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Abstract

Inspired by Joyals theory of species, we show how to add new type constructors and constructor combinators
to the tool set of functional languages. We show that all the important properties of inductive types lift
to this new setting. Species are analytic functors, representing a broader range of structures than regular
functors. This includes structures such as bags, cycles and graphs. The theory is greatly inspired by
combinatorics rather than type theory: this adds interesting new tools to bear, but also requires more
work on our part to show that species form a good foundations for a theory of type constructors. The
combinatorial tools provide a calculus for these structures which has strong links with classical analysis,
via a functorial interpretation of generating series. Furthermore, we show how generic programming idioms
also generalise to this richer setting. Once the theory is understood, various methods of implementation are
relatively straightforward.

Keywords: functional programming, combinatorial species, datatype generic programming.

1 Introduction

In typed functional languages, types are built inductively from base types using a
few combinators: disjoint union (tagged sum), product, composition and recursion.
Semantically, polynomial functors and (initial) algebras have been found to be the
most convenient model. In practice and in theory, these have proven their worth.
As is standard in the literature, we will refer to these types (and their constructors)
as “polynomial types” (without recursion) and “regular types”.

We will borrow from a vast treasure trove of work done in combinatorics and
applied category theory, and apply their results to functional programming. We aim
to show that we can cleanly generalize from polynomial types to “analytic types”.
The key is the theory of combinatorial species. Introduced by André Joyal in 1981
([27], but also see [28] and the excellent book [5]), the combinatorial theory of species
provides a categorical approach to defining families, or “species”, of structures.

Informally, a species is the set of structures constructed by some “rule” over a
set of discrete elements, where the structure does not depend on the value of the
elements. Formally, a species is a functor from the category B of finite sets and
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bijections to the category E of finite sets and functions 1 These functors are called
analytic because they permit a Taylor series expansion

F (A) =
∑
n≥0

(An × Fn) /Gn

where Gn is the symmetric group over An. One can fruitfully think of An as a
coefficient and Gn as n!, making F (A) into an exponential generating function.

Our goal is to demonstrate that it is both possible and pratical to define type
constructors as analytic functors using the theory of species, and that the main
tools in use for regular types generalize to this setting. In particular, we

• show that species give us useful extensions to the theory of regular types,
• get new type constructors, for example bags, cycles, and new type combinators

which should be considered basic,
• explore how the molecular theory of species provides a foundation for generating

type constructors for unlabelled types,
• show that the implicit species theorem gives solutions for many combinatorial

equations, and compare those solutions obtained by computing least fixed points,
• show how the combinatorial tools already in existence also apply to types,
• briefly explore how datatype generic programming techniques extend to species.

We start with an overview of the theory of species, and then detail how this
can be used in a practical setting (with examples). This is followed by an outline
of more advanced species theory and its potential applications. There are many
related strands in the literature, and we attempt to put our work in perspective.
Finally, we conclude and suggest directions for future research.

2 Basic Theory of Species

We provide an introduction to the theory of species, tailored to its uses in program-
ming. The interested reader should consult [5] for a much more thorough treatment
of most of the material we present here. For consistency, we use the syntactic con-
versions of [5]. We assume that the reader is familiar with polynomial types and
category theory.

Informally, a structure is a pair of a function and set, (γ, U) where γ is a con-
struction performed on U . A structure consists of labelled “nodes” [where data
elements may be stored], and the relationship between these nodes. The set U acts
as a set of labels. For the implementation minded reader, one may think of U as
containing the keys into a hash table, with this table representing a heap.

A species F of structures is a functor from B, the category of finite sets and
bijections, to E, the category of finite sets and functions. As this definition is so
central, let us expand this definition: A species F is a rule that

(i) produces a finite set F [U ] for each finite set U ;

1 although most modern treatments use SetB, we will proceed with classical definition as this extra gener-
ality is not needed in practice.
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Fig. 1. Two structures of the same species, with a bijection transporting one to the other.

(ii) for each bijection σ : U → V produces a function F [σ] : F [U ] → F [V ]; and

(iii) the functions F [σ] need to preserve composition and the identity.

An individual structure from F over the set of elements U is called an F structure
and is denoted F [U ].

Formally, a structure transports along a bijection over the underlying sort, so
for all bijections σ : U → V , F [σ] : F [U ] → F [V ] is also a bijection, preserving
both composition and the identity. Figure 1 illustrates transport of structure.

Such a semantic description of species gives us ample choice in providing different
syntactic descriptions. We will mostly concentrate on explicit constructions and
functional equations.

Note that we could have restricted ourselves to the full subgroupoid P of B
consisting of finite cardinals and bijections as EB and EP are equivalent functor
categories; in practice this is reflected by the fact that we use (numerical) machine
pointers as labels.

2.1 Notation

When a species F is applied to a set of elements A, it forms a set of possible concrete
structures, denoted F [A]. If a species is restricted to a particular cardinality n, then
it is denoted Fn, and is undefined over sets not of cardinality n.

Note that the standard names and symbols associated with species are often
French, so a set is an “ensemble” and denoted E , trees are arbres (A), etc.

2.2 Simple Species

0 The species defined by 0[U ] = ∅ for all sets U .

1 The characteristic specie of the empty set, 1[U ] =

{
{∅} if U = ∅
∅ otherwise

.

E The set 2 specie defined by E [U ] = U . There is a unique E-structure on any finite
set U , namely U itself.

2 This is the combinatorial version of set, in computer science this is generally called a “bag”; there is no
guarantee of unique “values” among the elements.
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X The singleton set, defined by X [U ] =

{
{U} if |U | = 1
∅ otherwise

.

C An ordered cycle. C[U ] = {c | c = (π,U), π is a circular permutation}.

0, 1 and X are familiar from polynomial types.
E is often also denoted exp(X ) since it satifies the combinatorial differential

equation E ′ ' E (as well as having the same generating series as the exponential
function, see 2.8). Another species, denoted either ∈ or U , is the “underlying set”
specie (defined by ∈[U ] = U) plays a minor rôle in the basic theory, but seems to
have non-trivial applications in more advanced settings.

