line imperative
program when given a static n. A simple static single-use post-processor could
be written to eliminate all remaining overhead. Furthermore, in the embedded lan-
guage, we implemented a self-interpreter; in fact, this 2nd level interpreter actually
implements a slightly richer language. We were able to reduce simple expressions
in this doubly-nested situation as well, and remove the double overhead. This ex-
ample can also be found at [27].

6 Conclusion

MapleMIX is a syntax-directed online partial evaluator which processes a form
of abstract syntax we call M-form. This M-form is designed to translate Maple’s
program representation into one more suited to the needs of a specializer. Contrary
to most other approaches, our intermediate form contains more primitives than the
language itself, which we believe has greatly contributed to the modularity and
extensibility of our online partial evaluator.

MapleMIX uses highly online strategies when specializing statements. The online
environment has been designed with the depth-first strategy and dynamic condition-
als in mind. Transformation to DAG form and a novel approach to treating static
loops by performing on-the-fly syntax transformations allows precise specialization
without the need to discard static information or merge environments.

We believe that we have achieved our goals of writing an effective online partial
evaluator for a large, dynamic language like Maple. It allows us to write more
generic yet still efficient code, as well as being able to extract more information out
of specific algorithms in the form of what we call “residual theorems”.

We are well on our way to apply our partial evaluator to substantial pieces of Maple
library code. We are aware of a few Maple oddities whose semantics we have not
thoroughly tested (like all the corner cases of last-name-evaluation rules), but by
and large we seem to have implemented the semantics of the language. To get good
results, we now need to attack those builtin routines, constants and environment
variables which have special semantics. We estimate that once we have roughly
100 of the 217 builtins made “smart”, as well as the constants listed in Figure A.1
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and the environment variables in Figure A.2, we should get very good results Fur-
thermore, it does appear that this should result in some efficiency gains (because
of generic code being specialized) as well as “information extraction” from non-
parametric routines. All the code and a substantial test suite is available at [27].
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A Builtins

Figure A.1 lists some of the more common constants, in other words reserved
names which are not associated to a value but rather have nominal semantics. Fig-
ure A.2 lists the more common environment variables; note that any variable whose
name starts with the charaters Env are automatically environment variables as
well, and about 100 of them are in common use in Maple. Finally, Figure A.3 gives
a list of all the functions which are built directly into Maple’s kernel, and whose
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ModuleApply, ModuleLoad, ModuleID, ModulePrint, lasterror,

undefined, remember, infinity, pos infinity, neg infinity,

real infinity, cx infinity, Pi, gamma, Catalan, @, @@, in, I,

O, true, false, FAIL, And, Not, Or, Float, SFloat, Fraction

Fig. A.1. Selected constants
operational semantics [in the partially static case] must be directly implemented in
the partial evaluator.

Digits, Order, Normalizer, NumericEventHandlers, Rounding,

Testzero, UseHardwareFloats, ans, printlevel

Fig. A.2. environment variables
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‘$‘, ‘*‘, ‘**‘, ‘+‘, ‘..‘, ‘<‘, ‘<=‘, ‘<>‘, ‘=‘, ‘>‘,

