Approximation Algorithms

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Eva Tardos (Chapter 11)

Ryszard Janicki Approximation Algorithms 1/19

Coping with NP-completeness

Q. Suppose | need to solve an NP-complete problem. What
should | do?

A. Theory says you are unlikely to find poly-time algorithm.
We must sacrifice one of three desired features.

@ Solve problem to optimality.

@ Solve problem in polynomial time.

@ Solve arbitrary instances of the problem.

p-approximation algorithm.
@ Guaranteed to run in polynomial time.
@ Guaranteed to solve arbitrary instance of the problem

@ Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution’s value is close to optimum,
without even knowing what optimum value is.

Ryszard Janicki Approximation Algorithms 2/19

Load balancing

Input. m identical machines; n jobs, job j has processing time t;.
@ Job j must run contiguously on one machine.

@ A machine can process at most one job at a time.

Definition (Load and Makespan)

@ Let J(i) be the subset of jobs assigned to machine i.
The load of machine i is L; = Z i
keJ(i)

@ The makespan is the maximum load on any machine L = max;{L;}.

Load balancing. Assign each job to a machine to minimize
makespan.

machine 1 a d f

machine 2 b C e g

L L time

Ryszard Janicki Approximation Algorithms 3/19

Load balancing on 2 machines is NP-hard

Proposition
Load balancing is hard even if only 2 machines.

SUBSET-SUM <p NUMBER-PARTITIONING <p LOAD-BALANCE,
where NUMBER-PARTITIONING is considered in Exercise 8.26 on page
518 of the textbook. We can prove directly SUBSET-SUM <p
LOAD-BALANCE, but this way it is easier. OJ
a b c d
e f g
N Y
length of job f
machine 1 a d f
machine 2 b C e g e
j) :_ time

Ryszard Janicki Approximation Algorithms 4/19

Load balancing: Greedy list scheduling

Greedy List Scheduling Algorithm.
@ Consider n jobs in some fixed order.
@ Assign job j to machine whose load is smallest so far.
List-Scheduling(m, n, ti,t;,.,t,) {
for i =1 tom {

Li< 0 <— load on machine i

J (1) <~ @ <+— jobs assigned to machine i

}
for j =1 ton {
i = argming Ly <— machine i has smallest load
J(i) < J@) U {j} < assignjob jto machinei
Li < L + ¢ <— update load of machine i
3
return J(1), .., J(m)
3
Implementation. O(nlog m) using a priority queue (c.f. CS/SE 2C03
course).

Ryszard Janicki Approximation Algorithms 5/19

Load balancing: Greedy list scheduling analysis

Greedy list scheduling algorithm is a 2-approximation.

@ First worst-case analysis of an approximation algorithm.
@ Need to compare resulting solution with optimal makespan L*.

@ Details in Kleinberg-Tardos.
O]

Ryszard Janicki Approximation Algorithms

Load balancing: Greedy with LPT rule

Greedy with Longest Processing Time (LPT). Sort n jobs in
descending order of processing time, and then run list
scheduling algorithm.
LPT-List-Scheduling(m, n, ti,t;,.,t,) {

Sort jobs so that t; > t, > .. = t,

for i =1 tom {
Ly < 0 <— load on machine i

1) « o <— jobs assigned to machine i

}

for j =1 ton {
i = argming L, <— machine i has smallest load

J@G) « J@G) u {j} <« assignjob jto machine i

Ly <= Ly 40 &y <— update load of machine i

b
return J(1), .., J(m)

Ryszard Janicki Approximation Algorithms 7/19

Load balancing: Greedy with LPT rule

Greedy with LPT rule is a 4/3-approximation.

o Complexity is O(nlog n) because of sorting.

@ 4/3-approximation is tight.

Ryszard Janicki Approximation Algorithms 8/19

Polynomial-time approximation scheme

e PTAS. (1 + ¢)-approximation algorithm for any constant
e>0.

@ Consequence. PTAS produces arbitrarily high quality solution,
but trades off accuracy for time.

@ We will show PTAS for knapsack problem.