2.3 Species Operators

As with polynomials, we have several combinators for species. The first 5 are
binary, while the last 3 are unary. Below we specify the action on the underlying
sets, although a complete definition would also specify the transport of structures,
but we omit these here as they are generally straightforward.

+ (Disjoint Union) (F +G)[U ] = F [U ] +G[U ] where we use + for disjoint union
of sets.

· (Product) Elements are partitioned between two structures, one from each
species; the product operator is sometimes denoted by a space. More precisely
(F · G)[U ] =

∑
U1+U2=U F [U1]× G[U2].

◦ (Composition, or Substitution) Elements of U are partitioned into disjoint
subsets which are given G-structures, and an F-structure is put on the resulting
set of G-structures. More precisely,

(F ◦ G)[U ] =
∑

π partition of U

F [
∑
p∈π

G[p]]

2 (Functorial Composition) F2G is the family of F-structures over the set of
all possible G-structures over the underlying set. It corresponds to the composi-
tion of functors (F2G)[U ] = F [G [U ]].

× (Cartesian Product) A compound structure consisting of one structure from
each species, with all of the elements in both structures, (F×G)[U ] = F [U ]×G[U ].

• (Pointing) Identifies a single distinguished element in the structure. For exam-
ple, the root of a tree is a distinguished element. F•[U ] = F [U ]× U

′ (Differentiation) The structures generated by replacing an element the original
structures with a “hole” for an element (figure 3). F ′[U ] = F [U +1] (the disjoint
union of U with a new singleton).

Fn, F≤n, F>n, etc – Cardinality Restriction Restricts the species to struc-
tures over sets of exactly n elements, less than or equal to n elements, greater

than n elements, etc. Fn[U ] =

{
F [u] |U | = n

∅ otherwise

The sum, product and composition are the same as for polynomial types, and
in fact so is the derivative [3]. We also have that 2 = 1 + 1 and n = 1 + 1 + · · ·+ 1
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a x C a · C

Fig. 2. Cartesian product vs. product of a cycle and a tree.

** *

Fig. 3. Derivative of a list (two lists), a cycle (a list) and a tree (rooted trees).

(n times) are sensible definitions which give us that F + F = 2F = 2 · F . We can
further prove all the expected properties: + and · are associative and commutative,
0 is the unit for +, 1 is the unit for ·, ′ satisfies all the usual rules (including that
for composition, i.e. the chain rule), and so on.

Lemma 2.1 For all species F , F• ' X · F ′.

In some sense, pointing is even more primitive than derivative. The Cartesian
product is especially interesting as it is a way to see the data data in two different
ways, clearly related to views [39]. For example, (A× C)[A] represents both a tree
and a cycle over the set A, with all of the elements of A in both structures (figure 2).

Cardinality restriction is a clear contribution from combinatorics, but also turns
out to be rather useful in programming practice, as we shall see later. As every
structure has a particular size (given by the size of its label set), we have that all
species have a canonical decomposition

F =
∑
n≥0

Fn.

2.3.1 Atomic and Molecular Species
The previous two sections gave some tools for constructing species. We also have
some tools for decomposing them. As theorem 2.5 shows, this decomposition is
complete.

Definition 2.2 A species of structures F is molecular if there is only one isomor-
phism type of F-structures, i.e. if any two arbitrary F-structures are isomorphic.
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In other words, F is molecular if and only if F 6= 0, F = Fn for some integer
n, and the action induced by transport of structures S[n]×F [n] → F [n] (with S[n]
the symmetric group of order n) is transitive. In other words, the classification
of molecular species is equivalent to the classification of transitive actions of the
symmetric group, which itself is equivalent to the classification of the conjugacy
classes of sub-groups of the symmetric group [5].

For example, the species of lists of length n, Ln, of cycles of length n, Cn, and
of bags of size n, En are all molecular.

Proposition 2.3 F is molecular if and only if for all species P, Q where F = P+Q
then either P = 0 or Q = 0. As a consequence we have that all species F is the
sum of its molecular sub-species

F =
∑
M⊂F

M molecular

M.

This sum is called the molecular decomposition of F . This is a refinement of the
canonical decomposition. Note that the product F · G and composition F ◦ G (for
G 6= 1) of molecular species is always molecular.

Definition 2.4 A species of structure F 6= 1 is atomic if it is indecomposable
(except trivially) as a product.

Yeh in [40] proved the following important result (with a rather delicate proof):

Theorem 2.5 Every molecular specie M can be written as a finite product of
atomic species

M = An1
1 An2

2 · · ·Ank
k

where each Ai is atomic and distinct, ni ∈ N, i = 1, . . . , k. This decomposition is
unique up to order of the factors and isomorphism.

For example X , En, Cn are atomic species, as are E2◦E2 and E2◦X 2. Other atomic
species include n-polygons (adirectional cycles), strongly connected n-graphs, var-
ious quotient species, as well as a zoo of structures which are rather difficult to
describe. A list or all atomic species of cardinatlity n ≤ 5 is provided in figure A.1.

2.4 Decomposition

Define Spe = (S,0,1,+, ·) / ∼ (with S the set of all species and ∼ the equivalence
relation induced by isomorphism of species) then Spe is easily shown to form a
semi-ring, and with ′, a differential semi-ring. More importantly, if we denote by U

the (countable) set of all atomic species, then

Proposition 2.6 The semi-ring Spe of species is isomorphic to the semi-ring
Spe ' NJUK ' NJX , E2, E3, C3, . . .K of formal series with coefficients in N over the
set of atomic species.

Thus we have that E = E0+E1+E2+ . . . and C = C1+C2+C3+ . . . and functional
programmers intuitively know the expansion L = 1 + X + X 2 + X 3 + . . .. More

6



Carette and Uszkay

interesting is the molecular decomposition of the species A of trees (see figure A.2)

A = X + X 2 +
(
X 3 + XE2

)
+
(
2X 4 + X 2E2 + XE3

)
+
(
3X 5 + 4X 3E2 + X 2E3 + X(E2 ◦ X 2) + XE4

)
+ . . .

