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Online vs Offline Algorithms

The algorithms discussed so far were offline algorithms, in the
sense that entire input was given at the beginning.

In this lecture we change our paradigm and consider online
algorithms, where the input is presented piecemeal, in a serial
fashion, and the algorithms has to make decisions based on
incomplete information, without knowledge of future events.

Typical example: A caching discipline.
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Caching Discipline

A hard disk from which data is read into much smaller
random access memory.

It must be decided which data has to be overwritten with new
data.

New requests arrive continuously, and it is hard to predict
future requests.

We must overwrite parts of random access memory with new
requests, but we have to try to minimize future misses.

Misses: data that is required but not present in random access
memory, and so it has to be brought from the hard disk.

Minimizing the number of misses is difficult when the future
requests are unknown.
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List Accessing Problem

A filing cabinet contains l labeled but unsorted files.

We receive a sequence of requests to access files; each request
is a file label.

After receiving a request for a file, we must locate it, process
it, and return it to the cabinet.

Since the files are unordered, we must flip through the files
starting at the beginning, until the requested file is located.

If a file is in position i , we incur a search cost of i in locating
it.

If the file is not in the cabinet, the cost is l , which is the total
number of files.

After taking out the file, we must return it to the cabinet, but
we may choose to reorganize the cabinet, for instance, we
might put it closer to the front.
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List Accessing Problem

After taking out the file, we must return it to the cabinet, but
we may choose to reorganize the cabinet, for instance, we
might put it closer to the front.

It may save us some search time in the future: if a certain file
is requested frequently, it is wise to insert it closer to the front.

Our goal is to find a reorganization rule that minimize the
search time.
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List Accessing Problem

Let σ = σ1, σ2, . . . , σn be a finite sequence of n requests.

To service request σi , an algorithm must search for the item
labeled σi by traversing the list from the begiining.

If item σi is in position j , the cost of search is j (up to a
constant).

Furthermore, the algorithm may reorganize the list any time.

Each transposition has a cost 1 (up to a constant), however,
immediately after accessing an item, we allow it to be move
free of charge to any location closer to the front of this list.

Why free? As we scan the list we keep a pointer at a given
location along the way and then insert σi in that location
almost free of additional search or reorganization costs (our
estimations are up to some constant).

All other transportations are paid.
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Static List Accessing Model: Move To Front Algorithm

Static List Accessing Model: Only requests are to access an
item on the list, there are no insertions or deletions.

Move To Front (MTF) algorithm: After accessing an intem,
we move it to the front of the list, without changing the
relative order of the other items.

MTF (σ) - for σ = σ1, σ2, . . . , σn, for each i , it finds σi and
reallocates it to the front.

The cost of MTF (σ), traditionally also denoted by MTF (σ),
is the sum of the costs of all the searches, as moving to the
front is free.
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Move To Front Algorithm

Example

Let l = x1, x2, x3, x4, x5 and σ = x5, x1, x2, x5

Notation:
xj ,(k)→ means xj found and moved to the front at the cost k.

x1, x2, x3, x4, x5
x5,(5)→ x5, x1, x2, x3, x4

x1,(2)→ x1, x5, x2, x3, x4
x2,(3)→

x2, x1, x5, x3, x4
x5,(3)→ x5, x2, x1, x5, x3, x4

Total cost MTF (σ) = 5 + 2 + 3 + 3 = 13.

The list l has been changed from old l = x1, x2, x3, x4, x5 to
new l = x5, x2, x1, x5, x3, x4.
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Move To Front Algorithm

Theorem

Let OPT be an optimal offline algorithm for the static list
accessing model. Suppose that OPT and MTF both start with the
same list configuration. Then, for any sequence of requests σ,
where |σ| = n, we have:

MTF (σ) ≤ 2OPTS(σ) + OPTP(σ)− OPTF (σ)− n,

where OPTS(σ), OPTP(σ),OPTF (σ) are the total cost of
searches, the total cost of paid transpositions and the total cost of
free transpositions, of OPT on σ, respectively.

Ryszard Janicki Online Algorithms 9/36



Proof.

