Exact Exponential Algorithms CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

This material is not covered by the textbook

Coping with NP-completeness

- Q. Suppose I need to solve an NP-complete problem. What should I do?
- A. Sacrifice one of three desired features.
 - Solve arbitrary instances of the problem.
 - 2 Solve problem to optimality.
 - 3 Solve problem in polynomial time.

Coping strategies.

- Design algorithms for special cases of the problem.
- ② Design approximation algorithms or heuristics.
- Oesign algorithms that may take exponential time.

Exact exponential algorithms

- Complexity theory deals with worst-case behavior.
- Instances you want to solve may be "easy".

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi \ = \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_4 \right)$$

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false}$

Theorem (Brute Force)

Given a 3-SAT instance with n variables and m clauses, the brute-force algorithm takes $O((m+n)2^n)$ time.

Proof.

- There are 2^n possible truth assignments to the n variables.
- We can evaluate a truth assignment in O(m+n) time.

A recursive framework. A 3-SAT formula Φ is either empty or the disjunction of a clause ($\{ \{v \in V \} \} \}$) and a 3-SAT formula Φ ' with one fewer clause.

$$\begin{split} \Phi &= (\{\{\{v\}, \{\{v\}, \{v\}\}\} \land \Phi'\}) \\ &= (\{\{\{v\}, \Phi'\}\} \lor (\{\{v\}, \Phi'\}) \lor (\{\{v\}, \Phi'\}\}) \\ &= (\{\{v\}, \{\{v\}, \{\{v\}, \Phi'\}\} \lor (\{\{v\}, \{\{v\}, \{\{v\},$$

Notation. $\Phi \mid x = true$ is the simplification of Φ by setting x to true. Ex.

$$\bullet \ \Phi \qquad \qquad = (x \vee y \vee \neg z) \ \wedge (x \vee \neg y \vee z) \ \wedge (w \vee y \vee \neg z) \ \wedge (\neg x \vee y \vee z).$$

•
$$\Phi'$$
 = $(x \lor \neg y \lor z) \land (w \lor y \lor \neg z) \land (\neg x \lor y \lor z)$.

•
$$(\Phi' \mid x = true) = (w \lor y \lor \neg z) \land (y \lor z).$$

each clause has ≤ 3 literals

A recursive framework. A 3-SAT formula Φ is either empty or the disjunction of a clause ($\{v \in V \}$) and a 3-SAT formula Φ' with one fewer clause.

```
3-SAT (\Phi)

IF \Phi is empty RETURN true.

(\{\{\}\}\} \{\{\}\}\} \{\}\} \{\}\} \{\}\} True)

RETURN true.

IF 3-SAT(\Phi' \{\}\} \{\}\} \{\}\} RETURN true.

IF 3-SAT(\Phi' \{\}\} \{\}\} RETURN true.

RETURN false.
```

Theorem. The brute-force 3-SAT algorithm takes $O(\text{poly}(n) 3^n)$ time.

Pf.
$$T(n) \leq 3T(n-1) + poly(n)$$
.

$$\left(\ell_1 \vee \ell_2 \vee \ell_3\right) \wedge \Phi' \leftarrow \Phi \text{ means `represent } \Phi \text{ as } \left(\ell_1 \vee \ell_2 \vee \ell_3\right) \wedge \Phi''.$$

Key observation. The cases are not mutually exclusive. Every satisfiable assignment containing clause ($\{ \{ v \} \} \}$ which will be used to satisfiable assignment containing clause ($\{ \{ \{ v \} \} \} \} \}$ which is the containing clause ($\{ \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \} \} \} \}$).

- & is true.
- & is false; & is true.
- & is false; & is false; & is true.

```
3-SAT (\Phi)

If \Phi is empty Return true.

(\{ \{ \forall \} \{ \} \} \land \Phi' \leftarrow \Phi. \})

If 3-SAT(\Phi' \mid \{ \} = true)

RETURN true.

If 3-SAT(\Phi' \mid \{ \} = false, \{ \} = true)

RETURN true.

If 3-SAT(\Phi' \mid \{ \} = false, \{ \} = true)

RETURN true.

RETURN true.
```

Theorem. The brute-force algorithm takes $O(1.84^n)$ time.