2.5 Functional Equations

Just as in programming practice, we have some structures which are defined ex-
plicitly by some finite construction. But most structures of real interest are either
defined by, or are shown to satisfy, a functional equation. For example we have that
L ' 1 + XL. The common interpretation of that equation is as a least-fixed-point
equation over a CPO. However, the strong links with classical analysis (see 2.8)
have led to a different approach for species. The statement uses 2-sorted species
(Funtors F : B2 → E), where the theory of k-sorted species is defined in complete
analogy to the 1-sorted case.

Theorem 2.7 (Implicit Species Theorem [27]) Let H = H(X, Y ) be a 2-
sorted specie such that H(0,0) is constant and ∂H

∂Y (0,0) = 0. Then the combi-
natorial equation A = H(X, A) has a unique solution A(X) (up to isomorphism)
such that A(0) = H(0,0).

A functor F : EB → EB is constant at 0 if there exists K ∈ E such that for every
object A ∈ EB, (FA)0 = K, and every arrow f : A → B, (Ff)0 = idK : K → K.
Joyal’s original proof used K = ∅, but this can be generalized (see [30] for a proof
for a slightly different case which can easily be adapted). This condition is necessary
to insure that a non-empty finitary solution exists.

The statement of this theorem is essentially identical to the classical implicit
function theorem. In the theory of species, it is this theorem which is used instead
of Lambek’s Lemma as the method of choice for establishing that equations have
solutions. Interestingly, the proof uses an explicit iterative scheme to obtain a solu-
tion to the equation as a series expansion. In other words, the proof is constructive.
Note that one can avoid 2-sorted species altogether (as Menni does), at the cost of
losing the perfect parallel with classical analysis.

There are other functional equations for which such solutions are known to exist.
In certain settings, certain (combinatorial) differential equations can also be shown
to have unique solutions. The theory can also be applied to systems of functional
equations.

2.6 Initial Algebras

There is a known link with the approach via initial algebra, well explained by Menni
in [30]. We only mention the highlights.

Definition 2.8 A functor F : C → C is special if the F -algebra AlgF has an intial
object and moreover for every F -algebra A, A is a fixed point of F if and only if A

is initial.

Definition 2.9 For species F ,G and operator Φ : EB → EB (an endofunctor over
species),
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(i) F ,G have contact of order n if F≤n = G≤n, denoted F =n G, meaning that for
1 ≤ k ≤ n,Fn is identical to Gn

(ii) Φ preserves contacts if ∀n.F =n G =⇒ ΦF =n ΦG
(iii) Φ raises contacts if ∀n.F =n G =⇒ ΦF =n+1 ΦG.

The properties of Spe = EB give us that for any functor F : Spe → Spe which
preserves directed colimits, AlgF has an initial object.

Proposition 2.10 If Φ is constant at 0 and raises contacts, then Φ is special.

The important point here is that this does not require the extra baggage that
comes with CPOs, and that one can still find solutions to functional equations in
set-theoretic settings. To us, the implicit species theorem is a very powerful too
that deserves further study.

2.7 Some Examples

Some less familiar but quite useful structures are easily represented. For example,
commutative parenthizations is the species that represents arithmetic expressions.

℘ = E · E powerset, i.e. all subsets

℘[k] = Ek · E subsets of cardinality k

Bal = L ◦ E+ ballots, ordered (non-empty) partitions
Par = X + E2 ◦ P commutative parenthizations
Oct = C ◦ L octopus, a cycle of lists

G = ℘2℘[2] simple graphs
Go = ℘2 (E• × E•) connected simple graphs

Considering how difficult it usually is to represent connected simple graphs, the
expression for Go above is particularly elegant.

We can also define a wide range of generalized trees. Structures which satisfy

AR = X · R(AR)

for a given speciesR are calledR-enriched trees; the existence of these is guaranteed
by the implicit species theorem.

L+ = X · R(L+) R = 1 + X, non-empy lists
AL = X · L(AL) ordered rooted (planar) trees
A = X · E(A) root and unordered subtrees
a• = A implicit definition of unrooted tree

Note that all R-enriched trees for any species R exists and is unique, by the implicit
species theorem.
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2.8 A Little Combinatorics

Species were originally created to abstract out various ideas from combinatorics.
Not only is the connection interesting in its own right, we will also show how this
can be useful in programming practice. There is a direct connection between species
and exponential generating functions, mediated by a counting function.

Definition 2.11 Let F be a species, then we associate to it the following exponen-
tial generating function:

F(x) =
∞∑

n=0

|Fn|
xn

n!

where |Fn| denotes the number of different F-structures of size n.

It is important to note that the number of F-structures on a set U only depends
on |U | and not on the elements of U itself. This is built-in to the definition of
species, which are defined up to bijections of over U .

Theorem 2.12 Let F and G be two species, then we have

a) (F + G) (x) = F(x) + G(x) b) (F · G) (x) = F(x) · G(x)

c) (F ◦ G) (x) = F(G(x)) d) (F2G) (x) = F(x)2G(x)

e) (F ′) (x) = d
dxF(x) f) (F•) (x) = x d

dxF(x)

g) (F × G) (x) = F(x)× G(x)

In the above theorem, we use two non-standard operations on series, namely the
Hadamard product and a certain renumbering on series, defined by( ∞∑

n=0

fn
xn

n!

)
×

( ∞∑
n=0

gn
xn

n!

)
=

∞∑
n=0

fngn
xn

n!( ∞∑
n=0

fn
xn

n!

)
2

( ∞∑
n=0

gn
xn

n!

)
=

∞∑
n=0

fgn

xn

n!

From first principles, we have that 0(x) = 0, 1(x) = 1, and X (x) = x. With
some additional work, we can derive:

Proposition 2.13 For the species as defined previously (or below), we have

L(x) = 1
1−x C(x) = − ln(1− x) E(x) = exp(x)

℘(x) = exp(2x) AL(x) = 1−
√

1−4x
2 A(x) = −LambertW (−x))

G(x) =
∑∞

n=0 2(n
2) xn

n! Go(x) =
∑∞

n=0 2n2 xn

n!

