
Approximation Algorithms
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 11)

Ryszard Janicki Approximation Algorithms 1/19



Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What
should I do?

A. Theory says you are unlikely to find poly-time algorithm.

We must sacrifice one of three desired features.

Solve problem to optimality.

Solve problem in polynomial time.

Solve arbitrary instances of the problem.

ρ-approximation algorithm.

Guaranteed to run in polynomial time.

Guaranteed to solve arbitrary instance of the problem

Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution’s value is close to optimum,
without even knowing what optimum value is.

Ryszard Janicki Approximation Algorithms 2/19



Load balancing
Input. m identical machines; n jobs, job j has processing time tj .

Job j must run contiguously on one machine.

A machine can process at most one job at a time.

Definition (Load and Makespan)

1 Let J(i) be the subset of jobs assigned to machine i .

The load of machine i is Li =
∑

k∈J(i)

tj .

2 The makespan is the maximum load on any machine L = maxi{Li}.

Load balancing. Assign each job to a machine to minimize
makespan.

4

Load balancing

Input.  m identical machines; n jobs, job j has processing time tj.

・Job j must run contiguously on one machine.

・A machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.
The load of machine i is Li = Σj ∈ J(i) tj. 

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing.  Assign each job to a machine to minimize makespan.

Machine 2

Machine 1a d f

b c e g

timeL20

machine 1

machine 2

L1

Ryszard Janicki Approximation Algorithms 3/19



Load balancing on 2 machines is NP-hard

Proposition

Load balancing is hard even if only 2 machines.

Proof.

SUBSET-SUM ≤P NUMBER-PARTITIONING ≤P LOAD-BALANCE,
where NUMBER-PARTITIONING is considered in Exercise 8.26 on page
518 of the textbook. We can prove directly SUBSET-SUM ≤P

LOAD-BALANCE, but this way it is easier.

Claim.  Load balancing is hard even if only 2 machines.

Pf.  NUMBER-PARTITIONING ≤ P LOAD-BALANCE.

5

yes

Load balancing on 2 machines is NP-hard

a d

f

b c

ge

length of job f

NP-complete by Exercise 8.26

Machine 2

Machine 1a d f

b c e g

time0

machine 1

machine 2

L

Ryszard Janicki Approximation Algorithms 4/19



Load balancing: Greedy list scheduling
Greedy List Scheduling Algorithm.

Consider n jobs in some fixed order.

Assign job j to machine whose load is smallest so far.

6

List-scheduling algorithm.

・Consider n jobs in some fixed order.

・Assign job j to machine whose load is smallest so far.

Implementation.  O(n log m) using a priority queue.

Load balancing:  list scheduling

List-Scheduling(m, n, t1,t2,…,tn) {

   for i = 1 to m {
      Li ← 0

      J(i) ← ∅

   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}
      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

Implementation. O(n logm) using a priority queue (c.f. CS/SE 2C03
course).

Ryszard Janicki Approximation Algorithms 5/19



Load balancing: Greedy list scheduling analysis

Theorem

Greedy list scheduling algorithm is a 2-approximation.

Proof.

First worst-case analysis of an approximation algorithm.

Need to compare resulting solution with optimal makespan L∗.

Details in Kleinberg-Tardos.

Ryszard Janicki Approximation Algorithms 6/19



Load balancing: Greedy with LPT rule

Greedy with Longest Processing Time (LPT). Sort n jobs in
descending order of processing time, and then run list
scheduling algorithm.

13

Load balancing:  LPT rule

Longest processing time (LPT).  Sort n jobs in descending order of 

processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {

   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn
  
   for i = 1 to m {
      Li ← 0

      J(i) ← ∅

   }

   for j = 1 to n {
      i = argmink Lk
      J(i) ← J(i) ∪ {j}

      Li ← Li + tj
   }
   return J(1), …, J(m)
}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

Ryszard Janicki Approximation Algorithms 7/19



Load balancing: Greedy with LPT rule

Theorem

Greedy with LPT rule is a 4/3-approximation.

Complexity is O(n log n) because of sorting.

4/3-approximation is tight.

Ryszard Janicki Approximation Algorithms 8/19



Polynomial-time approximation scheme

PTAS. (1 + ε)-approximation algorithm for any constant
ε > 0.

Consequence. PTAS produces arbitrarily high quality solution,
but trades off accuracy for time.

We will show PTAS for knapsack problem.

Ryszard Janicki Approximation Algorithms 9/19



Knapsack (simple) problem

54

Knapsack problem

Knapsack problem.

・Given n objects and a knapsack.

・Item i has value vi  > 0 and weighs wi  >  0.

・Knapsack has weight limit W.

・Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

we assume wi ≤ W for each i

original instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

Ryszard Janicki Approximation Algorithms 10/19



Knapsack problem

Definition (Knapsack problem)

Given a set X , weights wi ≥ 0, values vi ≤ 0, a weight limit W ,
and a target value V , is there a subset S ⊆ X such that:

∑

i∈S
wi ≤ W

∑

i∈S
vi ≥ V

Ryszard Janicki Approximation Algorithms 11/19



Knapsack is NP-complete

Definition (Knapsack problem)

Given a set X , weights wi ≥ 0, values vi ≤ 0, a weight limit W , and a
target value V , is there a subset S ⊆ X such that:

∑

i∈S

wi ≤W ∧
∑

i∈S

vi ≥ V

SUBSET-SUM. Given a set X , values ui ≥ 0, and an integer U, is there a
subset S ⊆ X whose elements sum to exactly U ?

Theorem

SUBSET-SUM ≤P KNAPSACK.

Proof.

