Ford-Fulkerson Pathological Example Demo CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

1

▲冊▶ ▲臣▶ ▲臣▶

Intuition. Let *r* satisfy $r^2 = 1 - r$.

- Initial capacities are { 1, *r* }.
- After some augmentation, residual capacities are $\{1, r, r^2\}$.
- After some more, residual capacities are $\{1, r, r^2, r^3\}$.
- After some more, residual capacities are $\{1, r, r^2, r^3, r^4\}$. $r-r^2$

$$r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r$$

1 - r

 $r^2 - r^3$

network G

augmenting path 1: $s \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = 1)

1

augmenting path 2: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r)

augmenting path 3: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)

augmenting path 4: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^2)

augmenting path 5: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^2)

augmenting path 6: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^3)

augmenting path 7: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^3)

augmenting path 8: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^4)

augmenting path 9: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^4)

after augmenting path 1: { $1 - r^0$, 1, $r - r^1$ } (flow = 1) after augmenting path 5: { $1 - r^2$, 1, $r - r^3$ } (flow = $1 + 2r + 2r^2$) after augmenting path 9: { $1 - r^4$, 1, $r - r^5$ } (flow = $1 + 2r + 2r^2 + 2r^3 + 2r^4$)

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Pf.

• Using the given sequence of augmenting paths, after $(1 + 4k)^{th}$ such path, the value of the flow

$$= 1 + 2 \sum_{i=1}^{2k} r^{i}$$

$$\leq 1 + 2 \sum_{i=1}^{\infty} r^{i}$$

$$= 3 + 2r$$

$$< 5$$

• Value of maximum flow = 200 + 1. •