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1 Introduction

In high-performance symbolic and numeric computing, there is a well-known
issue of balancing between maximal performance and the level of abstraction
at which code is written. Widely used Gaussian Elimination (GE) – the run-
ning example of our paper – is typically presented in textbooks as a closely
related family of algorithms for solving simultaneous linear equations, LU ma-
trix decomposition, and computing the determinant and the rank of a matrix.
All members of the family share the same pattern of applying elementary row
operations to rows of the matrix in a particular order. The individual algo-
rithms differ in their output, in application of pivoting, in algebraic domain
and the use of full division. Modern architectures demand further divisions of
the family for particular matrix layouts, e.g., sparse or tiled.
A survey [1] of Gaussian Elimination implementations in the industrial pack-
age Maple [2] found 6 clearly identifiable aspects and 35 different implemen-
tations of the algorithm, as well as 45 implementations of directly related
algorithms such as LU decomposition, Cholesky decomposition, and so on.
We could manually write each of these implementations, optimizing for par-
ticular aspects and using cut-and-paste to “share” similar pieces of code. Or
we can write a very generic procedure that accounts for all the aspects with
appropriate abstractions [3,4]. The abstraction mechanisms however – be they
procedure, method or a function call – have a significant cost, especially for
high-performance numerical computing [1]. Eliminating this abstraction over-
head involves either complex analyses or domain-specific knowledge (or both!)
[5–7], and so we can not rely on a general purpose compiler to assuredly per-
form such optimizations.
A more appealing approach is generative programming [8–14]. The approach
is not without problems, e.g., making sure that the generated code is well-
formed. This is a challenge in string-based generation systems, which generally
do not offer any guarantees and therefore make it very difficult to determine
which part of the generator is at fault when the generated code cannot be
parsed. Other problems are preventing accidental variable capture (so-called
hygiene [15]) and ensuring the generated code is well-typed. Lisp-style macros,
Scheme hygienic macros, the camlp4 preprocessor [16], C++ template meta-
programming, and Template Haskell [17] solve some of the above problems. Of
the widely available maintainable languages, only MetaOCaml [18,19] solves
all of the above problems, including the well-typing of both the generator and
the generated code [20,21].
But more difficult problems remain. Is the generated code optimal? Do we still
need post-processing to eliminate common subexpressions, fold constants, and
remove redundant bindings? Is the generator readable? Does it bear resem-
blance to the original algorithm? Is the generator extensible? Are the aspects
truly modular? Can we add another aspect or another instance of the existing
aspect without affecting the existing ones? Finally, can we express domain-
specific knowledge (for instance one should not attempt to use full division
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when dealing with matrices of exact integers, nor is it worthwhile to use full
pivoting on a matrix over Q)?
MetaOCaml is purely generative: generated code can only be treated as a black
box – in other words, it cannot be inspected nor can it be post-processed (i.e.,
no intensional analysis). This approach gives a stronger equational theory [22],
and avoids the danger of creating unsoundness [21]. Furthermore, intensional
code analysis essentially requires one to insert both an optimizing compiler
and an automated theorem proving system into the code generating system
[23,5,24,6]. While this is potentially extremely powerful and an exciting area
of research, it is also extremely complex, which means that it is currently more
error-prone and difficult to ascertain the correctness of the resulting code.
Therefore, in MetaOCaml, code must be generated just right (see [21] for
many simple examples). For more complex examples, new techniques are ne-
cessary, for example abstract interpretation [25]. But more problems remain
[7]: generating binding forms (“names”) when generating loop bodies or con-
ditional branches, and making continuation-passing style (CPS) code clear.
Many authors understandably shy away from CPS code as it quickly becomes
unreadable. But this is needed for proper name generation. To be able to build
modular code generators, three important problems remain: compositionality,
expressing dependencies, and integration of domain-specific knowledge.
In this paper, we report on our continued progress [26] 2 in using code gen-
eration for scientific (both numeric and symbolic) software. We will use the
algorithm family of Gaussian Elimination, applied to perform LU decomposi-
tion and linear system solving, as our running examples to demonstrate our
techniques. Specifically, our contributions are:
• Extending a let-insertion, memoizing monad of [25,27] for generating con-

trol structures such as loops and conditionals. The extension is non-trivial
because of control dependencies and because let-insertion, as we argue, is a
control effect on its own: for example let x = exp in ... has a different
effect within a conditional branch.

• Implementation of the perform-notation (patterned after the do-notation
of Haskell) to make monadic code readable.

• Use of functors (including higher-order functors) to modularize the genera-
tor, express aspects (including results of various types) and insure compos-

ability of aspects even for aspects that use state and have to be accounted
for in many places in the generated code.

• Encode domain-specific knowledge in the generators so as to catch domain-

2 We describe here a new version of our generator dealing with the complete LU
decomposition algorithm, as well as linear solving. We worked out previously miss-
ing aspects of in-place updates, representing permutation matrices, dealing with
augmented input matrix, and back-propagation. We have changed the representa-
tion of domain-specific knowledge about permissible compositions of aspects. Also
included is a careful description of all the aspects involved, as well as documenting
our development methodology for highly parametric scientific software.
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specific instantiation errors at generation time.
• Provide a thorough classification of the family of Gaussian Elimination al-

gorithms.
We also used the same technology to implement a Runge-Kutta solver for
ordinary differential equations, as well as a reimplementation of the FFT al-
gorithm from [25]. The technology presented here was amply sufficient for
these implementations. Since our current implementations of these algorithms
are rather straightforward compared to our versions of LU decomposition, we
will not mention them further (the code is available at [28]).
The rest of this paper is structured as follows: The next section gives an
overview of the design space of Gaussian Elimination algorithms (and their
application to LU and linear system solving). §3 introduces code generation in
MetaOCaml, the problem of name generation, and the continuation-passing
style (CPS) as a general solution. We also present the key monad and the issues
of generating control statements. For the sake of reference, in §4 we present a
particular Gaussian Elimination algorithm, a hand-written implementation of
the standard textbook pseudo-code. §5 describes the use of the parametrized
modules of OCaml to encode all of the aspects of our algorithm family as
separate modules. We discuss related work in §6 and outline future work.
In our conclusion (§7) we comment on programming with aspects and sum
up our guiding methodology. Appendices give samples of the generated code,
available in full at [28].

2 The design space

Before investigating implementation approaches, it is worthwhile to carefully
study the design space involved. A preliminary study [1] revealed a number of
aspects of the family of Gaussian Elimination algorithms. In the present work,
we outline a number of additional aspects involved in the (related) family of LU
decomposition algorithms. These will first be presented in a somewhat ad hoc
manner, roughly corresponding to the order in which they were “discovered”.
We then reorganize them into groups of semantically related aspects to form
the basis of our design.
Throughout, we assume that the reader is familiar with the basic LU decom-
position algorithm, which factors an invertible matrix A into a unit lower
triangular matrix L and (usually) an upper triangular matrix U , such that
A = LU . Pivoting adds a unitary matrix P such that the factorization is now
A = PLU . The case of numeric matrices is well covered in [29]. When A is
singular, one can still get a PLU decomposition with L remaining unit lower-
triangular. However, U is no longer upper triangular but rather “staggered”
in the upper triangle.
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2.1 Aspects

We reuse the English word “aspect” for the various facets of the family of
Gaussian Elimination algorithms. While our use shares the spirit of aspect-
oriented programming (AOP) [30], our implementation methodology is radi-
cally different 3 . We firmly believe that our typed generative methodology is
better suited to functional programming, compared to attempts to graft the
program-trace-based methodology of object-oriented versions of AOP.
At this point in time, it is better to think of aspects as purely design-time
entities. Here we are firmly influenced by Parnas’ original view of modules
and information hiding [33] as well as his view of product families [34], and by
Dijkstra’s ideas on separation of concerns [35]. To apply these principles, we
need to understand what are the changes between different implementations,
and what concerns need to be addressed. We also need to study the degree to
which these concerns are independent.
The various aspects listed below all come from variations found in actual
implementations (in various languages and settings).
(1) Domain: the (algebraic) domain of matrix elements. Some implementa-

tions were very specific (Z, Q, Z
p
, Zp [α1, . . . , αn] , Z [x], Q (x), Q [α], and

floating point numbers (F) for example), while others were generic for
elements of a field, multivariate polynomials over a field, or elements of a
division ring with possibly undecidable zero-equivalence. In the roughly
85 pieces of code we surveyed, 20 different domains were encountered.

(2) Representation of the matrix: Whether the matrix was represented
as an array of arrays, a one-dimensional array with C or Fortran index-
ing styles, a hash table, etc. Efficient row exchanges, if available for a
particular representation, were sometimes used.

(3) Fraction-free: Whether the algorithm is allowed to use unrestricted di-
vision, or only exact (remainder-free) division.

(4) Length measure (for pivoting): For stability reasons (whether numer-
ical or coefficient growth), if a domain possesses an appropriate length
measure, it was sometimes used to choose an “optimal” pivot. Not all
domains have such a measure.

(5) Full division: Whether the input domain supports full division (i.e. is a
field or pretends to be (F)) or only exact division (i.e. a division ring).

(6) Domain normalization: Whether the arithmetic operations of the base
domain keep the results in normal form, or whether an extra normaliza-
tion step is required. For example, some representations of polynomials
require an extra step for zero-testing.

(7) Output choices: Just the reduced matrix (the ‘U’ factor) or both L
and U factors. The output choices also include the rank, the determi-
nant, and the sequence of pivots. For example, Maple’s LinearAlgebra:-

3 However it seems that we are closer to the original ideas of AOP [31,32] which
were also concerned with scientific software.
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LUDecomposition routine has 26+25+22 = 100 possible outputs, depend-
ing on whether one chooses a PLU , PLUR or Cholesky decomposition.
We chose to only consider PLU for now.

(8) Rank: Whether to explicitly track the rank of the matrix as the algorithm
proceeds.

(9) Determinant: Whether to explicitly track the determinant of the matrix
as the algorithm proceeds.

(10) Code representation: the form and the language for the generated code
(OCaml, C, Fortran, etc.). A degenerate case, useful for testing, is for the
generator to run the algorithm directly (albeit with great abstraction
overhead).

(11) Zero-equivalence: Whether the arithmetic operations require a special-
ized zero-equivalence routine. For certain classes of expressions, it turns
out to be convenient to use a zero-equivalence test that is separate from
the domain normalization. This is usually the case when zero-equivalence
is formally undecidable but semi-algorithms or probabilistic algorithms
do exist. See [36] for an example.

(12) Pivoting: Whether to use no, column-wise, or full pivoting.
(13) Augmented Matrices: Whether all or only some columns of the matrix

participate in elimination.
(14) Pivot representation: Whether the pivot is represented as a list of row

and column exchanges, as a unitary matrix, or as a permutation vector.
(15) Lower matrix: whether the matrix L should be tracked as the algorithm

proceeds, reconstructed at the end of the algorithm, or not tracked at all.
(16) Input choices: Grouping all the potential choices of inputs – currently

only augmented matrices require an extra input.
(17) Packed: Whether the output matrices L and U are packed into a single

matrix for output.
The aspects in the following group have also been observed in practice but we
have not yet implemented them:
(18) Logging, a classical cross-cutting concern.
(19) Sparsity: If a matrix is known to be sparse, at least the traversal should

be sparse. Maximal preservation of the sparsity is desirable.
(20) Other structure: If a matrix is known in advance to be real symmetric

tri-diagonal, LU decomposition can be done in O(n2) rather than O(n3)
time, at an additional O(n) storage cost.