‘>=‘, ‘?()‘, ‘?[]‘, ASSERT, Array, ArrayOptions, CopySign,

DEBUG, Default0, DefaultOverflow, DefaultUnderflow,

ERROR, EqualEntries, EqualStructure, FromInert, Im,

MPFloat, MorrBrilCull, NextAfter, Normalizer, NumericClass,

NumericEvent, NumericEventHandler, NumericStatus, OrderedNE,

RETURN, Re, SDMPolynom, SFloatExponent, SFloatMantissa,

Scale10, Scale2, SearchText, TRACE, ToInert, Unordered,

UpdateSource, ‘[]‘, ‘ˆ‘, jvm, maplet, treeMatch, unify,

xml, abs, add, addressof, alias, anames, ‘and‘, andmap,

appendto, array, assemble, assigned, attributes, bind,

call external, callback, cat, coeff, coeffs, conjugate,

convert, crinterp, debugopts, define external, degree,

denom, diff, disassemble, divide, dlclose, ‘done‘, entries,

eval, evalb, evalf, ‘evalf/hypergeom/kernel‘, evalgf1,

evalhf, evaln, expand, exports, factorial, frem, frontend,

gc, genpoly, gmp isprime, goto, has, hastype, hfarray,

icontent, ‘if‘, igcd, ilog10, ilog2, ‘implies‘, indets,

indices, inner, ‘int/series‘, ‘intersect‘, iolib, iquo,

irem, is gmp, isqrt, ‘kernel/transpose‘, kernelopts, lcoeff,

ldegree, length, lexorder, lhs, lprint, macro, map, map2,

max, maxnorm, member, min, ‘minus‘, modp, modp, modp1,

modp2, mods, mul, mvMultiply, negate, nops, normal, ‘not‘,

numboccur, numer, op, ‘or‘, order, ormap, overload, parse,

piecewise, pointto, print, ‘quit‘, readlib, reduce opr,

remove, rhs, rtable, rtableInfo, rtable convolution,

rtable eval, rtable histogram, rtable indfns, rtable is zero,

rtable normalize index, rtable num dims, rtable num elems,

rtable options, rtable redim, rtable scale, rtable scanblock,

rtable sort indices, rtable zip, savelib, searchtext,

select, selectremove, seq, series, setattribute, sign,

sort, ssystem, ‘stop‘, streamcall, subs, ‘subset‘, subsop,

substring, system, table, taylor, tcoeff, time, timelimit,

traperror, trunc, type, typematch, unames, unbind, ‘union‘,

userinfo, writeto, ‘xor‘, ‘{}‘, ‘||‘, Digits, Order,

Normalizer, NumericEventHandlers, Rounding, Testzero

Fig. A.3. Built-in routines
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B Generic Linear Algebra

We present an implementation (verbatim from [26]) of a generic matrix-matrix
multiplication algorithm.
M a t r i x M a t r i x M u l t i p l y O p e r a t i o n s := [ ‘ 0 ‘ , ‘ + ‘ : : p r o c e d u r e , ‘ ∗ ‘ : : p r o c e d u r e ] :

H a s O p e r a t i o n := proc (D, f )
i f t y p e (D, t a b l e ) then a s s i g n e d (D[ f ] ) e l s e member ( f , [ e x p o r t s (D ) ] ) f i ;

end :

# Type check
Gener icCheck := proc ( P , T ) l o c a l D, f , n , t ;

i f not t y p e ( P , i n d e x e d ) or nops ( P)<>1 then
error ”\%1 i s not i n d e x e d by a domain ” , P f i ;

D := op ( 1 , P ) ;
i f not t y p e (D, { t a b l e , ‘ module ‘ } ) then

error ” domain must be a t a b l e or module ” f i ;
f o r f in T do

i f t y p e ( f , ‘ : : ‘ ) then n := op ( 1 , f ) ; t := op ( 2 , f ) ;
e l i f t y p e ( f , symbol ) then n := f ; t := f a l s e ;
e l s e error ” i n v a l i d o p e r a t i o n name : \%1” , f ;
f i ;
i f not H a s O p e r a t i o n (D, n ) then error ” m i s s i n g o p e r a t i o n : \%1” ,n ; f i ;
i f t <> f a l s e and not t y p e (D[ n ] , t ) then

error ” o p e r a t i o n has wrong t y p e : \%1” , f f i ;
od ;
D

end :

M a t r i x M a t r i x M u l t i p l y := proc (A : : Matr ix , B : : Ma t r i x )
l o c a l D, n , p ,m, C , i , j , k ;
D := Gener icCheck ( procname , M a t r i x M a t r i x M u l t i p l y O p e r a t i o n s ) ;
i f op ( 1 ,A)[2]<>op ( 1 ,B ) [ 1 ] then error

” f i r s t m a t r i x column d imens ion (\%1)
<> second m a t r i x row d imens ion (\%2)” ,

op ( 1 ,A) [ 2 ] , op ( 1 ,B ) [ 1 ] ; f i ;
n , p := op ( 1 ,A ) ;
m := op ( 1 ,B ) [ 2 ] ;
C := Ma t r i x ( n ,m) ;
f o r i to n do

f o r j to m do
C[ i , j ] := D[ ‘ + ‘ ] ( seq (D[ ‘ ∗ ‘ ] (A[ i , k ] ,B[ k , j ] ) , k = 1 . . p ) )

od
od ;
C

end :
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If we wish to specialize this to the integers, then via
( Z [ ‘ 0 ‘ ] , Z [ ‘ 1 ‘ ] , Z [ ‘ + ‘ ] , Z[ ‘ − ‘ ] ,Z [ ‘ ∗ ‘ ] , Z [ ‘ = ‘ ] ) :=

( 0 , 1 , ‘ + ‘ , ‘ − ‘ , ‘∗ ‘ , ‘ = ‘ ) ;

g o a l := proc ( x , y )
M a t r i x M a t r i x M u l t i p l y [ Z ] ( x , y ) ;

end proc ;

We get the expected
proc ( x , y ) l o c a l n1 , p1 , m6 , C1 , i1 , j 1 ;

i f op ( 1 , x ) [ 2 ] <> op ( 1 , y ) [ 1 ] then
error ” f i r s t m a t r i x column d imens ion (\%1)

<> second m a t r i x row d imens ion (\%2)” ,
op ( 1 , x ) [ 2 ] , op ( 1 , y ) [ 1 ]

end i f ;
n1 , p1 := op ( 1 , x ) ;
m6 := op ( 1 , y ) [ 2 ] ;
C1 := M at r i x ( n1 , m6 ) ;
f o r i 1 to n1 do

f o r j 1 to m6 do
C1 [ i1 , j 1 ] := ‘+ ‘ ( seq ( x [ i1 , k ]∗ y [ k , j 1 ] , k = 1 . . p1 ) )

end do
end do ;
C1

end proc ;
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