Assume MTF and OPT work in parallel, starting from the same list,
and neither starts to process σi until the other is ready to do so.

ai = ti + (Φi − Φi−1)

where ti is the actual cost that MTF incurs for processing that
request,

Φi is a potential function, defined as the number of inversions in
MTF ’s list with respect to OPT ’s list.

ai is called the amortized cost, and Φi − Φi−1 is a measure of the
“distance” between MTF ’s list and OPT ’s list after processing σi .

An inversion: an ordered pair (xj , xk), where xj precedes xk in
MTF ’s list, but xk precedes xj in OPT ’s list.

Example

The list of MTF : x1, x2, x3, the list of OPT : x3, x2, x1,
inversions (x1, x2), (x1, x3), (x2, x3), so Φ = 3

Since the lists are initially identical: Φ0 = 0.
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Proof.

MTF (σ) =
n∑

i=1

ti = Φ0 − Φn +
n∑

i=1

ai ≤
n∑

i=1

ai .

We will show that ai = ti + (Φi − Φi−1) ≤ (2si − 1) + pi − fi ,
where si is the search cost of OPT for accessing request σi ,
and pi and fi are the paid and free transportations,
respectively, incurred by OPT when servicing σi

Consider the case below (in this case j < k but we do not
make such assumption in general)

∗ denotes items located before x in MTF but after x in OPT , i.e.

inversions wrt x .

Let MFT make a move, i.e. it moves x to the beginning of
the list. Suppose that there are v inversions (∗ in the picture).
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Proof.

The number of elements before x in MTF is k − 1, and of
these k − 1 elements v are ∗.
Both list contains the same elements, from all non-∗ before x
in MTF , k − 1− v must be before x in OPT (if an element is
before x in MTF and after x in OPT it is ∗).

There are at least k − 1− v items that precede x in both lists.

k − 1− v ≤ j − 1 since x is in the j-th position in OPT , i.e.
k − v ≤ j .

When MTF moves x to the front we have:
1 k−1− v new inversions are created with respect to OPT ’s list,
2 v inversions are eliminated with respect to OPT ’s list.

Hence, the contribution to ai is:
k + ((k − 1− v)− v) = 2(k − v)− 1 ≤ 2j − 1 = 2s − 1
as for search s in OPT we have s = j .
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Proof.

What about pi and fi?

So far we have considered the moves of MTF , now we have to
consider moves of OPT .

For each paid transposition, the only change can come from the two
transposed items as the relative order for the rest remain the same.
Hence one paid transposition contributes 1, and servicing σi by
OPT requires pi paid transpositions.

For each free transposition, MTF already put the transposed item x
at the from of its list, and free transpositions can only move
forward, so the number of item before x in OPT decreases by 1.
Since servicing σi by OPT requires fi free transpositions, we have to
subtract fi .

So we have proved ai ≤ (2si − 1) + pi − fi .

This shows that:
n∑

i=1

ai ≤
n∑

i=1

((2si−1)+pi− fi ) = 2(
n∑

i=1

si )+(
n∑

i=1

pi )−(
n∑

i=1

fi )−n =

2OPTS(σ) + OPTP(σ)− OPTF (σ)− n
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Dynamic List Accessing Model

We also have insertions, where the cost of an insertion is
l + 1, where l is the length of the list, and

deletions, where the cost of a deletion is the same as the cost
of an access, i.e. the position of the item on the list.

Theorem

Let OPT be an optimal offline algorithm for the dynamic list
accessing model. Suppose that OPT and MTF both start with the
same list configuration. Then, for any sequence of requests σ,
where |σ| = n, we have:

MTF (σ) ≤ 2OPTS(σ) + OPTP(σ)− OPTF (σ)− n,

where OPTS(σ), OPTP(σ),OPTF (σ) are the total cost of
searches, the total cost of paid transpositions and the total cost of
free transpositions, of OPT on σ, respectively.
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Competitiveness/Approximation

Competitive Analysis: the payoff of an online algorithm is
measured by comparing its performance to that of an optimal
offline algorithm.

We say that an online algorithm ALG is c-competitive if there
is a constant α such that for all finite input sequences σ:

ALG (σ) ≤ c · OPT (σ) + α

The infimum of a subset S ⊆ Reals is the largest element r ,
not necessarily in S , such that for all s ∈ S , r ≤ s. For
example 0 is infimum of S = (0, 1).