(21) Warnings: In a domain with only heuristic zero testing, it is customary
to issue a warning (or otherwise log) when a potentially zero pivot is
chosen.

(22) In-place: offering an option of in-place decomposition, re-using the input
matrix as the storage for the output.

(23) Error-on-singular: Raise an exception when the input matrix is (near)
singular.

Most of these aspects are inter-dependent. For example, if the determinant is
part of the output, the determinant should be tracked during the decomposi-
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tion. Determinant should also be tracked if the fraction-free aspect is chosen.
The availability of the length measure in the domain influences pivoting, if

pivoting is to be performed. One could therefore select aspects that turn out
to be incompatible, and we have to prevent this. More precisely, our goal is to
detect the selection of incompatible aspects long before the generated code is
run.

2.2 Organizing aspects

Further investigation revealed the following grouping of aspects: 4

(1) Abstract domain. This group includes ‘mathematical’ aspects: domain
of matrix elements, length measure, full division, zero testing, symmetry
and other matrix structure.

(2) Concrete representation: choosing data structures for domains, con-
tainers, permutation matrices. This group also includes packing, in-place
decomposition, normalization, and the representation of sparse matrices.

(3) Interface of each generated function, including the input and output
choices, logging and error reporting.

(4) Algorithmic Strategy, such as fraction-free updates, pivoting strate-
gies, augmented matrices.

(5) Tracking, of determinant, rank, or pivot, etc.
(6) Interpretation: whether the result is the program or a generator that

will produce the program.
The groupings are not entirely orthogonal (for example, in-place decomposi-
tion is possible only for specific domains), yet are useful as guidance in creating
the modular generator discussed in §5.

3 Techniques for typed code generation

This section outlines various necessary techniques for typed code generation in
MetaOCaml. We start with an introduction to code generation with MetaO-
Caml, where our examples are chosen to illustrate issues of direct concern
to generic programs. Next we introduce monads and our monadic notation,
as a means to make writing programs in continuation passing style (CPS)
more palatable. Generation of control statements can lead to various subtle
issues, and solutions are covered in §3.3. Finally, during generation we need to
keep track of various aspects, and we use an extensible state for this purpose,
described in §3.4.

4 This grouping showed that some of our implementation did not separate distinct
concerns well. In particular, our implementation of “containers” mixed representa-
tion (i.e. data-structure) issues with abstraction domain issues. We hope to rectify
this in the future.
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3.1 MetaOCaml and basic abstraction

We wish to build large code generators out of primitive generators using com-
binators. MetaOCaml, as an instance of a multi-stage programming system
[21], provides exactly the necessary features: to construct a code expression,
to combine them, and to execute them. The following shows a simple code
generator one, and a simple code combinator 5 :

let one = .<1>. and plus x y = .<.~x + .~y>.

let simplest_code = let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

=⇒.<fun x_1 -> fun y_2 -> (x_1 + (y_2 + 1))>.

We use MetaOCaml brackets .<...>. to generate code expressions, i.e. to con-
struct future-stage computations. MetaOCaml provides only one mechanism
for combining code expressions, by splicing one piece of code into another.
The power of that operation, called escape and denoted .~, comes from the
fact that the expression to be spliced in (inlined) can be computed: escape lets
us perform an arbitrary code-generating computation while we are building a
future-stage computation. The immediate computation in simplest_code is
the evaluation of the function gen, which in turn applies plus. The function
gen receives code expressions .<x>. and .<y>. as arguments. At the gen-
erating stage, we can manipulate code expressions as (opaque) values. The
function gen returns a code expression, which is inlined in the location of the
escape. MetaOCaml conveniently can print out code expressions, so we can
examine the final generated code. It has no traces of gen or plus: those are
purely generation stage computations.
The final MetaOCaml feature, .! (pronounced “run”) executes a code expres-
sion: .! simplest_code is a function of two integers, which we can apply:
(.! simplest_code) 1 2. The original simplest_code is not a function on
integers – it is a code expression which represents (or encodes) a function.
By parameterizing our code, we can make the benefits of code generation
evident:

let simplest_param_code plus one =

let gen x y = plus x (plus y one) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

and use it to generate code that operates on integers, floating point numbers
or booleans – in general, any domain that implements plus and one:

let plus x y = .<.~x +. .~y>. and one = .<1.0>. in

simplest_param_code plus one

let plus x y = .<.~x || .~y>. and one = .<true>. in

simplest_param_code plus one

Running the former expression yields a function on floats, whereas the lat-
ter expression is a code expression for a boolean function. This simple tech-
nique clearly shows how we can abstract over domain operations and yet still

5 =⇒ under an expression shows the result of its evaluation
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generate efficient domain-specific code, thus achieving a proper separation of
concerns.
Let us consider a more complex expression:

let param_code1 plus one =

let gen x y = plus (plus y one) (plus x (plus y one)) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

with two occurrences of plus y one, which may be a rather complex com-
putation which we would rather not do twice. We might be tempted to rely
on the compiler’s common-subexpression elimination optimization. When the
generated code is very complex, however, the compiler may overlook common
subexpressions. Or the subexpressions may occur in an imperative context
where the compiler might not be able to determine whether lifting them is
sound. So, being conservative, the optimizer will leave the duplicates as they
are. We may attempt to eliminate subexpressions as follows:

let param_code1’ plus one =

let gen x y = let ce = (plus y one) in plus ce (plus x ce) in

.<fun x y -> .~(gen .<x>. .<y>.)>.

param_code1’ plus one

=⇒.<fun x_1 -> fun y_2 -> ((y_2 + 1) + (x_1 + (y_2 + 1)))>.

The result of param_code1’ plus one still exhibits duplicate sub-expressions.
This is because our let-insertion optimization only saved the computation at
the generating stage. We need a combinator that inserts the let expression
in the generated code, in other words a combinator letgen to be used as

let ce = letgen (plus y one) in plus ce (plus x ce)

yielding code like
.<let t = y + 1 in t + (x + t)>.

But that seems impossible because letgen exp has to generate the expression
.<let t = exp in body>. but letgen does not yet have the body. The body
needs a temporary identifier .<t>. that is supposed to be the result of letgen
itself. Certainly letgen cannot generate only part of a let-expression, without
the body, as all generated expressions in MetaOCaml are well-formed and
complete.
The solution to this problem is to use continuation-passing style (CPS). Its
benefits were first pointed out by [37] in the context of partial evaluation, and
extensively used by [27,25] for code generation. Like [38], we use this in the
context of writing a cogen by hand. Now, param_code2 plus one gives us
the desired code.

let letgen exp k = .<let t = .~exp in .~(k .<t>.)>.

let param_code2 plus one =

let gen x y k = letgen (plus y one)

(fun ce -> k (plus ce (plus x ce)))

and k0 x = x

in .<fun x y -> .~(gen .<x>. .<y>. k0)>.

param_code2 plus one

=⇒.<fun x_1 -> fun y_2 -> let t_3 = (y_2 + 1) in (t_3 + (x_1 + t_3))>.
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3.2 Monadic notation, making CPS code clear

Comparing the let-insertion in the generator
let ce = (plus y one) in plus ce (plus x ce)

with the corresponding code generating let-insertion for a future stage
letgen (plus y one) (fun ce -> k (plus ce (plus x ce)))

clearly shows the difference between direct-style and CPS code. What was
let ce = init in ... in direct style became init’ (fun ce -> ...) in
CPS. For one, let became “inverted”. Secondly, what used to be an expression
that yields a value, init, became an expression that takes an extra argument,
the continuation, and invokes it. The differences look negligible in the above
example. In larger expressions with many let-forms, the number of parentheses
around fun increases considerably, the need to add and then invoke the k con-
tinuation argument become increasingly annoying. The inconvenience is great
enough for some people to explicitly avoid CPS or claim that programmers of
scientific software (our users) cannot or will not program in CPS. Clearly a
better notation is needed.
The do-notation of Haskell [39] shows that it is possible to write CPS code
in a conventional-looking style. The do-notation is the notation for monadic
code [40]. Not only can monadic code represent CPS [41], it also helps with
composability by giving complete control over how different effects are layered
(state, exception, non-determinism, etc.) on top of the basic monad [42].
A monad [40] is an abstract data type representing computations that yield
a value and may have an effect. The data type must have at least two opera-
tions, return to build trivial effect-less computations and bind for combining
computations. These operations must satisfy monadic laws : return being the
left and the right unit of bind and bind being associative. Figure 1 defines
the monad used throughout the present paper and shows its implementation.
Our monad encapsulates two kinds of computational effects: reading and writ-
ing a computation-wide state, and control effects. The latter are normally as-
sociated with exceptions, forking of computations, etc. – in general, whenever
a computation ends with something other than invoking its natural continua-
tion in the tail position. In our case the control effects manifest themselves as
code generation.
In Figure 1, the monad (yielding values of type v) is implemented as a function
of two arguments: the state (of type s) and the continuation. The continu-
ation receives the current state and a value, and yields an answer of type
w. The monad is polymorphic over the three type parameters, which would
require monad to be a type constructor with three arguments. When we use
this monad for code generation, we will need yet another type variable for
the environment classifiers [43] (such as the type variable ’c in the type of
retN in Figure 1). With type constructors taking more and more arguments,
it becomes increasingly difficult to read and write types – which we will be
doing extensively when writing module signatures in §5. The fact that OCaml
renames all type variables when printing out types confuses matters further.
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type (’p,’v) monad = ’s -> (’s -> ’v -> ’w) -> ’w

constraint ’p = <state : ’s; answer : ’w; ..>

let ret (a :’v) : (’p,’v) monad = fun s k -> k s a

let bind (m : (’p,’v) monad) (f : ’v -> (’p,’u) monad) : (’p,’u) monad

= fun s k -> m s (fun s’ b -> f b s’ k)

let fetch s k = k s s and store v _ k = k v ()

let k0 _ v = v

let runM m = fun s0 -> m s0 k0

let retN (a : (’c,’v) code) :

(<classif: ’c; answer: (’c,’w) code; ..>,(’c,’v) code) monad

= fun s k -> .<let t = .~a in .~(k s .<t>.)>.

let ifL test th el = ret .< if .~test then .~th else .~el >.

let ifM test th el = fun s k ->

k s .< if .~test then .~(th s k0) else .~(el s k0) >.