Eeven(x) = sinh(x) Eodd (x) = cosh(x)

We use the LambertW function which is the principal branch of the solution to
the functional equation y(x)ey(x) = x [9].

It is also interesting to note that C′ ' L is reflected in C′(x) = 1/ (1− x) = L(x).
This is one example of the more general results that F ' G =⇒ F(x) = G(x)
(although the converse is false).
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Classical analysis and combinatorics mix in interesting ways. For example we
have that combinatorially, the species of sets splits as the disjoint union of the
species of sets with an even number of elements with the specie of sets with an
odd number of elements, or equationally E = Eeven + Eodd . In terms of generating
functions, this reads as the classical identity exp(x) = sinh(x) + cosh(x).

There are two other formal power series related to the enumeration of F-
structures.

type generating series enumerates the unlabelled structures, or isomorphisms of
structures

cycle index series a power series in an infinite number of variables which exactly
captures the notion of isomorphism of structures.

These play an important rôle in the further development of the theory.

3 Programming with Species

This section shows how all of this can be adapted to programming practice. The
reader who thinks that what we outline here seems to good to be true should reread
the previous section (and some of the references from that section as well as the
ones here). The correct impression should be that we are leveraging such powerful
theory that the applications therefore seem natural.

3.1 Defining Type Constructors

The strategy we will employ to define type constructors from species is by now
classical – we create a meta-language directly based on the semantics. Our guiding
example here is Moggi’s seminal work on monads [32]. Our meta-language definition
is particularly simple since it is a conservative extension of Haskell’s own notation.

More precisely, we add 2 new basic constructors, for set and cycle, and 5
new combinators for functorial composition, catesian product, pointing, differen-
tiation and cardinality restriction. We keep the notation of the previous section for
idealized/pretty-printed code. Note however that we are working “one level up”:
our + combinator does not form the sum of two types, but rather the sum of two
type constructors. This operation is just the natural lifting of sum to the constructor
level. For brevity, we will denote the kind TC by TC. Gordon says: Do you need the
TC notation anymore? You don’t use it anywhere else now.

Cardinality restriction is more delicate. A simple-minded treatment would in-
troduce dependent types. But as is well-known, we can model N at the type-level
without difficulty, and this is the solution we take here too. We can deal with
more general range restrictions in a similar way, and omit the details as they are
well-known.

Definition 3.1 Let us call a species representable via a system of functional equa-
tions as described above (minus functorial composition) a representable species 3 .

3 Note that these are frequently called decomposable structures in the combinatorics literature.
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It is important to keep in mind that we are not defining the implementation of
data structures, and that the notion of set and cycle represent abstract relationships
between elements of a set. In a concrete program instance, we would be forced to
model a set using a data-structure that allows for deterministic traversals of the
elements. But, as is done in several languages for efficiency purposes (like Maple,
and other languages for mathematics), it is entirely possible that the underlying
implementation uses a session-dependent ordering, thus effectively mimicking the
lack of predictable ordering from a programmer’s point of view. It is thus important
that this additional “storage model” structure should be distinguished from the true
“conceptual” structure. We see this as a valuable opportunity, especially since this
can enable further concurrency.

It is worth noting that, in the setting of species, McBride’s aphorism that “The
derivative of a type is its type of one-holed structures” is quite literally the definition
(see section 2.3).

As we have seen before, the most general case of specifying type constructors via
species is via (systems of) combinatorial equation(s), when such a solution exist.
But this is already common practice, we just suggest that a few further operations
be allowed, and give a semantic means to deal with the extra generality.

3.2 A Haskell implementation

We have an experimental implementation of these new types constructors and op-
erators in Haskell. It provides:

• a representation for species,
• several storage models for data in a species,
• generic implementations of length (cardinality), equality, show, map and fold
• a build function that constructs families of structures based on a species definition.

Our main purpose is to allow experiments in generic programming, and more
precisly to understand which techniques [20] generalize. As we see species as an
extension of the type system, we are not terribly concerned about the efficiency of
our current model implementation.

Our model stores a structure (Structure) as a pair (Spec,Storage) detailing
both the type and a storage representation (containing actual elements). The stor-
age representation uses regular data types but with an interface that hides the
implementation (what we show below is a version without hiding so we can discuss
certain details). In particular, sets and cycles cannot be implemented naturally in
Haskell, at least without resorting to unsafe operations, and are currently stored as
lists. We then provide the appropriate definition of equality: permutation for sets
and equality up to rotation for cycles. It is important to remark that our sets only
depend on Eq and not Ord, unlike Haskell’s Data.Set.
data Structure a = Stored Spec (Storage a) deriving (Show)
data Spec =

Error -- 0
| Empty -- 1, empty set
| Single -- X, singleton set
| Set -- E, arbitrary size set
| Cycle -- C, arbitrary size cycle
| FixSize Int Spec -- fixed cardinality specification
| Pt Spec -- pointed species
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| Prod Spec Spec -- product (ordered)
| Sum [Spec] -- disjoint union
| Comp Spec Spec -- composition of species
| FuncComp Spec Spec -- functorial composition
| RTree Spec Label -- T_R = X.R(T_R)

data Storage a =
StorNone | Stor1 a | Storn [a]

| StorMark (Maybe Int) (Storage a)
| StorProd (Storage a) (Storage a)
| StorSum Spec (Storage a)
| StorComp (Storage (Storage a))

Our system currently does not support the definition of all implicit species by sys-
tems of equations, but we do support R-enriched trees. This provides a substantial
set of recursively defined structures, including all regular data types but not nested
types. A more general solution for implicitly defined species will be part of our
future work.

Pointed and derivative structures have “special” elements in the data store (for
derivatives this is more accurately called a hole, rather than an element). The
position for this special element in the structure is identified with the storage mark;
if the marker is over a list of elements (Storn), it contains the index of that element.