The competitive ratio of ALG , denoted R(ALG ), is the
infimum over all values c such that ALG is c-competitive.
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Upper Bound for OPT for List Accessing Model

Proposition

For every sequence of requests σ, OPT (σ) ≤ n · l , where l is the
length of the list and n is |σ|

Proof.

OPT is the optimal offline algorithm, and hence it must do as well
as any algorithm ALG . Suppose we service all requests one-by-one
in the naive way, without making any rearrangements. The cost of
this scheme is bounded by n · l , so OPT (σ) ≤ n · l .
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Competitiveness of MTF

Proposition

MTF is a 2-competitive algorithm.

Proof.

MTF (σ) ≤ 2 · OPTS(σ) + OPTP(σ)− OPTF (σ)− n
≤ 2 · OPTS(σ) + OPTP(σ) ≤ 2 · (OPTS(σ) + OPTP(σ)) =
2 · OPT (σ).
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Competitive Ratio of MTF

Proposition

R(MTF ) ≤ 2− 1
l .

Proof.

MTF (σ) ≤ 2 · OPTS(σ) + OPTP(σ)− OPTF (σ)− n
≤ 2 · OPTS(σ) + OPTP(σ)− n ≤
2 · (OPTS(σ) + OPTP(σ))− n = 2 · OPT (σ)− n.

On the other hand, OPT (σ) ≤ n · l , i.e. n ≥ OPT (σ)
l . Hence

MTF (σ) ≤ 2 · OPT (σ)− n ≤ 2 · OPT (σ)− OPT (σ)
l =

(2− 1
l ) · OPT (σ).
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Paging

Consider a two-level virtual memory system: each level, slow
and fast, can store a number of fixed-size memory units called
pages.

The slow memory stores N pages, and the fast memory stores
k pages, where k < N. The k is usually much smaller than N.

Given a request for page pi , the system must make page pi
available in the fast memory.

If pi is already in the fast memory, called a hit, the system
need not do anything.

Otherwise, on a miss, the system incurs a page fault, and must
copy the page pi from the slow memory to the fast memory.

Problem: which page to evict from the fast memory to make
space for pi .

In order to minimize the number of page faults, the choice of
which page to evict must be made wisely.
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Paging

Typical examples of fast and slow memory pair are a RAM
and hard disk, respectively, or a processor-cache and RAM,
respectively.

In general, we shall refer to the fast memory as “the cache”.

Paging disciplines:

April 3, 2012 10:24 World Scientific Book - 9in x 6in soltys˙alg

Online Algorithms 107

Given a request for page pi, the system must make page pi available in

the fast memory. If pi is already in the fast memory, called a hit, the system

need not do anything. Otherwise, on a miss, the system incurs a page fault,

and must copy the page pi from the slow memory to the fast memory. In

doing so, the system is faced with the following problem: which page to evict

from the fast memory to make space for pi. In order to minimize the number

of page faults, the choice of which page to evict must be made wisely.

Typical examples of fast and slow memory pair are a RAM and hard

disk, respectively, or a processor-cache and RAM, respectively. In general,

we shall refer to the fast memory as “the cache.” Because of its important

role in the performance of almost every computer system, paging has been

extensively studied since the 1960s, and the common paging schemes are

listed in figure 5.2.

All the caching disciplines in figure 5.2, except for the last one, are

online algorithms; that is, they are algorithms that make decisions based

on past events, rather than the future. The last algorithm, LFD, replaces

the page whose next request is the latest, which requires knowledge of future

requests, and hence it is an offline algorithm.

5.2.1 Demand paging

Demand paging algorithms never evict a page from the cache unless there

is a page fault. All the paging disciplines in figure 5.2 are demand paging.

We consider the page fault model: in this somewhat simplistic model,

we charge 1 for bringing a page into the fast memory, and we charge 0 for

accessing a page which is already there—in practice there are other costs

involved. As the next theorem shows we lose nothing by restricting our

attention to this model.

LRU Least Recently Used

CLOCK Clock Replacement

FIFO First-In/First-Out

LIFO Last-In/First-Out

LFU Least Frequently Used

LFD Longest Forward Distance

Fig. 5.2 Paging disciplines: the top five are online algorithms; the last one, LFD, is an
offline algorithm. We shall see in section 5.2.6 that LFD is in fact the optimal algorithm

for paging.