Fig. 1. Our monad, helper functions and uses

An elegant solution to these sorts of problems has been suggested by Jacques
Garrigue on the Caml mailing list. We use a single type parameter ’p to repre-
sent all parameters of our monad, more precisely all parameters but the type
of the monadic value ’v. The type variable ’p is constrained to be the type of
an object with methods (fields) state and answer. The object may include
more fields, represented by ... Values of that type are not part of our com-
putations and need not exist. We merely use the object type as an convenient
way to specify extensible type-level records in OCaml.
Our monad could be implemented in other ways. Except for the code in Fig-
ure 1, the rest of our code treats the monad as a truly abstract data type. The
implementation of the basic monadic operations ret and bind is conventional
and clearly satisfies the monadic laws. Other monadic operations construct
computations that do have specific effects. Operations fetch and store v

construct computations that read and write the state.
The operation retN a is the let-insertion operation, whose simpler version we
called letgen earlier. It is the first computation with a control effect: indeed,
the result of retN a is not the result of invoking its continuation k. Rather,
its result is a let code expression. Such behavior is symptomatic of control
operators (in particular, abort). The name can be taken to mean return a

Named computation; the name allows for proper sharing, but otherwise retN

is used in writing generators in the same way as ret. The type of retN is
a specialization of the type of ret: the computation retN deals specifically
with code values. The types of code values must include the environment
classifier (such as ’c), which denotes the scope of free variables that may
occur in the code value. The argument type of retN and the answer type of
retN computation must have the same classifier – which, informally, means
that all free variables in the argument of retN are preserved in the answer of
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retN’s computation. When writing, for clarity, the type annotations of retN
we see the benefits of type-level records: we introduce a new component of
the record to specify the environment classifier ’c, and we update the answer

component of the record to specialize the answer type to be a code type. The
state component of the record is not affected, and so remains hidden in the
ellipsis ... The number of parameters to the type constructor monad remains
the same.
Finally, runM runs our monad, that is, given the initial state, it performs
the computation of the monad and returns its result, which in our case is a
code expression. We run the monad by passing it the initial state and the
initial continuation k0. We can now re-write our param_code2 example of the
previous section as param_code3.

let param_code3 plus one =

let gen x y = bind (retN (plus y one)) (fun ce ->

ret (plus ce (plus x ce)))

in .<fun x y -> .~(runM (gen .<x>. .<y>.) ())>.

That may not seem like much of an improvement, but with the help of the
camlp4 pre-processor, we can introduce the perform-notation [28], patterned
after the do-notation of Haskell (see App. A).

let param_code4 plus one =

let gen x y = perform ce <-- retN (plus y one);

ret (plus ce (plus x ce))

in .<fun x y -> .~(runM (gen .<x>. .<y>.) ())>.

The function param_code4, written using the perform-notation, is equivalent
to param_code3 – in fact, the camlp4 preprocessor converts the former into
the latter. And yet, param_code4 looks far more conventional, as if it were
indeed in direct style.

3.3 Generating control statements

We can write operations that generate code other than let-statements, e.g.,
conditionals: see ifL in Figure 1. The function ifL, albeit straightforward,
is not as general as we wish: its arguments are pieces of code rather than
monadic values. We can “lift it”:

let ifM’ test th el = perform

testc <-- test; thc <-- th; elc <-- el;

ifL testc thc elc

However we also need another ifM function, with the same interface (see Fig-
ure 1). The difference between them is apparent from the following example:

let gen a i = ifM’ (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)

in .<fun a i -> .~(runM (gen .<a>. .<i>.) ())>.

=⇒.<fun a_1 i_2 ->

let t_3 = (Some a_1.(i_2)) in if (i_2 >= 0) then t_3 else None>.

let gen a i = ifM (ret .<(.~i) >= 0>.)

(retN .<Some (.~a).(.~i)>.) (ret .<None>.)
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in .<fun a i -> .~(runM (gen .<a>. .<i>.) ())>.

=⇒.<fun a_1 i_2 ->

if (i_2 >= 0) then let t_3 = (Some a_1.(i_2)) in t_3 else None>.

If we use ifM’ to generate guarded array access code, the let-insertion happens
before the if-expression, that is, before the test that the index i is positive. If i
turned out negative, a.(i) would generate an out-of-bound array access error.
On the other hand, the code with ifM accesses the array only after we have
verified that the index is non-negative. This example demonstrates that code
generation (such as the one in retN) is truly an effect, and that we have to
be clear about the sequencing of effects when generating control constructions
such as conditionals. The form ifM handles such effects correctly.
We need similar operators for other OCaml control forms: for generating se-
quencing, case-matching statements and for- and while-loops.

let seqM a b = fun s k ->

k s .< begin .~(a s k0) ; .~(b s k0) end >.

let whileM cond body = fun s k ->

k s .< while .~(cond) do .~(body s k0) done >.

let matchM x som non = fun s k -> k s .< match .~x with

| Some i -> .~(som .<i>. s k0)

| None -> .~(non s k0) >.

let genrecloop gen rtarg = fun s k ->

k s .<let rec loop j = .~(gen .<loop>. .<j>. s k0) in loop .~rtarg>.

One can think of this particular use of continuation as delimiting the “current
scope” of a block of code. When constructing blocks with a new scope, we use
a fresh continuation; this allows us to generate all named computations at the
“top” of the current scope but no farther.

3.4 Maintaining an extensible state

Various aspects of our generator need to keep a state during code generation
(for example the name of the variable for the sign of the determinant, §5.4).
The simplest method of keeping such state is by using mutable variables, pri-
vate to each module (aspect). That would however make our aspects stateful.
Although we are generating imperative code, we would like to keep our gener-
ators stateless and purely functional, for ease of comprehension and reasoning.
Our main program may include several generators referring to one particular
aspect – which may be present in one shared instance or in several. That is of
no concern if the module is stateless, but with stateful modules, the issues of
aliasing or separate instantiation are a source of very subtle problems.
We therefore chose a different way of maintaining generator state, using a
monad. We already saw that for let-insertions we could use a continuation
monad; we now demonstrate the state component of our monad (Fig. 1). The
monadic actions fetch and store are used to access that monadic state, which
is threaded throughout the entire code-generation computation.
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This monadic state has to accommodate several distinct pieces of state, for
various aspects. We should be able to add a new aspect – which may need to
keep its own state as part of the overall monadic state – without modifying
or even recompiling the rest of the code. Thus our monadic state should be
extensible. We could use an extensible record: an OCaml object. Each aspect
would have its own field; record subtyping would insure modularity. Alas, this
approach makes it difficult to create an initial state, to pass to the monad’s
runM method. We would be required to know the names of all fields and should
know the proper initial value for these fields, which breaks modularity.
The MLton team suggests a better approach: property lists [44]. A property
list also represents an extensible object but via its dual, namely a list of
fields. The initial object is just the empty list. Unfortunately, we cannot apply
MLton’s approach literally to our case. The MLton approach uses generativity
of exceptions or reference cells to generate property names, i.e. the fields of an
extensible record. This technique would make our aspects stateful modules,
which we described earlier as undesirable. MLton’s approach to generating
field names also makes it difficult to store code values in those fields, as a
code value has a type which contains a generic type variable, the environment
classifier. Fortunately, OCaml lets us build open unions with polymorphic
variants. Each variant is identified by a manifest tag, e.g. ‘Tdet, and may
include a value. The tags are not generative and provide a form of manifest
naming, similar to symbols in Lisp and Scheme.
Below is the implementation of our open records with manifest naming: func-
tions orec_store to add a new field to an open record and orec_find to
obtain the value associated with a particular field name. Each “field” is char-
acterized by a triple: an injection function, a projection function and the string
name. The latter is (only) used for printing error messages. For example, for
the determinant tracking aspect (§5.4), this triple has the form

let ip =

(fun x -> ‘TDet x), (function ‘TDet x -> Some x | _ -> None), "Det"

We combine these functions with monadic actions to access monadic state and
so obtain mo_extend and mo_lookup to store and retrieve one component of
the monadic state.

type (’a,’b) open_rec = (’a -> ’b) * (’b -> ’a option) * string

let rec lookup ((_,prj,_) as ip:((’a,’b) open_rec)) : ’b list -> ’a =

function [] -> raise Not_found

| (h::t) -> (match prj h with Some x -> x | _ -> lookup ip t)

let orec_store ((inj,_,name) as ip:((’a,’b) open_rec)) (v:’a) (s:’b list)

: ’b list =

let () =

try let _ = lookup ip s in

failwith ("Field "^name^" of an open record is already present.")

with Not_found -> () in

(inj v)::s
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let orec_find ((_,_,name) as ip:((’a,’b) open_rec)) (s:’b list) : ’a =

try lookup ip s

with Not_found -> failwith ("Failed to locate orec field: " ^ name)

let mo_extend (ip:(’a,’b) open_rec) (v:’a) : (’c, unit) monad =

perform s <-- fetch; store (orec_store ip v s)

let mo_lookup (ip:(’a,’b) open_rec) : (’c, ’a) monad =

perform s <-- fetch; ret (orec_find ip s)

Currently, we check at generation-time that one should not add an already
existing field to an open record, nor should one attempt to look up a field that
does not exist. It is possible to make these checks static. Our approach has
the advantage of generating much clearer error messages.

4 Gaussian Elimination

For detailed reference, we present one particular Gaussian Elimination 6 al-
gorithm, for an in-place LU decomposition of an integer matrix with full piv-
oting, returning the U-factor, determinant and rank. The n × m-matrix is
represented as a flat vector, with 0-indexed elements laid out in row-major
format (C-style). The code in Fig. 2 is a hand-written implementation of the
typical pseudo-code in Numerical Analysis textbooks (see for example [45]).
In OCaml, the matrix is represented by a value of the following type:

type ’a container2dfromvector = {arr:(’a array); n:int; m:int}

let swap a i j =

let t = a.(i) in begin a.(i) <- a.(j); a.(j) <- t; end

let swap_rows a (n,m) (r,c) i =

let row_r = r*m in (* Beginning of row r *)

let row_i = i*m in (* Beginning of row i *)

for k = c to m-1 do

swap a (row_r + k) (row_i + k)

done

let swap_cols a (n,m) c j =

let end_vector = n * m in

let rec loop col_c col_j =

if col_j < end_vector then

begin

swap a col_c col_j;

loop (col_c + m) (col_j + m)

end

in loop c j

6 For the purposes of this paper, we will use Gaussian Elimination (GE) and LU
decomposition (LU) as quasi-synonyms, even though we are well-aware that GE can
be used for other purposes, and LU can be performed by other means than GE.
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We refer to the aij-th element of the matrix as a.(i*m+j), where a is the array
component of the record container2dfromvector. The code above defines
three auxiliary functions, typically used in textbook pseudo-code: swap a i j

swaps two elements; swap_cols a (n,m) c j swaps column c with column
j in the (n,m)-matrix a. The function swap_rows a (n,m) (r,c) i swaps
row r with row i in the non-yet examined portion of the matrix, rectangular
block (r,c)-(n,m). We do not touch the elements to the left of the column c

because they are all zeros. Since we know the layout of the matrix, we avoid
2D index computations.
As is typical of textbook presentations, the main algorithm depends on a
separately-defined function pivot to find a pivot. Here we use full-pivoting,
i.e. searching the complete as yet unexamined portion of the matrix, the rect-
angular block (r,c)-(n,m), for the element with the nonzero minimum ab-
solute value. The function returns the value of the pivot thus found, and its
location; the return value is an option type with None indicating that all ex-
amined elements are zeroes. In the main algorithm, after we have found the
pivot, we swap the current column with the pivot column, and swap the cur-
rent row with the pivot row (if necessary). After the swap, the arc element
of the matrix is the pivot. Swapping two rows or two columns changes the
sign of the determinant. After the swaps, the algorithm performs so-called
row-reduction over the (r,c)-(n,m) block of the matrix. We implement the
fraction-free version of the algorithm 7 [46], where the division operation in
line 50 assuredly divides two integers with no remainder, which requires the
accumulation of the determinant.