Cartesian product, the application of two structures over the same data set, is
not a natural fit in Haskell. The easiest way to implement Cartesian products, is to
use pointers (or indices), adding a level of indirection between the structure and the
data. This is not particularly desirable. A better approach might be to implement
a hybrid data model, with one species defining the underlying data structure and
the other structure using indices or pointers over top of that structure. Certain
Cartesian products may be amebable to a direct implementation, something we will
explore in the future.

Most of the generic programming concepts extend easily to species. Being func-
tors, mapping over species is straightforward; it does depend on the storage model
but is generic in the species description.
instance Functor Structure where

fmap f (Stored s xs) = Stored s (fmap f xs)
instance Functor Storage where fmap = mapStor
mapStor :: (a->b) -> (Storage a) -> (Storage b)
mapStor f StorNone = StorNone
mapStor f (StorMark _ x) = mapStor f x
mapStor f (Stor1 x) = Stor1 (f x)
mapStor f (Storn x) = Storn (map f x)
mapStor f (StorProd x y) = StorProd (mapStor f x) (mapStor f y)
mapStor f (StorSum s x) = StorSum s (mapStor f x)
mapStor f (StorComp xy) = StorComp (mapStor (mapStor f) xy)

Equality provides several interesting examples of how programming with species
works. Equality for sets is up to permutation of elements, and for cycles is up to
rotation. This is complicated by the fact that these may be sets/cycles of structures.
Equality over compositions complicates the whole process; the equality of F ◦ G
structures is managed by testing for the equality of F structures using the equality
of Gstructures as the boolean test. This is a generic strategy for lifting functions
over compositions of structures.
instance (Eq a) => Eq (Structure a) where

(==) (Stored s1 e1) (Stored s2 e2) | (s1 == s2) = eqstruct s1 (==) e1 e2
(==) (Stored s1 e1) (Stored s2 e2) | (s1 /= s2) = False

eqstruct :: (Eq a) => Spec->(a->a->Bool)->Storage a->Storage a->Bool
eqstruct Error _ _ _ = True
eqstruct Empty _ _ _ = True
eqstruct Single eq (Stor1 x) (Stor1 y) = eq x y
eqstruct Single _ _ _ = False

12
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eqstruct Set eq (Storn xs) (Storn ys) = isPermutationBy eq xs ys
eqstruct Set eq (Stor1 x) ys = eqstruct Set eq (Storn (x:[])) ys
eqstruct Set eq xs (Stor1 y) = eqstruct Set eq xs (Storn (y:[]))
eqstruct Cycle eq (Storn x) (Storn y) = isCycleBy eq x y
eqstruct (FixSize n s) eq x y = eqstruct s eq x y
eqstruct (Prod s1 s2) eq (StorProd x1 x2) (StorProd y1 y2) =

(eqstruct s1 eq x1 y1) && (eqstruct s2 eq x2 y2)
eqstruct (Sum _) eq (StorSum sx ex) (StorSum sy ey) | (sx == sy)

= (eqstruct sx eq ex ey)
eqstruct (Sum _) eq (StorSum sx ex) (StorSum sy ey) | (sx /= sy)

= False
eqstruct (Pt s) eq ex ey = eqstruct s eq ex ey
eqstruct (Comp f g) eq (StorComp xs) (StorComp ys) =

eqstruct f (eqstruct g eq) xs ys
eqstruct (FuncComp f g) eq xs ys = eqstruct Set eq xs ys
eqstruct (RTree r tr) eq (StorProd (Stor1 xr) rbx)

(StorProd (Stor1 yr) rby) =
(eq xr yr) && (eqstruct (Comp r (RTree r tr)) eq rbx rby)

eqstruct _ _ _ _ = False

3.3 Generic Programming

There are a large number of approaches to generic programming in Haskell, as
described in [20], a very active area of research. Species fits very well into these
strategies, with the new structures providing the opportunity for enhanced capabil-
ities while being compatible with the existing systems.

The generic programming approaches described there generally recognize the
notion of sum and product as operators on type constructors, and provide generic
methods to adapt methods to these constructed types. For example, Generic Haskell
allows functions to be defined over sum and product type constructor operators.

We show a Generic Haskell style translation of an encode function. To support
species, the main additions are more bit patterns for headers and length encoding
for sets and cycles. In this example, encode translates a regular dataype of Ints into
a bit list 4 encapsulating the structure. For brevity, we name the subfunctions of
encode with a leading e only.

encode{|0|} =error "impossible"

encode{|1|} = [ ]
encode{|X |} i =eInt i

encode{|E|} i =eSetStart ++ foldr eInt i ++ eSetEnd
encode{|C|} i =eCycleStart ++ foldr eInt i ++ eCycleEnd
encode{|Fn|} i =eCard n ++ encode{|F|} i

encode{|F•|} (Fx) =ePt ++ encode{|F|} x

encode{|F + G|} (Fx) =encode{|F|} x

encode{|F + G|} (Gx) =encode{|G|} x

encode{|F · G|} (x ∗ y) =encode{|F|} x ++ encode{|G|} y

encode{|F ◦ G|} xys =fold{|F|} ((++).(encode{|G|})) xys

encode{|AR|} xs =encode{|X · (R ◦ AR)|} xs

encode{|F × G|} x =eCart ++encode{|F|} x ++ encode{|G|}x

Some care must be taken with composition, as this means generically extending a
function over a structure of structures. This requires a generic fold function, which

4 the standard example uses Ints and Chars, our implementation is currently single-sorted
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unwraps the first layer of species into a list, applying the encoding generated by
the interior species. This is a standard pattern for generic functions over composed
species.

Generically extending functions over the new species and operators is somewhat
novel. The definition of equality of structures provides a good example of the issues
here; two sets of items are equal if one is a permutation of the other, and two cycles
are equal if there is a rotation of the first so that it is identical to the second. This is
a substantial departure from all other generic programmings schemes as each data
element in the underlying type is part of a singleton (in species terminology). This
is not the case in species, where elements could be grouped in a set without an
externally accessible ordering.