Ryszard Janicki Approximation Algorithms

Knapsack (simple) problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <«— we assume wi < W for each i
* Knapsack has weight limit w.
» Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

1 1 1

2 6 2
3 18 5
4 22 6
5 28 7

original instance (W = 11)

Ryszard Janicki Approximation Algorithms 10/19

Knapsack problem

Definition (Knapsack problem)
Given a set X, weights w; > 0, values v; <0, a weight limit W,

and a target value V, is there a subset S C X such that:

ZW,'SW

i€eS
E Vi > 74
i€eS
Ryszard Janicki Approximation Algorithms

11/19

Knapsack is NP-complete

Definition (Knapsack problem)

Given a set X, weights w; > 0, values v; < 0, a weight limit W, and a

target value V/, is there a subset S C X such that:

ZW,’S W/\ZV,'Z 74

ieS i€S

SUBSET-SUM. Given a set X, values u; > 0, and an integer U, is there a
subset S C X whose elements sum to exactly U 7

SUBSET-SUM <p KNAPSACK.

., Up, U) of SUBSET-SUM, create KNAPSACK

Given instance (uy, ..
instance:

Vi = W; = Uj Z’-esuig U
V:W:U Z"GSUIZU

Ryszard Janicki Approximation Algorithms

Knapsack problem: dynamic programming |

Def. OPT(i,w) = max value subset of items 1....,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 using up to weight limit w.

Case 2. OPT selects item i.
* New weight limit =w —w;.
* OPT selects best of 1,...,i—1 using up to weight limit w - w;.

0 if i=0
OPT(i,w)=< OPT(i-1,w) if w,>w
max{ OPT(i-1,w), v,+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
* Not polynomial in input size.

e Polynomial in input size if weights are small integers.
Ryszard Janicki Approximation Algorithms 13/19

Knapsack problem: dynamic programming [l

Def. OPT(,v)= min weight of a knapsack for which we can obtain a solution
of value > v using a subset of items 1...., 1.

Note. Optimal value is the largest value v such that OPT(,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1, ...,i—1 that achieves value v.

Case 2. OPT selects item i.
* Consumes weight w;, need to achieve value v-v;.
* OPT selects best of 1, ...,i—1 that achieves value v —v;.

0 ifv<0
OPT(i,v) = < oo ifi=0and v>0
min {OPT(i — 1,v), w; + OPT(i —1,v —v;)} otherwise

Ryszard Janicki Approximation Algorithms 14/19

Knapsack problem: dynamic programming [l

Theorem. Dynamic programming algorithm Il computes the optimal value

in O(n? viax) time, where vyq is the maximum of any value.
Pf.

* The optimal value V* < n vy
* There is one subproblem for each item and for each value v < V*.
* It takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

Ryszard Janicki Approximation Algorithms

Knapsack problem: Knapsack problem: polynomial-time

approximation scheme

Intuition for approximation algorithm.
* Round all values up to lie in smaller range.
* Run dynamic programming algorithm Il on rounded/scaled instance.
» Return optimal items in rounded instance.

1 1 1

1 934221

2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 7 5 28 7
original instance (W = 11) rounded instance (W = 11)

Ryszard Janicki Approximation Algorithms 16/19

Knapsack problem: Knapsack problem: polynomial-time

approximation scheme

Round up all values:

* 0 <e=<1 =precision parameter.
. L. . Vi . V;
Vo = largest value in original instance. 7; = [gz-‘ 0, v = [ﬁq
* 0 = scaling factor=¢v,,, /2n.

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
P small and integral so dynamic programming algorithm Il is fast.

Ryszard Janicki Approximation Algorithms 17/19

Knapsack problem: Knapsack problem: polynomial-time

approximation scheme

Theorem. If Sis solution found by rounding algorithm and $*

is any other feasible solution, then (1 O v > Y v
i€S 1ES*

Pf. Let S* be any feasible solution satisfying weight constraint.

E v < E U; always round up

i€S* 1€S*
< 2 :@i §o|ve roundgd
- 4 instance optimally
i€s choosing §* = { max }
never round up 1
< E (vi +0) " Umaz < D Ui + 3 €Uma
i€S i€S
< D vt 3 Une
< E v; + nb ISl < n ies
ies thus
. Umaz < 2 0;
= E Vi + 3 € Umaz 0=¢€v,,/2n i€s
i€S
= (1+¢) E v; Vmax < 2 Zies Vi

i€S
Ryszard Janicki Approximation Algorithms 18/19

Knapsack problem: Knapsack problem: polynomial-time

approximation scheme

Theorem. For any ¢ >0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢) factor of the optimum in O®3/ ¢) time.

Pf.
* We have already proved the accuracy bound.
* Dynamic program Il running time is on® Pmax)s Where

Ryszard Janicki Approximation Algorithms 19/19