5 Aspects and Functors

Our monad gives us the tools to implement fine-scale code generation. We
need tools for larger-scale modularization; conveniently, we can use whatever
abstraction mechanisms we want to structure our code generators, as long as
these abstractions do not infiltrate the generated code. For our purposes, the
ML module system turns out to be most convenient.
In this section, we use the the sample code in Fig. 2 to identify (some of
the) aspects discussed in §2.1. We abstract these aspects and describe their
implementation as modules of the code generator. We then present in §5.7 the
generic Gaussian Elimination algorithm – what is left after all the aspects are
abstracted away. Finally, we show an instantiation of the generic generator,
whose execution yields (exactly) the code for the algorithm of Fig. 2, this time
automatically generated rather than manually written.
We will describe the following aspects, generally in order of increasing com-
plexity: domain (of the group ‘Abstract domain’, see §2.2), code generation
combinators (of the group ‘Interpretation’), matrix representation (of the

7 sometimes also called the Gauss-Bareiss algorithm
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1 let find_pivot a (n,m) r c =

2 let pivot = ref None in (* ((i,j), pivot_val) option *)

3 begin

4 for i = r to n-1 do

5 for j = c to m-1 do

6 let cur = a.(i*m+j) in

7 if not (cur == 0) then

8 match !pivot with

9 | Some (_,oldpivot) ->

10 if abs oldpivot > abs cur then

11 pivot := Some ((i,j), cur)

12 | None -> pivot := Some ((i,j),cur)

13 done; done;

14 !pivot

15 end

16 let ge = fun a_orig ->

17 let r = ref 0 in (* current row index, 0-based *)

18 let c = ref 0 in (* current column index, 0-based *)

19 let a = Array.copy (a_orig.arr) in (* to avoid clobbering A, save it *)

20 let m = a_orig.m in (* the number of columns *)

21 let n = a_orig.n in (* the number of rows *)

22 let det_sign = ref 1 in (* Accumulate sign and magnitude *)

23 let det_magn = ref 1 in (* of the determinant *)

24 while !c < m && !r < n do

25 (* Look for a pivot *)

26 let pivot = find_pivot a (n,m) !r !c in

27 let piv_val = (match pivot with

28 | Some ((piv_r, piv_c),piv_val) ->

29 if piv_c <> !c then

30 begin

31 swap_cols a (n,m) !c piv_c;

32 det_sign := - !det_sign (* flip the sign of the det *)

33 end;

34 if piv_r <> !r then

35 begin

36 swap_rows a (n,m) (!r,!c) piv_r;

37 det_sign := - !det_sign (* flip the sign of the det *)

38 end;

39 Some piv_val

40 | None -> None) in

41 (* now do the row-reduction over the (r,c)-(n,m) block *)

42 (match piv_val with

43 | Some a_rc -> begin

44 for ii = !r+1 to n-1 do

45 let cur = a.(ii*m + !c) in

46 if not (cur == 0) then

47 begin

48 for j = !c+1 to m-1 do

49 (* fraction-free elimination *)

50 a.(ii*m+j) <- (a.(ii*m+j) * a_rc - a.(!r*m+j) * cur) / ! det_magn

51 done;

52 a.(ii*m+ !c) <- 0

53 end;

54 done;

55 det_magn := a_rc;

56 r := !r + 1 (* advance the rank only if pivot > 0*)

57 end

58 | None -> det_sign := 0);

59 c := !c + 1

60 done;

61 (* Final result *)

62 ({arr=a; n=n; m=m}, (* The matrix now has the U factor*)

63 (if !det_sign = 0 then 0 (* Compute the signed det *)

64 else if !det_sign = 1 then !det_magn

65 else (- !det_magn)),

66 !r) (* Rank *)

Fig. 2. Fraction-free in-place Gaussian Elimination over an integer matrix
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group ‘Concrete representation’), determinant (the group ‘Tracking’), and out-
put (the group ‘Interface’).

5.1 Domains

Clearly the basic structure of the algorithm, Fig. 2, remains the same for inte-
ger, float, polynomial, etc. matrices and so can be abstracted over the domain.
We have already seen the simplest case of domain abstraction in param_code1

(§3.1), which took code-generators such as plus and one as arguments. We
need far more than two parameters: our domains should include 0, 1, +, ∗,
(unary and binary) −, at least exact division, normalization, and potentially
a relative size measure. We could group these parameters in tuples or records.
It is instead more convenient to use OCaml structures (i.e., modules) so that
we can take advantage of extensibility, type abstraction and constraints, and
especially parameterized structures (functors). We define a type, the signature
DOMAIN, which different domains must satisfy:

type domain_kind = Domain_is_Ring | Domain_is_Field

module type DOMAIN = sig

type v

val kind : domain_kind

val zero : v

val one : v

val plus : v -> v -> v

val times : v -> v -> v

val minus : v -> v -> v

val uminus : v -> v

val div : v -> v -> v

val better_than : (v -> v -> bool) option

val normalizer : (v -> v) option

end

module IntegerDomain : DOMAIN with type v = int = struct

type v = int

let kind = Domain_is_Ring

let zero = 0 and one = 1

let plus x y = x + y and minus x y = x - y

let times x y = x * y and div x y = x / y

let uminus x = -x

let normalizer = None

let better_than = Some (fun x y -> abs x > abs y)

end

One particular domain instance is IntegerDomain. The type annotation DOMAIN

in the definition of IntegerDomain makes the compiler verify that the defined
structure is indeed of a type DOMAIN. The annotation may be omitted (see
ZpMake below), in which case the compiler will verify the type when we try
to use that structure as a DOMAIN (typically in a functor instantiation). In
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any case, the errors such as missing “methods” or methods with incorrect
types will be caught statically, before any code generation takes place. The
variant Domain_is_Ring of IntegerDomain.domain_kind encodes a seman-
tic constraint: that full division is not available. While the DOMAIN type may
have looked daunting to some, the implementation is quite straightforward.
Other domains such as float and arbitrary precision exact rational numbers
Num.num are equally simple.
A more complex domain is Zp, the field of integers in prime characteristic:

module ZpMake(P:sig val p:int end) = struct

type v = int

let kind = Domain_is_Field

let zero = 0 and one = 1

let plus x y = (x + y) mod P.p

let times x y = (x * y) mod P.p

...

let normalizer = None and better_than = None

let () = assert (is_prime P.p)

end

This domain is parametrized by an integer p. To be more precise, the structure
ZpMake is parameterized over another structure of the type described by the
signature P, which has one field, the int value p. Such a parameterized struc-
ture (or, a function from structures to structures) is a functor. The result of
ZpMake is a domain which is a field with no defined order. Hence normalizer

and better_than are set to None. Zp forms a field only when p is prime 8 . Since
we intend to make a field of prime characteristic, we must check this, which is
done in the last line of the above code. That line differs from the other bindings
in ZpMake in that it neither defines a function, such as plus, nor binds a value,
such as zero. This non-value expression assert (is_prime P.p), which we
will call an initializing expression, will be evaluated when the corresponding
module is instantiated.

module Z19 = ZpMake(struct let p = 19 end)

If we replace p = 19 with p = 9 above, we receive a “run-time” error. How-
ever, it is raised as we instantiate and combine modules that will eventually

make the generator. Although the error is reported at “run-time” rather than
during compilation as one might have hoped, the error is raised when gen-

erating the generator – well before the generation of the target code could
begin. In our code we make extensive use of these “preflight checks” which
are performed as part of module initialization. These checks seem to offer a
good compromise: they are dynamic and so do not require a complicated type
system; on the other hand, the checks are run quite early, when building code
generators, and so ensure that no code violating the corresponding semantic

constraints will be generated. Although some may frown on the use of module
initializing expressions, as in general this requires careful attention to sharing

8 or a prime power, a case we do not treat here.
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and multiple instantiations of a module, these concerns do not apply in our
case: our preflight checks are all idempotent and maintain no state.

5.2 Abstracting interpretations

In our sample GE code, Fig. 2, the operation not (curr == 0), line 46,
compares two integers (or, generally, two domain elements); the operation
det_magn := a_rc, line 55, assigns the domain element to the correspond-
ing reference cell; the operation r := !r + 1 on the next line increments the
rank, the cardinal number. One can easily imagine a different interpretation
of the same program, where not (curr == 0) generates code to compare two
domain elements, det_magn := a_rc and r := !r + 1 generate code for the
assignment and the in-place increment. The structure of the GE algorithm
is clearly invariant upon this change in interpretation. This lets us abstract
the algorithm over the interpretation of basic operations, so that the same GE
code, given different concrete interpretations, can LU factorize a given matrix,
can generate LU-factorization programs in OCaml as well as C or Fortran, or
can pretty-print the factorization procedure.
The interpretation aspect is also implemented as an OCaml module. This as-
pect is quite large – there are many basic operations to abstract over – and
so the module is structured into several sub-modules. First we introduce an
abstract type (’a,’b) rep which describes what sort of objects the interpre-
tation may produce (e.g., ASTs, strings with C code, etc). The type has two
parameters: the second specifies the type of the object, and the first is the
‘placeholder’ for all other information that may need to be tracked about the
object in a particular interpretation. The interpretation as MetaOCaml code
values uses the first parameter of rep to track the environment classifier.
The first sub-module of the interpretation aspect is the base domain. The
signature DOMAIN of §5.1 defined the set of operations on base objects of some
type v. We now generalize, or ‘lift’, DOMAIN into DOMAINL so we can likewise
operate on other interpretations of these objects, of type (’a,v) rep:

module type DOMAINL = sig

include DOMAIN

type ’a vc = (’a,v) rep

val zeroL : ’a vc

val oneL : ’a vc

val ( +^ ) : ’a vc -> ’a vc -> ’a vc

val ( *^ ) : ’a vc -> ’a vc -> ’a vc

val ( -^ ) : ’a vc -> ’a vc -> ’a vc

val uminusL : ’a vc -> ’a vc

val divL : ’a vc -> ’a vc -> ’a vc

val better_thanL : (’a vc -> ’a vc -> (’a,bool) rep) option

val normalizerL : (’a vc -> ’a vc) option

end

The line include DOMAIN says that lifted domains include all members of non-
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lifted domains, specifically including the initializing expressions with preflight
checks.
An interpretation also needs to specify how to compare objects and to manipu-
late objects representing integers (typically used as indices of matrix elements).
We group the operations into the following two structures:

module Logic : sig

val notL : (’a, bool) rep -> (’a, bool) rep

val equalL : (’a, ’b) rep -> (’a, ’b) rep -> (’a, bool) rep

val notequalL : (’a, ’b) rep -> (’a, ’b) rep -> (’a, bool) rep

val andL : (’a, bool) rep -> (’a, bool) rep -> (’a, bool) rep

end

module Idx : sig

val zero : (’a, int) rep

val one : (’a, int) rep

val minusone : (’a, int) rep

val succ : (’a, int) rep -> (’a, int) rep

val pred : (’a, int) rep -> (’a, int) rep

val less : (’a, ’b) rep -> (’a, ’b) rep -> (’a, bool) rep

val uminus : (’a, int) rep -> (’a, int) rep

val add : (’a, int) rep -> (’a, int) rep -> (’a, int) rep

val minusoneL : ’a -> (’a -> (’b, int) rep -> ’c) -> ’c

end

As we argued in §3, we will be writing our generic GE algorithm in a monadic
style. For convenience we define the following type synonyms for our (’p,’v) monad

of Fig. 1: The first (cmonad) is used for a monadic action that always produces
a useful value; the omonad synonym describes a monadic action that may pro-
duce an interpretation object. The helper type synonym (’pc,’p,’a) cmonad_constraint

is effectively the abbreviation for a set of constraints imposed on its arguments.
type (’pc,’p,’a) cmonad_constraint = unit

constraint ’p = <state : ’s list; answer : (’a,’w) rep>

constraint ’pc = <classif : ’a; answer : ’w; state : ’s; ..>

type (’pc,’v) cmonad = (’p,(’a,’v) rep) monad

constraint _ = (’pc,’p,’a) cmonad_constraint

type (’pc,’v) omonad = (’p,(’a,’v) rep option) monad

constraint _ = (’pc,’p,’a) cmonad_constraint

Finally the interpretation aspect must specify the following very basic opera-
tions: injection of literal values, function applications, statement sequencing,
conditional, loops, creating, dereferencing and assigning to reference cells, etc:

val lift : ’b -> (’a, ’b) rep

val unitL : (’pc,unit) cmonad

val apply : (’a, ’b -> ’c) rep -> (’a, ’b) rep -> (’a, ’c) rep

val applyM : (’a, ’b -> ’c) rep -> (’a, ’b) rep ->

(<classif: ’a; ..>,’c) monad

val seqM :
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(<classif: ’a; state: ’s; answer: ’b; ..>,’b) cmonad ->