3.4 Testing and random generation

A Haskell programmers who is now addicted to QuickCheck [8] may wonder if this
generalization will make their life more difficult. Pleasantly the answer is a resound-
ing “no”. Both the theory and practice of enumeration and random generation of
samples from structures defined as species has been fully worked out.

A Calculus for the random generation of labelled combinatorial structures [16]
covers the theory in detail. An even more thorough treatment is in the forthcom-
ing book [15]. From the point of view of testing and random generation, we can
summarize their findings as

Theorem 3.2 Any representable specie has a random generation routine that uses
precomputed tables of size O(n) and achieves O(n log n) worst-case time complexity
for generating a structure of size n. The tables take time O(n2) to compute.

The generation algorithm is naturally staged: given a representation of a specie
(and a size), it returns a specialized routine for the generation. This is especially
well-suited to testing of algorithms over combinatorial structures, as the structures
tend to be stable but testing of algorithms needs to happen on a regular basis.

The combstruct package in the computer algebra system Maple R© offers such
facilities [14]. For example, using this package we can define ordered rooted planar
trees (see section 2.8) and draw a random size 7 structure via

> orpt := {AL = Prod(Z, Sequence(AL))}:
> draw([AL, orpt, ’unlabelled’], size=7);

where AL is the name of the structure, Z is an atom (i.e. X ), and Sequence is a
synonym for List. It is also possible (via allstructs) to get all structures of a
particular size.

3.5 Counting

The rules for producing a system of equations from a system of functional equations
for a species are algorithmic. But much, much more is true. Getting any number
of terms from the resulting generating functions is also algorithmic. For very large
classes of equations, solving in closed form (when it exists) is a decidable problem.
All examples in section 2.8 (except the ones using functorial composition) were
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automatically verified using combstruct. For the example of the previous section,
it is as simple as

> gfsolve(orpt,’unlabelled’,x);

which returns

{Z(x) = x,AL(x) =
1−

√
1− 4x

2
}.

But one can do even more. The theory of asymptotic analysis of coefficients
of holonomic functions (a class that covers most of the generating functions which
appear as solutions) is very well developped [13,15] and largely automated [11,14,31].

3.6 Quantifying efficiency

We don’t have to stop at counting datastructures. By associating cost functions in
a natural way to functional algorithms over species [11,12], tools also exist [14,31]
for the automatic computation of asymptotic expansions of both the worst-case and
even average case cost functions for such functions.

We are expecially enamoured with a particular example in [12] which shows
that for a class of expressions (defined as a specie), a particular algorithm for dif-
ferentiation (using term rewriting) applied to a random expression of size n has
complexity √

π

12
n3/2 +

5
6
n + O(n1/2)

while a variant of the algorithm which uses sharing of terms has complexity

4
3
n +

1
6

+ O(
1
n

).

We are working on linking such tools into our current work.

3.7 Compiler optimization

Theorem 2.7 has a rather unusual application as a compiler optimization. Suppose
we have some general algorithm over a specie F and we know the first few terms
of its expansion F = F0 + F1 + F2 + . . .. We can then emit specialized code,
using aggressive inlining, for those small cases. If the run-time representation of
that structure also gives us O(1) access to knowing whether it is of size 5 ≤ 2 or
> 2, we can take full advantage of these specialized versions which are frequently
much simpler. This is especially advantageous for recursive operations; although
this only gives us a constant speed-up, that can nevertheless be significant. To us
the important part is that this can be done automatically.

4 Advanced Species

We give a quick overview of the more advanced theory of species, as we have only
covered a small part of the theory. This is by no means exhaustive, but rather only

5 note that we only need to decide those predicates, we do not need to know the actual size
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covers those areas where we feel that applications to (functional) programming are
likely. The reader is again directed to [5] for more details.

4.1 Multisort and Weighted Species

The theory of species is easily extended into two different directions: adding weights
and adding sorts.

Weightings allow the classification and analysis of species according to one or
more descriptive parameter(s). Weights are given by a function w : A → A where A
is a formal power series ring (in an arbitrary number of variables) over an integral
domain K. Weights are frequently taken to be monomials in A. We define the
weight of a set A to be

|A|w =
∑
α∈A

w(a)

From pairs (U,w) of a set U and a weight w : U → A, one can make a category by
taking weight-preserving bijections as arrows. The endofunctors of this category are
then called weighted species. The formal power series associated is the exponential
power series Fw with coefficients in A

Fw(x) =
∑
n≥0

| F [n] |w
xn

n!
(1)

As is usual in combinatorics, this lets us count certain properties of structures. For
example, we can count binary trees which have at least on path of length l. Another
example is the specie Sw of permutations weighted by the number of cycles, i.e.
where w(σ) = αcycles(σ) and α is a formal variable (so that A = Z[α]). We then
obtain that Sw(x) = exp(−α log(1− x)) = (1− x)−α.

Multisort species are defined as functors from Bk to E, where the arrows of Bk are
component-wise bijections. Each component is regarded as a different sort. One of
the more interesting 2-sorted species is Fun[U, V ] = {f | f : U → V } of functions
from set U to set V . The associated generating function satisfies Fun(X, Y ) =
E(E(X) · Y ). There are similar functional, as well as differential, equations for the
2-sorted species of injective, surjective and bijective functions (see exercise 1 in
Section 2.4 of [5]).

Weighting can be extended to multisort species through obvious means, the
details of which are also available in [5].

4.2 Virtual Species

The semi-ring of species (Spe) covers a large class of structures, but it does not
provide a solution to all implicitly defined species. This semi-ring can be extended
to a full ring, in much the same way that the semi-ring of natural numbers can be
extended to the integers. The set of virtual species is defined as the quotient set
Virt = (Spe × Spe)/ ∼ where (F ,G) ∼ (H,K) ⇐⇒ F +H ' G + K. Virt
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can be made into a commutative ring using

(F ,G) + (H,K) =(F +H,G +K) addition
(F ,G) · (H,K) =(F · H+ G · K)− (F · K + G · H) multiplication

When G is a subspecie of F , we can interpret F −G straightforwardly as the struc-
tures of species F excluding those that are in G. In other cases F−G is called strictly
virtual, and we must rely on formal rules to manipulate these virtual species.