Given instance (u1, . . . , un,U) of SUBSET-SUM, create KNAPSACK
instance:

vi = wi = ui
∑

i∈S ui ≤ U
V = W = U

∑
i∈S ui ≥ U

Ryszard Janicki Approximation Algorithms 12/19



Knapsack problem: dynamic programming I

56

Knapsack problem:  dynamic programming I

Def.  OPT(i, w) = max value subset of items 1,..., i with weight limit w.

Case 1.  OPT does not select item i.

・OPT selects best of 1, …, i – 1 using up to weight limit w.

Case 2.  OPT selects item i.

・New weight limit = w – wi.

・OPT selects best of 1, …, i – 1 using up to weight limit w – wi.

Theorem.  Computes the optimal value in O(n W) time.

・Not polynomial in input size.

・Polynomial in input size if weights are small integers.

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

Ryszard Janicki Approximation Algorithms 13/19



Knapsack problem: dynamic programming II

57

Knapsack problem:  dynamic programming II

Def.  OPT(i, v) = min weight of a knapsack for which we can obtain a solution 

of value ≥ v using a subset of items 1,..., i.

Note.  Optimal value is the largest value v such that OPT(i, v)  ≤  W.

Case 1.  OPT does not select item i.

・OPT selects best of 1, …, i – 1 that achieves value  v.

Case 2.  OPT selects item i.

・Consumes weight wi, need to achieve value v – vi.

・OPT selects best of 1, …, i – 1 that achieves value v – vi.

OPT (i, v) =

�
��
��

0 v � 0

� i = 0 v > 0

min {OPT (i � 1, v), wi + OPT (i � 1, v � vi)}

Ryszard Janicki Approximation Algorithms 14/19



Knapsack problem: dynamic programming II

58

Knapsack problem:  dynamic programming II

Theorem.  Dynamic programming algorithm II computes the optimal value 

in O(n2 vmax) time, where vmax is the maximum of any value.

Pf.

・The optimal value V* ≤  n vmax.

・There is one subproblem for each item and for each value v ≤ V*.

・It takes O(1) time per subproblem. ▪

Remark 1.  Not polynomial in input size!

Remark 2.  Polynomial time if values are small integers.

Ryszard Janicki Approximation Algorithms 15/19



Knapsack problem: Knapsack problem: polynomial-time
approximation scheme

59

Knapsack problem:  polynomial-time approximation scheme

Intuition for approximation algorithm.

・Round all values up to lie in smaller range.

・Run dynamic programming algorithm II on rounded/scaled instance.

・Return optimal items in rounded instance.

original instance (W = 11)

item value weight

1 934221 1

2 5956342 2

3 17810013 5

4 21217800 6

5 27343199 7

rounded instance (W = 11)

item value weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

Ryszard Janicki Approximation Algorithms 16/19



Knapsack problem: Knapsack problem: polynomial-time
approximation scheme

60

Knapsack problem:  polynomial-time approximation scheme

Round up all values:  

・0  <  ε  ≤  1 = precision parameter.

・vmax   = largest value in original instance.

・θ	
 	
 	
 =  scaling factor = ε vmax / 2n.

Observation.  Optimal solutions to problem with    are equivalent to

optimal solutions to problem with    .

Intuition.     close to v so optimal solution using    is nearly optimal;

   small and integral so dynamic programming algorithm II is fast.

  

€ 

ˆ v 
  

€ 

v 

  

€ 

ˆ v 
  

€ 

v   

€ 

v 

v̄i =
�vi

�

�
� , v̂i =

�vi

�

�

Ryszard Janicki Approximation Algorithms 17/19



Knapsack problem: Knapsack problem: polynomial-time
approximation scheme

Theorem.  If S is solution found by rounding algorithm and S*
is any other feasible solution, then

Pf.  Let S* be any feasible solution satisfying weight constraint. 

61

Knapsack problem:  polynomial-time approximation scheme

solve rounded
instance optimally

�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � vmax

= (1 + �)
�

i�S

vi

never round up
by more than θ

�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � vmax

= (1 + �)
�

i�S

vi

| S |  ≤  n

�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � vmax

= (1 + �)
�

i�S

vi

always round up
�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � vmax

= (1 + �)
�

i�S

vi

vmax  ≤  2 Σi ∈ S vi

�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � vmax

= (1 + �)
�

i�S

vi

�

i�S�

vi �
�

i�S�

v̄i

�
�

i�S

v̄i

�
�

i�S

(vi + �)

�
�

i�S

vi + n�

=
�

i�S

vi + 1
2 � v

= (1 + �)
�

i�S

vi

θ = ε vmax / 2n

(1 + �)
�

i�S

vi �
�

i�S�

vi

choosing  S* = { max } 

thus

v �
�

i�S

vi + 1
2 � v

�
�

i�S

vi + 1
2 v

v � 2
�

i�S

vi

v �
�

i�S

vi + 1
2 � v

�
�

i�S

vi + 1
2 v

v � 2
�

i�S

vi

v �
�

i�S

vi + 1
2 � v

�
�

i�S

vi + 1
2 v

v � 2
�

i�S

vi

Ryszard Janicki Approximation Algorithms 18/19



Knapsack problem: Knapsack problem: polynomial-time
approximation scheme

62

Knapsack problem:  polynomial-time approximation scheme

Theorem. For any ε > 0, the rounding algorithm computes a feasible solution 

whose value is within a  (1 + ε) factor of the optimum in O(n3 / ε) time. 

Pf.

・We have already proved the accuracy bound.

・Dynamic program II running time is                ,  where  

€ 

O(n2 ˆ v max)

€ 

ˆ v max  =
vmax

θ

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 

 =  n
ε

⎡ 
⎢ ⎢ 

⎤ 
⎥ ⎥ 

Ryszard Janicki Approximation Algorithms 19/19