(<classif: ’a; state: ’s; answer: ’c; ..>,’c) cmonad ->

(<classif: ’a; state: ’s; ..>,’c) cmonad

val optSeqM :

(<classif: ’a; state: ’s; answer: ’b; ..>,’b) cmonad ->

(<classif: ’a; state: ’s; answer: ’b; ..>,’b) cmonad option ->

(<classif: ’a; state: ’s; ..>,’c) cmonad

val ifM : (’a, bool) rep ->

(<classif: ’a; state: ’s; answer: ’b; ..>,’b) cmonad ->

(<classif: ’a; state: ’s; answer: ’b; ..>,’b) cmonad ->

(<classif: ’a; state: ’s; ..>,’b) cmonad

val liftRef : (’a, ’b) rep -> (’a, ’b ref) rep

val liftGet : (’a, ’b ref) rep -> (’a, ’b) rep

val assign : (’a, ’b ref) rep -> (’a, ’b) rep -> (’a, unit) rep

val assignM : (’a, ’b ref) rep -> (’a, ’b) rep ->

(<classif: ’a; ..>,unit) cmonad

The ‘pure’ operations of the interpretation produce interpretation objects (of
type (’a,’b) rep) as their result. We can trivially ‘lift’ these operations into
the monad by composing them with ret from the monad. Some other op-
erations, like seqM and ifM are present only in the monadic form: these are
control operations.
We provide two concrete instances of the interpretation aspect: one uses thunks
(for benchmarking and regression tests purposes) and the other uses MetaO-
Caml’s code values (’a,’v) code as the realization of (’a,’v) rep. We could
also use interpretations producing C or Fortran code. The following is a sample
implementation of the interpretation aspect for MetaOCaml code values:

let lift x = .< x >. and unitL = fun s k -> k s .< () >.

let liftRef x = .< ref .~x >. and liftGet x = .< ! .~x >.

let liftPair x = (.< fst .~x >., .< snd .~x >.)

module Logic = struct

let notL a = .< not .~a >.

let equalL a b = .< .~a = .~ b >.

let notequalL a b = .< .~a <> .~ b >.

let andL a b = .< .~a && .~b >.

end

module Idx = struct

let zero = .< 0 >. and one = .< 1 >. and minusone = .< -1 >.

let succ a = .< .~a + 1 >. and pred a = .< .~a - 1 >.

let less a b = .< .~a < .~b >.

let uminus a = .< - .~a >. and add a b = .< .~a + .~b >.

end

let update a f = let b = f (liftGet a) in .< .~a := .~b >.

let assign a b = .< .~a := .~b >.

let apply f x = .< .~f .~x >.
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let updateM a f = ret (update a f)

let assignM a b = ret (assign a b)

let applyM f x = ret (apply f x)

The following is a particular instance of DOMAINL, the lifted version of IntegerDomain
of the previous section, again for the MetaOCaml code value interpretation.

module IntegerDomainL = struct

include IntegerDomain

type ’a vc = (’a,v) code

let zeroL = .< 0 >. and oneL = .< 1 >.

let (+^) x y = .<.~x + .~y>. and ( -^ ) x y = .<.~x - .~y>.

let ( *^ ) x y = .<.~x * .~y>. and divL x y = .<.~x / .~y>.

let uminusL x = .<- .~x>.

let normalizerL = None

let better_thanL = Some (fun x y -> .<abs .~x > abs .~y >. )

end

Such lifting is completely straightforward. However, it is a program-text to
program-text transformation over modules, and as such could only be auto-
mated (currently) by further use of camlp4.
We consider the interpretation aspect “open” and so we can refer to all oper-
ations such as apply, seqM, etc, without further qualification.

5.3 Containers

For our purposes, a container is an abstraction of an n-dimensional vector
space, which we specialize here for n = 1, 2. The 2-dimensional case is our main
interest, and its signature contains many functions particular to n = 2. For ex-
ample, we have rows and columns and operations specialized for them. A con-
tainer explicitly abstracts the underlying representation of the data-structure,
while offering an interface which is better-suited to linear algebra. In partic-
ular, a container is an abstraction of the flat vector container2dfromvector
of our sample algorithm in §4.
The signature CONTAINER2D below specifies that a container must provide
functions dim1 and dim2 to extract the dimensions, functions getL to gener-
ate container getters, the cloning generator copy and functions that generate
code for row and column swapping. The inclusion of these functions in the
signature of all containers makes it simpler to optimize the relevant functions
depending on the actual representation of the container while not burdening
the users of containers with efficiency details (see §4 for an example of such
an optimization).

module type CONTAINER2D = sig

module Dom:DOMAINL

type contr

type ’a vc = (’a,contr) rep

type ’a vo = (’a,Dom.v) rep

val getL : ’a vc -> (’a,int) rep -> (’a,int) rep -> ’a vo

val dim1 : ’a vc -> (’a,int) rep
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val dim2 : ’a vc -> (’a,int) rep

val mapper : (’a vo -> ’a vo) option -> ’a vc -> ’a vc

val copy : ’a vc -> ’a vc

val init : (’a,int) rep -> (’a, int) rep -> ’a vc

val augment : ’a vc -> (’a,int) rep -> (’a, int) rep -> ’a vc ->

(’a, int) rep -> ’a vc

val identity : (’a,int) rep -> (’a, int) rep -> ’a vc

val swap_rows_stmt : ’a vc -> (’a, int) rep -> (’a, int) rep ->

(’a,unit) rep

val swap_cols_stmt : ’a vc -> (’a, int) rep -> (’a, int) rep ->

(’a,unit) rep

val row_head : ’a vc -> (’a, int) rep -> (’a, int) rep -> ’a vo

val col_head_set : ’a vc -> (’a,int) rep -> (’a,int) rep -> ’a vo ->

(’a,unit) rep

end

The type of our containers includes the lifted domain Dom as one of the
components. This is quite convenient since operations on containers are usu-
ally accompanied by operations on retrieved values, which are subsequently
stored again. The particular instances of the containers are parametric over a
DOMAINL, i.e. functors from a DOMAINL module to the actual implementation
of a container. For example, the following functor defines a matrix container
as a single array, with elements stored in row-major order – the container used
in Fig. 2.

module GenericVectorContainer(Dom:DOMAINL) =

struct

module Dom = Dom

type contr = Dom.v container2dfromvector

type ’a vc = (’a,contr) code

type ’a vo = (’a,Dom.v) code

let getL x i j = .< ((.~x).arr).(.~i* (.~x).m + .~j) >.

let dim2 x = .< (.~x).n >. (* number of rows *)

let dim1 x = .< (.~x).m >. (* number of cols *)

...

The accompanying code [28] includes an implementation with elements stored
in a 1D array in a column-wise (Fortran-like) mode, and another for a matrix
represented as an array of rows.
We could have defined the type CONTAINER2D to be a functor with DOMAINL as
an argument. The type CONTAINER2D is used in the signatures of other functors
such as GenLA of §5.7. If the type CONTAINER2D were a functor, GenLA would
have been a higher-order functor, and we would have to pass to GenLA two
arguments: the container functor and a DOMAINL to apply the container functor
to. In the current design, the user first builds a particular container instance by
applying the functor such as GenericVectorContainer to the desired domain.
The user then passes this container instance to GenLA as a single argument.
The current design simplifies module signatures at the expense of making the
instantiation of the GE algorithm “multi-stage”. The stepwise instantiation
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seems more intuitive however; it is certainly faster since currently OCaml is
quite slow when instantiating functors with complex signatures.
As mentioned above, the generic GE algorithm GenLA is parametrized over
CONTAINER2D. Given a particular container instance, the functor GenLA yields
a module containing various algorithmic aspects for the user to choose, as well
as the main GE driver. The given container instance is available to all these
aspects under the name of C (so that the type of the container can be referred
to as C.contr and the dimensions can be obtained using C.dim1 and C.dim2).
The domain, which is part of the container, can be referred to as C.Dom and
the type of the domain elements is C.Dom.v. We shall see many such references
as we describe particular algorithmic aspects below.

5.4 Determinant aspect

The determinant aspect is one of several tracking and strategic aspects. The
main GE procedure invokes various functions of these aspects at some inter-
esting points, for example when the pivot is required, when two rows have to
be permuted, or when the final answer to the user has to be built. An aspect
may do something at each one of these times, for example, find a pivot ac-
cording to a pivoting strategy, update the current value of the determinant,
etc.
Our sample Gaussian Elimination algorithm (Fig. 2), demonstrates that track-
ing the determinant is quite complex: first we define the variables det_sign

and det_magn used for tracking (lines 22 and 23), then we have to change the
sign when swapping two rows or two columns or when the matrix found to be
singular (lines 32, 37, 58). The value of the determinant should be updated
for each pivoting (line 55). Finally, we convert the tracking state to the result-
ing determinant value (lines 63-65). Most importantly, we observe that these
lines are not contiguous: the determinant aspect is consulted at several sepa-
rate places in the GE algorithm, and the aspect is supposed to keep state. As
with other aspects, the determinant aspect is a module, and has the following
signature:

module type DETERMINANT = sig

type tdet = C.Dom.v ref

type ’a lstate

type ’pc pc_constraint = unit

constraint ’pc = <state : [> ‘TDet of ’a lstate ]; classif : ’a; ..>

type (’pc,’v) lm = (’pc,’v) cmonad

constraint _ = ’pc pc_constraint

type (’pc,’v) om = (’pc,’v) omonad

constraint _ = ’pc pc_constraint

type ’pc nm = (’p,unit) monad

constraint _ = (’pc,’p,_) cmonad_constraint

constraint _ = ’pc pc_constraint

val decl : unit -> ’b nm (* no code is generated *)
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val upd_sign : unit -> (’b,unit) om

val zero_sign : unit -> (’b,unit) lm

val acc_magn : (’a,C.Dom.v) rep -> (<classif : ’a; ..>,unit) lm

val get_magn : unit -> (’b,tdet) lm

val set_magn : (’a,C.Dom.v) rep -> (<classif : ’a; ..>,unit) lm

val fin : unit -> (’b,C.Dom.v) lm

end

The type ’a lstate denotes the state being kept as part of the overall
monadic state (tagged as ‘TDet). The signature specifies the operations of the
aspect, such as decl for initializing the tracking state, zero_sign to record
matrix singularity, set_magn to set the magnitude and fin to convert the
tracking state to the resulting value, of the type C.Dom.v, the type of the
container elements. Other aspects follow a similar outline. It is instructive to
examine the difference in the return types of the decl, upd sign and zero -

sign functions. The first says that decl is an action which is executed only
for its side-effect. It yields no interpretation object (e.g., produces no code
value). The function zero sign always produces a code value – an expression
such as assignment that has type unit. The function upd sign is a generator
that may produce code, or may not. The option type lets us avoid generating
code such as a := b; () with a pointless ().
We have two instances of DETERMINANT. The first corresponds to no determi-
nant tracking, and so all functions are dummy.