One important result [40], is that every virtual species Φ can be written in a
unique reduced form

Φ = Φ+ − Φ− where Φ+ ∩ Φ− ⊂ {0,1}

where we call Φ+ (resp. Φ−) the positive (resp. negative) part of the species.
Various concepts, like multiplicative inverse (a.k.a division), the inverse for sub-

stitution and even logarithm can be given a meaning for virtual species. Addi-
tionally many combinatorial and functional equations that do not allow solutions
within Spe can be solved within the ring of virtual species. All operations on species
generalize to virtual species.

Strictly virtual species do not have a clear interpretation as type constructors.
However it seems likely that these would be very useful in representing intermediate
constructions. As long as one only ever attempts to instantiate positive species,
virtual species could provide a very rich language for modular construction of type
constructors.

This ring is not without further surprises. For example, for fixed n ≥ 2, let
us consider the (virtual) specie Φ = nCn − X n. We compute that Φ′ = nX n−1 −
nX n−1 = 0. Thus the equation F ′ = 0 has an infinite number of solutions which
we would not normally consider “constant”.

4.3 Integration

We have just shown that integration in species seems problematic. Since the deriva-
tive is already known to be an important operation, we would really want to un-
derstand integration (if it exists). There are really two answers.

In our current context, Rajan [34] shows that the derivative has both a left and
right adjoint, which are rather different from each other.

Up to now, we have been using species based on the category B. There is however
a very similar theory of linear species based on the category L of totally ordered
sets and increasing bijections. When we need to be precise, we refer to B-species or
L-species as necessary.

L-species are useful in two ways:

(i) In defining data structures in which there is some essential order on the un-
derlying data elements, such as a binary tree with nodes decreasing in value
towards the root,

(ii) and modeling the natural ordering assigned by the physical addressing of a
concrete (von Neumann style) computational system.
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L-species allow two new operations:

F ∗ G = F ·O X ·O G Convolution (2)

(
∫
F)[L] = F [L\ {minL}] Integral (3)

where L is a linearly ordered set and minL is its least element. We indicate by ·O
the ordered product.

In L-species, differentiation is defined by addition of a new minimal element, so
that we can see that integration is literally the inverse of differentiation. Further-
more, this extra structure allows us to solve many different kinds of combinatorial
differential equations, as well as functional equations.

5 Related Work

There are several different strands of research which are related. We single out
four areas: work on generalized types, work on combinatorial structures, work on
species, and work on generic programming. We review the highlights in the sections
below.

5.1 Functors as Type Constructors

Using categorical models of data types has a long and fruitful history, but we will
assume that the reader is aware of this. We will thus restrict ourselves to citing
papers which we find representative of each approach. We found [17] a particularly
enlightening introduction to this topic.

We hasten to point out that species, being of a combinatorial nature, do not
easily lend themselves to modeling co-algebraic structures. This is not to say that
there is not a relation, which Rutten [36] also conjectures exists, but this area does
not seem to have been explored yet.

5.1.1 Containers
Containers [1,2,3] and Species are very similar, they mainly differ in their emphasis.
Containers emphasize shape, while species put more emphasis on combinatorics and
explicit examples. Species and quotient containers with finite shape are intimately
related, and we would not be surprised if they turn out to be isomorphic. In other
words, a certain part of our work could have just as easily been done using contain-
ers. However, we wanted to leverage the combinatorial tools and the extensive and
explicit theory of species, especially as it is already close to programming practice.
Doing the same via containers would have required us to first ensure that a lot
(more) theory ’worked’, which was not our goal. We are reasonably convinced that
once a combinatorial interpretation of quotient containers is firmly established, our
work could be recast in that light.

18



Carette and Uszkay

5.1.2 Non-regular Functors
Malcolm in [29] showed that initial algebras also exist for all regular functors. In
first thought that regularity was somehow needed 6 , but Bird et al in [7] followed
by Johann and Ghani in [35] firmly put that to rest. This last paper shows that
parametrised inductive data types where recursion is non-uniform still leads to initial
algebras. This is done by considering the type to be the fixed point of a higher order
functor over the category of functors over initial algebras. This reverses the roles
of the fixed point operator and lamba operator to create inductive families of types
instead of families of inductive types.

5.1.3 Bifunctors and Higher Order Operators
In [18], Gibbons defines a polymorphic type using bifunctors. A type is then ob-
tained via the least fixed point of a section of this bifunctor with a type argument,
viz

TA = DATA(A⊕)
inTA :: A⊕ TA → TA

where inTA is the constructor function. The type constructor T can then be de-
scribed as a functor, with its action on a function f given by

Tf = foldTA(inTB ◦ (f ⊕ id)) = map T f

and denoted as map T f .
This approach makes it easy to define properties of folds and other paramorphic

higher order operators. In order to make the fold and unfold interoperate, the work
is presented in the category of pointed complete partial orders (pcpo) and strict
continuous functions CPO⊥, which requires all underlying sorts be extened with a
⊥ denoting undefinedness, and certain strictness conditions. Many programs can
be written as combinations of folds and unfolds; [18] includes several examples such
as quicksort and merge sort.

This clearly seems to be related to 2-sorted species and the implicit species
theorem, as we noted earlier. We intend to pursue the exact relation in more detail
in future work.

5.1.4 Shapely Functors
C. Barry Jay introduced the notion of shapely functors in [23] as a way of separating
a function’s action on structure from its action on data values. A shapely functor
F is defined categorically as a functor over an extensive category that preserves
all (stable) pullbacks and is equipped with a copyable natural transformation that
embeds a list of data elements into F .