Pf.
$$T(n) \le T(n-1) + T(n-2) + T(n-3) + O(m+n)$$
.

largest root of $r^3 = r^2 + r + 1$

```
3-SAT (\Phi)

If \Phi is empty RETURN true.

(\{\{\{\}\}\}\}\} \wedge \Phi' \leftarrow \Phi.

If 3-SAT(\Phi' | \{\{\}\} = true) RETURN true.

If 3-SAT(\Phi' | \{\{\}\} = false, \{\{\}\} = true) RETURN true.

RETURN true.

RETURN true.

RETURN true.
```

Theorem. There exists a $O(1.33334^n)$ deterministic algorithm for 3-SAT.

SAT Problem: Idea

• An example of a Boolean formula:

$$\Phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z}),$$

where \overline{x} means $\neg x$, so $x = 0 \iff \overline{x} = 1$ and $x = 1 \iff \overline{x} = 0$.

Definition

A Boolean formula Φ is **satisfiable** if so some assignment of 0's and 1's to the variables makes the formula to eveluate to 1.

- $(\overline{x} \wedge y) \vee (x \wedge \overline{z}) = 1$ if x = 0, y = 1, z = 0. This formula is satisfiable.
- $(\overline{x} \wedge y) \wedge (x \wedge \overline{z})$ is never 1, always 0. This formula is not satisfiable.

Exact algorithms for SAT

- DPPL algorithm. Highly-effective backtracking procedure.
 - Splitting rule: assign truth value to literal; solve both possibilities.
 - Unit propagation: clause contains only a single unassigned literal.
 - Pure literal elimination: if literal appears only negated or unnegated.
- Chaff. State-of-the-art SAT solver.
 - ullet Solves real-world SAT instances with \sim 10K variables.
- There are many other efficient SAT-solvers.

Exact algorithms for Traveling Salesman Problem (TSP) and Hamilton cycle

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V?

Theorem. The brute-force algorithm for TSP (or HAM-CYCLE) takes O(n!) time. Pf.

- There are $\frac{1}{2}(n-1)!$ tours.
- Computing the length of a tour takes O(n) time.

Note. The function n! grows exponentially faster than 2^n .

- $2^{40} = 1099511627776 \sim 10^{12}$.
- $40! = 8159152832478977343456112695961158942720000000000 \sim 10^{48}$.

Exact algorithms for TSP and Hamilton cycle

Theorem

There exists a $O(n^22^n)$ time algorithm for TSP (and HAMILTON-CYCLE).

Proof (Dynamic Programming).

- Define $c(s, v, X) = \cos t$ of cheapest path between s and v that visits every node in X exactly once (and uses only nodes in X).
- Observe $OPT = \min_{v \neq s} c(s, v, V) + c(v, s)$.
- There are $n \ 2^n$ subproblems and they satisfy the recurrence:

$$z(s,v,X) = \begin{cases} c(s,v) & \text{if } |X| = 2\\ \min_{u \in X \setminus \{s,v\}} c(s,u,X \setminus \{v\}) + c(u,v) & \text{if } |X| > 2. \end{cases}$$

 The values c(s, v, X) can be computed increasing order of the cardinality of X.

Exact algorithms for Hamilton cycle

Theorem

There exists a $O(1.657^n)$ time randomized algorithm for HAMILTON-CYCLE.

Euclidean traveling salesperson problem

Euclidean TSP. Given *n* points in the plane and a real number L, is there a tour that visit every city exactly once that has distance $\leq L$?

Theorem

Given n points in the plane, for any constant $\varepsilon>0$, there exists a poly-time algorithm to find a tour whose length is at most $(1+\varepsilon)$ times that of the optimal tour.

Concorde TSP solver

• Concorde TSP solver is very efficient program that uses plenty of various techniques and heuristic to solve real life TSP problems. It solved all 110 TSP benchmarks.