module NoDet = struct

type tdet = C.Dom.v ref

type ’a lstate = unit

let decl () = ret ()

let upd_sign () = ret None

let zero_sign () = unitL

let acc_magn _ = unitL

let get_magn () = ret (liftRef C.Dom.zeroL)

let set_magn _ = unitL

let fin () = failwith "Determinant is needed but not computed"

end

The second instance does track the determinant. For integer matrices, and in
general whenever the matrix elements do not form a field, the fraction-free
update requires tracking some facets of the determinant, even if we do not
output it.

module AbstractDet = struct

open C.Dom

type tdet = v ref

type ’a lstate = (’a,int ref) rep * (’a,tdet) rep

let decl () = perform

magn <-- retN (liftRef oneL); (* track magnitude *)

sign <-- retN (liftRef Idx.one); (* track the sign: +1, 0, -1 *)

mo_extend ip (sign,magn)

let upd_sign () = perform (* flip sign *)
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(sign,_) <-- mo_lookup ip;

ret (Some (assign sign (Idx.uminus (liftGet sign))))

let fin = fun () -> perform (* reconstruct det and *)

(sign,magn) <-- mo_lookup ip; (* generate code *)

ifM (Logic.equalL (liftGet sign) Idx.zero) (ret zeroL)

(ifM (Logic.equalL (liftGet sign) Idx.one) (ret (liftGet magn))

(ret (uminusL (liftGet magn))))

...

end

The decl method generates two let-bindings for mutable variables tracking
the magnitude and the sign of the determinant, and places the names of these
variables in the monadic state. The upd_sign method, invoked from row- or
column-swap generators, retrieves the name of the sign-accumulating variable
and generates the code to update the sign. The fin method retrieves the
names of both accumulators and generates code to compute the final, signed
determinant value. The generated code closely corresponds to the lines dealing
with det_magn and det_sign in Fig. 2.

5.5 Other aspects

For completeness, we briefly describe and show the signatures of the other
aspects. RANK tracks rank; this aspect is a simpler version of determinant
tracking. PIVOTKIND defines the representation of the permutation matrix ac-
cumulating pivoting permutations; TRACKPIVOT specifies if these permutations
are tracked at all. LOWER tracks the L factor when the GE algorithm is used
for in-place LU-decomposition. PIVOT is a higher-order functor abstracting
over the pivoting algorithm (full pivoting, row pivoting, no pivoting, etc). If
a pivot is found, the aspect should swap rows and columns appropriately.
The swapping may need to be tracked in a permutation matrix (or some
other representation). If we track the determinant, swapping must update its
sign. The swapping also affects the L factor being accumulated. The UPDATE

aspect abstracts over the algorithm for updating matrix elements during row-
reductions: full division update or fraction-free update. Finally, INPUT is an
interface aspect letting us handle both ordinary and augmented matrices.

module type RANK = sig

type ’a tag_lstate

val decl : unit -> (’b, int ref) lm

val succ : unit -> (’b, unit) lm

val fin : unit -> (’b, int) lm

end

module type PIVOTKIND = sig

type perm_rep

type ’a ira = (’a, int) rep

type ’a fra

type ’a pra = (’a, perm_rep) rep

val add : ’a fra -> ’a pra -> ’a pra

val empty : ’a ira -> ’a pra

val rowrep : ’a ira -> ’a ira -> ’a fra

val colrep : ’a ira -> ’a ira -> ’a fra

end
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module type TRACKPIVOT = sig

type perm_rep

type ’a ira = (’a, int) rep

type ’a fra type ’a pra type ’a lstate

type ’pc pc_constraint = unit

constraint ’pc = <state : [> ‘TPivot of ’a lstate ]; classif : ’a; ..>

type (’pc,’v) lm = (’pc,’v) cmonad constraint _ = ’pc pc_constraint

type (’pc,’a) nm = (’p,unit) monad

constraint _ = (’pc,’p,’a) cmonad_constraint

constraint _ = ’pc pc_constraint

val rowrep : ’a ira -> ’a ira -> ’a fra

val colrep : ’a ira -> ’a ira -> ’a fra

val decl : (’a, int) rep -> (’pc,’a) nm

val add : ’a fra -> (<classif : ’a; state : [> ‘TPivot of ’a lstate ]; ..>, unit) omonad

val fin : unit -> (’b,perm_rep) lm

end

module type LOWER = sig

type ’a lstate = (’a, C.contr) rep

type (’pc,’v) lm = (’pc,’v) cmonad

constraint ’pc = <state : [> ‘TLower of ’a lstate ]; classif : ’a; ..>

val decl : (’a, C.contr) rep -> (<classif : ’a; ..>, C.contr) lm

val updt : ’a C.vc -> (’a,int) rep -> (’a,int) rep -> ’a C.vo ->

’a C.Dom.vc -> (<classif : ’a;..>, unit) lm option

val fin : unit -> (’a, C.contr) lm

val wants_pack : bool

end

module type PIVOT = functor (D: DETERMINANT) -> functor (P: TRACKPIVOT) ->

functor (L: LOWER) -> sig

val findpivot : ’a wmatrix -> ’a curpos ->

(<classif : ’a; state : [> ‘TDet of ’a D.lstate | ‘TPivot of ’a P.lstate ]; ..>,

C.Dom.v option) cmonad

end

type update_kind = FractionFree | DivisionBased

module type UPDATE = functor(D:DETERMINANT) -> sig

type ’a in_val = ’a C.Dom.vc

val update : ’a in_val -> ’a in_val -> ’a in_val -> ’a in_val ->

(’a in_val -> (’a, unit) rep) -> (’a, C.Dom.v ref) rep ->

(<classif : ’a; ..>, unit) cmonad

val update_det : ’a in_val -> (<classif : ’a; ..>,unit) D.lm

val upd_kind : update_kind

end

module type INPUT = sig

type inp

val get_input : (’a, inp) rep ->

(<classif : ’a; ..>, (’a, C.contr) rep * (’a, int) rep * bool) monad

end

5.6 Output

More interesting is the aspect of what to return from the GE algorithm. One
could create an algebraic data type (as was done in [1]) to encode the various
choices: the matrix, the matrix and the rank, the matrix and the determinant,
the matrix, rank and determinant, and so on. This is wholly unsatisfying as
we know that for any single use, only one of the choices is ever possible, yet
any routine which calls the generated code must deal with these unreachable
options. Instead we use a module type with an abstract type res for the result
type; different instances of the signature set the result type differently. Below
we show this module type and one instantiation, OutDetRank, which specifies
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the output of a GE algorithm as a 3-tuple contr * Det.outdet * int of the
U-factor, the determinant and the rank. That choice of output corresponds to
our sample algorithm in Fig. 2.

module type OUTPUTDEP = sig

module PivotRep : PIVOTKIND

module Det : DETERMINANT

end

module type INTERNAL_FEATURES = sig

module R : TrackRank.RANK

module P : TRACKPIVOT

module L : LOWER

end

module type OUTPUT = functor(OD : OUTPUTDEP) -> sig

module IF : INTERNAL_FEATURES

type res

val make_result : ’a wmatrix -> (<classif: ’a;...>,res) cmonad

end

module OutDetRank(OD : OUTPUTDEP) = struct

module IF = struct

module R = Rank

module P = DiscardPivot

module L = NoLower end

type res = C.contr * C.Dom.v * int

let make_result m = perform

det <-- OD.Det.fin ();

rank <-- IF.R.fin ();

ret (Tuple.tup3 m.matrix det rank)

let _ = OD.Det.fin ()

let _ = IF.R.fin ()

end

The initialization expressions OD.Det.fin () and IF.R.fin () are preflight
checks. As we saw in the previous section, both instances of DETERMINANT

contain a fin () function to generate code representing the computed deter-
minant. The instance NoDet however does no tracking, and so fin () raises
an error. The code let _ = OD.Det.fin () in OutDetRank invokes this fin
function, which will produce the monadic code generating action, or raise an
error. We do not run the action at that time – we only make sure there is an
action to run. This is another preflight check, to rule out the semantic error
where a user specifies that the determinant should be computed and returned,
and yet specifies the NoDet aspect.
The type wmatrix denotes the (0,0)-(numrow-1,numcol-1) rectangular block
of matrix:

type ’a wmatrix = {matrix: ’a C.vc; numrow: (’a,int) rep;

numcol: (’a,int) rep}

The type is used in the INPUT, OUTPUT and PIVOT aspects to refer to the
non-augmented part of the matrix.
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The module of signature INTERNAL_FEATURES bundles information tracking
aspects. The latter are not directly selectable by the user. Rather, they are
functions of other user choices. The implementations of the tracking aspects
such as Rank, NoRank, PackedLower are quite similar (and simpler) than the
implementation of the AbstractDet and NoDet aspects in §5.4. The choice of
a particular tracking aspect may depend on all other choices (e.g. it is not
possible to extract the L factor if the domain is not a field). Currently we
use preflight checks to ensure consistency of tracking aspects. Previously [26]
we tried to implement all our preflight tests at the (module) type level, using
sharing constraints and module computations. That lead to obscure code, long
impenetrable type error messages and very slow compilation. Furthermore,
type-level computations in OCaml are not powerful enough for the tasks such
as verifying that an integer is prime (see §5.1).

5.7 Main generation

This section presents the core GE algorithm GenGE, after all aspects have been
factored out. We also describe how to instantiate the core algorithm with sam-
ple aspects, to obtain particular GE procedures such as our running example
(Fig. 2). The instantiation process is multi-step, mainly for the sake of speed
of OCaml compilation. The benefit of the multi-step process, simple module
signatures, may also help make the instantiation process more comprehensible.
The core GE algorithm and all the aspects are part of one large functor,
Ge.LAMake, parameterized by the interpretation aspect, §5.2. If we select as
an interpretation generating code in the form of MetaOCaml code values, we
write

module GEF = Ge.LAMake(Code)

open GEF

open Domains_code

Here, Code is the interpretation with (’a,’b) rep being (’a,b) code; the
module Domains_code contains various instances of DOMAINL (such as
FloatDomainL, IntegerDomainL) for that particular choice of (’a,’b) rep.
Opening GEF makes available various container functors and the functor GenLA.
Combining the container functors with domain structures gives containers with
particular elements and particular representation. For example, in

module GVC_I = GenericVectorContainer(IntegerDomainL)

module G_GVC_I = GenLA(GVC_I)

open G_GVC_I

open G_GVC_I.GE

we define GVC_I to represent a matrix with integer elements arranged in a
flat vector in row-major order. Instantiating the functor GenLA with this con-
tainer makes available all algorithmic and tracking aspects of GE (such as
AbstractDet, NoDet, FullPivot, etc) as well as the module GE with the core
GE generator functor GenGE (besides GE, GenLA contains modules for GE-
based solvers). All these components already incorporate the choices for the
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container, domain and interpretation aspects we have made earlier. We may
now select particular features of the desired GE algorithm and instantiate and
run GenGE.
We combine all user-selectable aspects in a “record”, which serves as a “key-
word argument” list to the GenGE functor, shown later.