Lists, vectors and matrices and their standard operations are defined in terms of
shapely functors. In [25] and [24], he introduces shape polymorphism, the dual to
data polymorphism, where an operation changes the shape but not the values of the
data, and shows that shapely type constructors are closed under the construction
of initial algebras. Lists, trees, graphs and all other “algebraic” types are shown to

6 see [35] for details on this
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be shapely; arrays and vectors are also shapely, so that class is larger than regular
functors. He also addresses the issues of building a type system using shapely
functors.

This theoretical work is then applied in the language FISh [26] in which data
types operations have both shape and data components. The compiler checks shapes
statically, and can optimize based on shapes.

One of the most notable features here is the inclusion of vectors and arrays.
At any given size, these are also clearly species. What is interesting is how much
of the shape is visible to the type system and the compiler, and can be used for
optimization.

5.2 Combinatorial structures

The best guide to the vast litterature is undoubtedly the Flajolet and Sedgewick
book [15], but Stanley’s 2-volume set on enumerative combinatorics [37,38] is also
a good source. Note that a fair bit of the work described here can be generalized
to attribute grammars [31].

As well as combstruct in Maple, there is also MuPAD-Combinat [21] and
Aldor-Combinat [19]. The latter is noteworthy in two ways: it is implemented
in a very strongly typed language, and it adheres very closely to the theory of
species. There was also an earlier effort called Darwin [6] which does not seem to
have survived to this day.

5.3 Species

There have been many generalizations of species to cover many different aspects
of combinatorics – but an enumeration of these would take us too far afield. Re-
cently, Fiore et al have begun to explore the generalisation of species of structures
between small categories and the corresponding generalizsed analytic functors (be-
tween presheaf categories). This research is deeply categorical, but as part of [10],
they have identified that a Kleisli-bicategory of generalised species of structures is
cartesian closed, and therefore supports operations for abstraction and evaluation,
in addition to the standard projection and pairing. This clearly makes this work
relevant to the use of species to functional programming languages, but the exact
decoding from category theory to practical implementation matters have not yet
been done.

One should also mention the link with quantum physics through Baez and
Dolan’s stuff types [4] and expanded by Morton [33], which are also a generalization
of species.

5.4 Datatype Generic Programming

Datatype generic programming is one name given to the study of formal (and in-
formal) strategies to define functions which are naturally induced by the natural
shape of a data structure.

For Haskell alone [20] takes 75 pages for a thorough comparison of the various
approaches. We take it for granted that this is an important and fruitful method-
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ology. Thus we must prove that it is possible to lift these ideas to the setting of
species as well. We are evaluating all of the approaches as enumerated in [20] to see
which one will generalize most elegantly.

In theory, the refinement to the implicit species theorem gives us exactly what
we need: the existence of the appropriate initial algebra. This in turn gives us folds.
Unfortunately, this is insufficient, as implementing a fold over a set or a cycle is
considerably more difficult than over types obtained from a regular functor.

This is not an easy task, but Johann and Ghani [35] have shown how to describe
folds over nested datatypes. They provide both fold and build definitions for nested
data types arising from all rank 2 functors, and also provide generalized fold /
build fusion rules. These are given both as theory and in a Haskell implementation.
The extension of fusion laws to non-polynomial functors is a valuable guide in the
evaluation of fusion laws to analytic functors.

We should also mention Zippers. Originally conceived as a means to store a
data type with a distinguished element (i.e. a cursor), as well as a means to reach
the neighbours of this element. Huet [22] describes zippers for trees. Over time, the
link with derivatives was formalized. However, part of the original notion seems to
have been lost: that of a zipper as a means of (local) traversal. For regular functors,
it is relatively simple to reconstruct this information. However, it is not at all clear
if there is such a clear notion for “set”, for example.

6 Conclusion and Future Work

Species are a straightforward and powerful generalization of the theory of type con-
structors as currently exists in functional programming languages. It provides ad-
ditional constructors and combinators for the construction of useful abstract types.
The theory is already extrememly rich, and actually provides for features not yet
common in current implementations of programming languages, such as random
generation and enumeration (for testing), generation of counting functions (as equa-
tions, closed-form or in asymptotic form). It also enables some further functionality,
like automatic worst and average case analysis of algorithms, especially those algo-
rithms which “follow the structure” of the types.

It is not without some trepidation that we set out to write this paper, hoping
to do for species what Wadler did for monads in functional programming.

To us, one of the most interesting parts of the theory of combinatorial species is
its deep connections with generating functions, and thus analysis. It is remarkable
how many theorems from classical analysis (about analytic functions) can be lifted
to this setting. As Fiore et al note [10], “Analytic functors can be regarded as struc-
tural counterparts to exponential generating functions, and provide an equivalent
view of species of structures as Taylor series.” We are working on furthering this
dictionary by linking concepts in analysis as directly as possible to idioms in func-
tional programming. In particular, the connection with Huet’s Zipper [22] is deeper
than just being able to compute derivatives of type constructors. Some traversal
strategies seem to have interpretations as integrals and integral transforms that we
wish to make more precise.

Our implementation was strictly intended to explore the viability of species as
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type constructors, and to demonstrate that the main generic programming tech-
niques can be applied to analytic functors. We intend to explore this link in fur-
ther detail to see what new opportunities this affords. In particular, using one of
the generic programming frameworks, we would like to experiment with extending
Haskell’s syntax and type system to create a deep embedding of species as type
constructors.

Another area for investigation is to extend QuickCheck to be able to deal with
these new constructors. The automation afforded to us by the current state of
the theory should allow us to “derive” automated testing routines. If we can push
that in the area of combinatorics as well, perhaps by first linking-in to Maple’s
combstruct, that would be interesting too. Eventually, we would like to include
automated analysis of algorithms.

The attentive reader might have noticed the almost complete absence of folds
from this paper. In theory, there is no issue with fold. In practice however, imple-
mentations of fold have to deal with ordering of computations, which is a rather
thorny issue in the presence of sets and cycles. We have thought long and hard
about this issue, and hope to report on our progress in a subsequent publication.
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A Tables of species (from [5])
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Fig. A.1. Atomic species for sets of cardinality n ≤ 5.

Fig. A.2. Unlabelled rooted trees of cardinality n ≤ 5.
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