module type FEATURES = sig

module Det : DETERMINANT

module PivotF : PIVOT

module PivotRep : PIVOTKIND

module Update : UPDATE

module Input : INPUT

module Output : OUTPUT

end

We instantiate GenGE by passing to the functor the “record” of various aspects;
the order is irrelevant, but all aspects such as Det must be specified. In the
following code, we request GE generation with full pivot, fraction-free update,
operating on non-augmented matrix and returning the U factor, determinant
and the rank. This choice corresponds to our sample algorithm of Fig. 2.

module GenIV5 = GenGE(struct

module Det = AbstractDet

module PivotF = FullPivot

module PivotRep = PermList

module Update = FractionFreeUpdate

module Input = InpJustMatrix

module Output = OutDetRank end)

let instantiate gen =

.<fun a -> .~(runM (gen .<a>.) []) >.;;

let resIV5 = instantiate GenIV5.gen ;;

We run the monad, passing in the initial state [] and thus obtain code, which
we can see by printing resIV5. This code can then be “compiled” as !. resIV5

or with offshoring [47]. The code for resIV5 (App. B) shows full pivoting, de-
terminant and rank tracking. The code for all these aspects is fully inlined;
no extra functions are invoked and no tests other than those needed by the
GE algorithm itself are performed. The resulting function returns a triple
int array * int * int of the U-factor, determinant and the rank. It is in-
structive to compare the generated code with the corresponding code in Fig. 2,
the hand-written implementation of the textbook pseudo-code; the only dif-
ference is the naming of variables and the inlining of pivoting and swapping
functions.
The following is another instantiation of the GE generator, with a different
set of aspects.

module GAC_F = GenericArrayContainer(FloatDomainL)

module G_GAC_F = GenLA(GAC_F)

open G_GAC_F

open G_GAC_F.GE

module GenFA9 = GenGE(struct
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module Det = NoDet

module PivotF = RowPivot

module PivotRep = PermList

module Update = DivisionUpdate

module Input = InpJustMatrix

module Output = Out_LU_Packed end)

The code generated by GenFA9 (App. C) shows no traces of determinant track-
ing whatsoever: no declaration of spurious variables, no extra tests, etc. The
code appears as if the determinant tracking aspect did not exist at all. The
generated code for the above and other instantiations of Gen can be examined
at [28]. The website also contains benchmark code and timing comparisons.
The core GE algorithm GenGE, as part of Ge.LAMake and GenLA, is already
parameterized by the domain, container and interpretation. The algorithm is
further parameterized by FEATURES, i.e., pivoting policy (full, row, nonzero,
no pivoting), update policy (with either ‘fraction-less’ or full division), de-
terminant, permutation matrix, input and output specifications. Some of the
argument modules such as PIVOT are functors themselves (parameterized by
the domain, the container, and the determinant). We rely on module sub-
typing: For example, F.Output of the type OUTPUT is a functor requiring an
argument of the signature OUTPUTDEP. The fact that the signature FEATURES

contains all the fields of OUTPUTDEP and then some lets us pass F (of the type
FEATURES) as an argument to instantiate F.Output.

module GenGE(F : FEATURES) = struct

module O = F.Output(F)

let wants_pack = O.IF.L.wants_pack

let can_pack =

let module U = F.Update(F.Det) in

(U.upd_kind = DivisionBased)

(* some more preflight tests *)

let _ = ensure ((not wants_pack) || can_pack)

"Cannot return a packed L in this case"

let zerobelow mat pos =

let module IF = O.IF in

let module U = F.Update(F.Det) in

let innerbody j bjc = perform

whenM (Logic.notequalL bjc C.Dom.zeroL ) (perform

det <-- F.Det.get_magn ();

optSeqM (Iters.col_iter mat.matrix j (Idx.succ pos.p.colpos)

(Idx.pred mat.numcol) C.getL

(fun k bjk -> perform

brk <-- ret (C.getL mat.matrix pos.p.rowpos k);

U.update bjc pos.curval brk bjk

(fun ov -> C.col_head_set mat.matrix j k ov) det) UP )

(IF.L.updt mat.matrix j pos.p.colpos C.Dom.zeroL

(* this makes no sense outside a field! *)

(C.Dom.divL bjc pos.curval))) in

perform

seqM (Iters.row_iter mat.matrix pos.p.colpos

(Idx.succ pos.p.rowpos)

(Idx.pred mat.numrow) C.getL innerbody UP)

(U.update_det pos.curval)

let init input = perform

let module IF = O.IF in

(a,rmar,augmented) <-- F.Input.get_input input;

r <-- IF.R.decl ();
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c <-- retN (liftRef Idx.zero);

b <-- retN (C.mapper C.Dom.normalizerL (C.copy a));

m <-- retN (C.dim1 a);

rmar <-- retN rmar;

n <-- if augmented then retN (C.dim2 a) else ret rmar;

F.Det.decl ();

IF.P.decl rmar;

_ <-- IF.L.decl (if wants_pack then b else C.identity rmar m);

let mat = {matrix=b; numrow=n; numcol=m} in

ret (mat, r, c, rmar)

let forward_elim (mat, r, c, rmar) = perform

let module IF = O.IF in

whileM (Logic.andL (Idx.less (liftGet c) mat.numcol)

(Idx.less (liftGet r) rmar) )

( perform

rr <-- retN (liftGet r);

cc <-- retN (liftGet c);

let cp = {rowpos=rr; colpos=cc} in

let module Pivot = F.PivotF(F.Det)(IF.P) in

pivot <-- bind (Pivot.findpivot mat cp) retN;

seqM (matchM pivot (fun pv ->

seqM (zerobelow mat {p=cp; curval=pv} )

(IF.R.succ ()) )

(F.Det.zero_sign () ))

(updateM c Idx.succ) )

let gen input = perform

(mat, r, c, rmar) <-- init input;

seqM

(forward_elim (mat, r, c, rmar))

(O.make_result mat)

end

A careful reading of this code will reveal that the core of the Gaussian Elim-
ination algorithm (Fig. 2) is still visible in this code generator: for example,
the forward_elim function iterates over the columns and rows of the matrix,
finding a pivot, and zeroing the appropriate entries. With sufficient added
syntactic sugar, we could indeed make the generator look like the algorithm.
There are more preflight checks for various “semantic” constraints, shown in
the following structure of the UPDATE signature:

module DivisionUpdate(Det:DETERMINANT) = struct

open C.Dom

type ’a in_val = ’a vc

let update bic brc brk bik setter _ = perform

y <-- ret (bik -^ ((divL bic brc) *^ brk));

ret (setter (applyMaybe normalizerL y))

let update_det v = Det.acc_magn v

let upd_kind = DivisionBased

let _ = assert (C.Dom.kind = Domains_sig.Domain_is_Field)

end

This structure implements an update policy relying on unrestricted Dom.divL.
Many domains provide divL, for example, the integer domain. The latter how-
ever assumes that division is applied only if the dividend is an exact multi-
ple of the divisor. Thus if we specified module Update = DivisionUpdate

when instantiating GenIV5 above, we would have received an error because
IntegerDomainL is not a field. That error occurs before any code is produced
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(i.e. before resIV5 is computed).

6 Related and future work

The monad in this paper is similar to the one described in [27,25]. However
those papers used only retN and fixpoints (for generation-time iterations).
Our work does not involve monadic fixpoints because the generator is not
recursive, but heavily relies on monadic operations for generating conditionals
and loops.
Blitz++ [9], and C++ template meta-programming in general, similarly elim-
inate levels of abstraction. With traits and concepts, some domain-specific
knowledge can also be encoded. However overhead elimination critically de-
pends on full inlining of all methods by the compiler, which has been reported
to be challenging to insure. Furthermore, all errors (such as type errors and
concept violation errors, i.e., composition errors) are detected only when com-
piling the generated code. It is immensely difficult to correlate errors (e.g. line
numbers) to the ones in the generator itself.
ATLAS [14] is another successful project in this area. However they use much
simpler weaving technology, which leads them to note that generator complex-

ity tends to go up along with flexibility, so that these routines become almost

insurmountable barriers to outside contribution. Our results show how to sur-
mount this barrier, by building modular, composable generators. A significant
part of ATLAS’ complexity is that the generator is extremely error-prone and
difficult to debug. Indeed, when generating C code in C using printf, nothing
prevents producing code that is missing semicolons, open or close parentheses
or variable bindings. MetaOCaml gives us assurance that these errors, and
more subtle type errors, shall never occur in the generated code. SPIRAL [23]
is another even more ambitious project. But SPIRAL does intentional code
analysis, relying on a set of code transformation “rules” which make sense,
but which are not proven to be either complete or confluent. The strength of
both of these project relies on their platform-specific optimizations performed
via search techniques, something we have not attempted here.
The highly parametric version of our Gaussian Elimination is directly influ-
enced by the generic implementations available in Axiom [4] and Aldor [48].
Even though the Aldor compiler can frequently optimize away a lot of abstrac-
tion overhead, it does not provide any guarantees that it will do so, unlike our
approach.
We should also mention early work [49] on automatic specialization of math-
ematical algorithms. Although it can eliminate some overhead from a very
generic implementation (e.g. by inlining aspects implemented as higher-order
functions), specialization cannot change the type of the function and cannot
efficiently handle aspects that communicate via a private shared state.
The paper [50] describes early simple experiments in automatic and manual
staging, and the multi-level language based on an annotated subset of Scheme

34



(which is untyped and has no imperative features). The generated code re-
quires post-processing to attain efficiency.
Our code was initially motivated by trying to unify the various implementa-
tions found in Maple. Interestingly, when we compare our end result with the
options available from Maple’s LUDecomposition algorithm, we notice a great
deal of similarity. The biggest difference is that in Maple, all the choices are
done dynamically (and are dynamically typed), while ours choices are done
statically, in a statically typed environment. To us, this shows that the design
space along the dynamic–static dimension is quite large and versatile.
Unlike traditional approaches [33], the interfaces of our generated routines vary
depending on the choices of input and output aspects. Dynamic approaches
in Object-oriented languages (late binding and dynamic dispatch) or func-
tional languages (Haskell’s dictionary-based type classes) also offer flexibility
of interfaces. In our approach, however, it is the generator that produces code
whose interfaces depend on the arguments of the generator. The interfaces of
the generated routines are all fixed and hence efficient.
To the best of our knowledge, nobody has yet used functors to abstract code
generators, or even mixed functors and multi-stage programming.
It would be interesting to implement a camlp4 extension that automates the
lifting of (simple) modules as done in §5.2, first to the code level, and then
to monadic values. Even more interesting would be a (typed) extension to
MetaOCaml that would allow us to write such code with the same guarantees
that the rest of MetaOCaml already affords us. Unfortunately, as modules are
not first-class objects in OCaml, this currently seems out of reach.
We plan to further investigate the connection between delimited continua-
tions and our implementations of code generators like ifM. The ultimate (and
plausible) goal is to write an algorithm in (almost) regular OCaml once, and
be able to either run it as a regular OCaml program, or turn it into a code
generating aspect.
There are many more aspects which can also be handled: error reporting (i.e.
asking for the determinant of a non-square matrix), memory hierarchy issues,
loop-unrolling [7], warnings when zero-testing is undecidable and a value is
only probabilistically non-zero, etc.

7 Conclusion

In this paper we have demonstrated code extensively parameterized by com-
plex aspects at no run-time overhead. The combination of stateless functors
and structures, and our monad with compositional state makes aspects com-
posable without having to worry about value aliasing. The only constraints
to compositionality are the typing ones plus the constraints we specifically
impose, including semantic constraints.
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7.1 On aspects

There is an interesting relation with aspect-oriented code [30]: in AspectJ,
aspects are (comparatively) lightly typed, and are post-facto extensions of
potential program traces, specified in a particular language; these tend to
be created to follow the operational behaviour of existing code, but are not
restricted to such a setting. In our work, aspects are weaved together “from
scratch” to make up a piece of code. One can understand previous work to
be more akin to dynamically typed and dynamically specified aspect weaving,
while we have started investigating statically typed and statically specified
aspect weaving.
While the first two families of aspects (abstract domain and concrete rep-
resentation) are the most obvious, it is quite difficult to separate them out
cleanly. Attempts at such a separation in a non-staged setting have lead to
fantastically inefficient code, unacceptable for scientific computation. Staging
permitted us, perhaps for the first time, to think in terms of an ideal design
without worrying about abstraction penalties. Interestingly, in conversations
of the first author with D. Parnas, we discovered this is apparently what [33]
was advocating. We believe that we are taking the first steps towards a typed

yet efficient realization of these ideas, where the various design-time entities
can be directly encoded in machine-checkable form.

7.2 Methodology

Our overall approach can best be described as a combination of two ap-
proaches: hand-writing a code generator (cogen) suitable for multi-level spe-
cialization [49,50] and creating an embedded domain-specific language (EDSL)
[51,52]. Our approach, using staging, monads and functors, seems to permit an
extensible set of aspects and appears flexible enough for iterative improvement
in the design.
As we wanted to ensure that we were indeed firmly in a cogen setting, we ab-
stracted out the underlying programming language completely. This allowed
us to both generate (efficient) code and to write a directly runnable (but highly
inefficient) version of the algorithm from the same generator. But this essen-
tially abstracted out all of the syntactic sugar of the underlying programming
language, and all we were left with was function application and monadic
composition. This means the code for our generator looks mostly like Scheme
with added syntax for monads!
More specifically we start from a known set of implementations of an algo-
rithm, and extract commonalities and variation points. This is unlike [34] and
most subsequent approaches to product families, as we do not over-engineer
our design by imagining variations that are unlikely to come up in realistic
situations, but only create variations when we notice them in actual use. This
approach is quite well-suited to the development of scientific software, which
has a rich history and where most useful variations have already appeared in
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some form.
Given a set of commonalities and variation points, the first task is to find se-

mantic reasons for these. The underlying reason then forms the basis for the
abstraction – a (potentially higher-order) module is created to encapsulate the
various concepts, and these are implemented as generators. It is very impor-
tant at this stage to make sure to reify all available static information, so that
all of it is available to the generation process. While we will see that the tech-
nical solutions exist to take advantage of such information, it is still a difficult
design problem to properly encode this information. One important item is
to try to keep the various pieces of generation-time information as orthogonal
as possible. This is unlike ordinary encodings of run-time information, where
compression and elision frequently lead to increased efficiency. Whenever de-
pendency between various bits of information is inevitable, then higher-order
encodings should be sought. When choices need to be made based on some
(static) information, it is important to encode this information by using se-
mantic concepts.
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J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson,
N. Rizzolo, SPIRAL: Code generation for DSP transforms, Proceedings of the
IEEE, special issue on ”Program Generation, Optimization, and Adaptation”
93 (2).

[24] Z. Chen, J. Dongarra, P. Luszczek, K. Rothe, Lapack for clusters project: An
example of self adapting numerical software, Hawaii International Conference
on System Sciences HICSS-37.

[25] O. Kiselyov, K. N. Swadi, W. Taha, A methodology for generating verified
combinatorial circuits, in: EMSOFT ’04: Proceedings of the fourth ACM
international conference on Embedded software, ACM, 2004, pp. 249–258.

[26] J. Carette, O. Kiselyov, Multi-stage programming with Functors and Monads:
Eliminating abstraction overhead from generic code, in: Glück and Lowry [53],
pp. 256–274.

[27] K. N. Swadi, W. Taha, O. Kiselyov, E. Pasalic, A monadic approach for avoiding
code duplication when staging memoized functions, in: J. Hatcliff, F. Tip (Eds.),
PEPM, ACM, 2006, pp. 160–169.

[28] Source code, http://www.cas.mcmaster.ca/∼carette/metamonads/.

[29] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins
University Press, Baltimore, MD, 1996.

[30] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: M. Akşit, S. Matsuoka (Eds.),
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A The perform monad notation

We support four different constructs to introduce a monadic expressions:
perform exp

perform exp1; exp2

perform x <-- exp1; exp2

perform let x = foo in exp

which is almost literally the grammar of the Haskell’s ”do”-notation, with the
differences that Haskell uses do and <- where we use perform and <--. We
support not only let x = foo in ... expressions but arbitrarily complex
let-expressions, including let rec and let module.
The actual bind function of the monad defaults to bind and the pattern-
match–failure function to failwith (only used for refutable patterns). Ex-
tended forms of perform let us override these defaults. For example, to use
the function named bind from module Mod, we write

perform with module Mod in exp2

B Code of the GenIV5 algorithm

The code generated for GenIV5, fraction-free LU of the integer matrix repre-
sented by a flat vector, full pivoting, returning the U-factor, the determinant
and the rank. The comments, however, were inserted by hand.

val resIV5 : (’a, GVC_I.contr -> GenIV5.O.res) code =

.<fun a_1 ->

let t_2 = (ref 0) in

let t_3 = (ref 0) in

let t_4 = (a_1) {arr = (Array.copy a_1.arr)} in

let t_5 = a_1.m in (* magnitude of det *)

let t_6 = a_1.n in (* sign of the det *)

let t_7 = (ref 1) in

let t_8 = (ref 1) in

while (((! t_3) < t_5) && ((! t_2) < t_6)) do

let t_13 = (! t_2) in

let t_14 = (! t_3) in

let t_15 = (ref (None)) in

let t_34 =

begin (* full pivoting, search for the pivot *)
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for j_30 = t_13 to (t_6 - 1) do

for j_31 = t_14 to (t_5 - 1) do

let t_32 = (t_4.arr).((j_30 * t_4.m) + j_31) in

if (t_32 <> 0) then

(match (! t_15) with

| Some (i_33) ->

if ((abs (snd i_33)) > (abs t_32)) then

(t_15 := (Some ((j_30, j_31), t_32)))

else ()

| None -> (t_15 := (Some ((j_30, j_31), t_32))))

else ()

done

done;

(match (! t_15) with

| Some (i_16) -> (* swapping of columns *)

if ((snd (fst i_16)) <> t_14) then begin

let a_23 = t_4.arr

and nm_24 = (t_4.n * t_4.m)

and m_25 = t_4.m in

let rec loop_26 =

fun i1_27 ->

fun i2_28 ->

if (i2_28 < nm_24) then

let t_29 = a_23.(i1_27) in

a_23.(i1_27) <- a_23.(i2_28);

a_23.(i2_28) <- t_29;

(loop_26 (i1_27 + m_25) (i2_28 + m_25))

else () in

(loop_26 t_14 (snd (fst i_16)));

(t_8 := (~- (! t_8))) (* adjust the sign of det *)

end else ();

if ((fst (fst i_16)) <> t_13) then begin (* swapping of rows *)

let a_17 = t_4.arr and m_18 = t_4.m in

let i1_19 = (t_13 * m_18) and i2_20 = ((snd (fst i_16)) * m_18) in

for i_21 = 0 to (m_18 - 1) do

let t_22 = a_17.(i1_19 + i_21) in

a_17.(i1_19 + i_21) <- a_17.(i2_20 + i_21);

a_17.(i2_20 + i_21) <- t_22

done;

(t_8 := (~- (! t_8)))

end else ();

(Some (snd i_16))

| None -> (None))

end in

(match t_34 with

| Some (i_35) ->

begin (* elimination loop *)

for j_36 = (t_13 + 1) to (t_6 - 1) do

let t_37 = (t_4.arr).((j_36 * t_4.m) + t_14) in

if (t_37 <> 0) then begin

for j_38 = (t_14 + 1) to (t_5 - 1) do

(t_4.arr).((j_36 * t_4.m) + j_38) <-

((((t_4.arr).((j_36 * t_4.m) + j_38) * i_35) -

((t_4.arr).((t_13 * t_4.m) + j_38) * t_37)) / (! t_7))

done;

(t_4.arr).((j_36 * t_4.m) + t_14) <- 0

end else ()

done;

(t_7 := i_35)

end;

(t_2 := ((! t_2) + 1)) (* advance the rank *)

| None -> (t_8 := 0));

(t_3 := ((! t_3) + 1))

done;

(t_4, (* matrix with the U factor *)

if ((! t_8) = 0) then 0 (* adjust the sign of the determinant *)

else if ((! t_8) = 1) then (! t_7)

else (~- (! t_7)), (! t_2))>.
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C Code of the GenFA9 algorithm

The code generated for GenFA9, LU of the floating point non-augmented ma-
trix represented by a 2D array, row pivoting, returning the complete factor-
ization: L and U factors packed in a single matrix and the permutation matrix
represented as the list of row number exchanges.

val resFA9 : (’a, GAC_F.contr -> GenFA9.O.res) code =

.<fun a_1 ->

let t_2 = (ref 0) in

let t_3 = (ref 0) in

let t_5 = (Array.map (fun x_4 -> (Array.copy x_4)) (Array.copy a_1)) in

let t_6 = (Array.length a_1.(0)) in

let t_7 = (Array.length a_1) in

let t_8 = (ref ([])) in (* accumulate permutations in a list *)

while (((! t_3) < t_6) && ((! t_2) < t_7)) do

let t_9 = (! t_2) in

let t_10 = (! t_3) in

let t_11 = (ref (None)) in

let t_17 =

begin (* row pivoting *)

for j_14 = t_9 to (t_7 - 1) do

let t_15 = (t_5.(j_14)).(t_10) in

if (t_15 <> 0.) then

(match (! t_11) with

| Some (i_16) ->

if ((abs_float (snd i_16)) < (abs_float t_15)) then

(t_11 := (Some (j_14, t_15)))

else ()

| None -> (t_11 := (Some (j_14, t_15))))

else ()

done;

(match (! t_11) with (* swapping of rows *)

| Some (i_12) ->

if ((fst i_12) <> t_9) then begin

let t_13 = t_5.(t_9) in

t_5.(t_9) <- t_5.(fst i_12);

t_5.(fst i_12) <- t_13; (* and accumulate permutations *)

(t_8 := ((RowSwap ((fst i_12), t_9)) :: (! t_8)))

end else ();

(Some (snd i_12))

| None -> (None))

end in

(match t_17 with (* elimination loop *)

| Some (i_18) ->

begin

for j_19 = (t_9 + 1) to (t_7 - 1) do

let t_20 = (t_5.(j_19)).(t_10) in

if (t_20 <> 0.) then

for j_21 = (t_10 + 1) to (t_6 - 1) do

(t_5.(j_19)).(j_21) <-

((t_5.(j_19)).(j_21) -. ((t_20 /. i_18) *. (t_5.(t_9)).(j_21)))

done

else ()

done;

()

end;

(t_2 := ((! t_2) + 1))

| None -> ());

(t_3 := ((! t_3) + 1))

done;

(t_5, (! t_8))>. (* return both L and U factors, list permutations *)
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