The top five are online algorithms; the last one, LFD, is an
offline algorithm. In Lecture Notes 3, pages 33-39, we have
shown that LFD is the optimal offline algorithm for paging.
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Demand paging

Demand paging algorithms never evict a page from the cache
unless there is a page fault.

All the paging disciplines from page 20 are demand paging.

Simple Page Fault Model: we charge 1 for bringing a page
into the fast memory, and we charge 0 for accessing a page
which is already there - in practice there are other costs.
involved.
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Theorem

Any page replacement algorithm, online or offline, can be modified to be
demand paging without increasing the overall cost on any request
sequence.

Proof.

In a demand paging algorithm a page fault causes exactly one
eviction (once the cache is full, that is), and there are no evictions
between misses.

So let ALG be any paging algorithm.

We show how to modify it to make it a demand paging algorithm
ALG ′, in such a way that on any input sequence ALG ′ incurs at
most the cost (makes at most as many page moves from slow to
fast memory) as ALG , i.e., ∀σ.ALG ′(σ) ≤ ALG (σ).

Suppose that ALG has a cache of size k .

Define ALG ′ as follows: ALG ′ also has a cache of size k, plus k
registers.
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Proof.

ALG ′ runs a simulation of ALG , keeping in its k registers the page
numbers of the pages that ALG would have had in its cache.

Based on the behavior of ALG , ALG ′ makes decisions to evict
pages. We assume that ALG does not re-arrange its slots - i.e., it
never permutes the contents of its cache.

Suppose page p is requested. If p is in the cache of ALG ′, then just
service the request.

Otherwise, if a page fault occurs, ALG ′ behaves according to the
following two cases:

Case 1. If ALG also has a page fault (that is, the number of p is not in
the registers), and ALG evicts a page from register i to make
room for p, then ALG ′ evicts a page from slot i in its cache,
to make room for p.

Case 2. If ALG does not have a page fault, then the number of p must
be in, say, register i . In that case, ALG ′ evicts the contents of
slot i in its cache, and moves p in there.

Thus ALG ′ is a demand paging algorithm.

It can be shown that ∀σ.ALG ′(σ) ≤ ALG (σ) (see pages 108-110 of
Soltys’ book)
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Demand paging

The last theorem allows for us to restrict our attention to
demand paging algorithms, and thus use the terms “page
faults” and “page moves” interchangeably, in the sense that
in the context of demand paging, we have a page move if and
only if we have a page fault.
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FIFO Algorithm

When a page must be replaced, the oldest page is chosen.

It is not necessary to record the time when a page was
brought in; all we need to do is create a FIFO
(First-In/First-Out) queue to hold all pages in memory.

The FIFO algorithm is easy to understand and program, but
its performance is not good in general.

FIFO also suffers from the so called Belady’s anomaly.

Suppose that we have the following sequence of page
requests: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Then, we have more page faults when k = 4 than when k = 3.

That is, FIFO has more page faults with a bigger cache!
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Least Recently Used (LRU) Algorithm

The optimal offline algorithm, LFD (Longest Forward
Distance), evict the page whose next request is the latest, and
if some pages are never requested again, then anyone of them
is evicted.

This is an impractical algorithm from the point of view of
online algorithms as we do not know the future.

If we use the recent past as an approximation of the near
future, then we will replace the page that has not been used
for the longest period of time.

This approach is the Least Recently Used (LRU)
algorithm.
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Least Recently Used (LRU) Algorithm
LRU replacement associates with each page the time of that
page’s last use.
When a page must be replaced, LRU chooses that page that
has not been used for the longest period of time.
The LRU algorithm is considered to be good, and is often
implemented—the major problem is how to implement it.
Two typical solutions are counters and stacks.

Counters: Keep track of the time when a given page was last referenced,
updating the counter every time we request it.
This scheme requires a search of the page table to find the
LRU page, and a write to memory for each request.
An obvious problem might be clock overflow.

Stack: Keep a stack of page numbers.
Whenever a page is referenced, it is removed from the stack
and put on the top.
In this way, the top of the stack is always the most recently
used page, and the bottom is the LRU page.
Because entries are removed from the middle of the stack, it is
best implemented by a doubly-linked list.
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LRU stack implementation with a doubly-linked list. The
requested page is page 4; the left list shows the state before
page 4 is requested, and the right list shows the state after
the request has been serviced.
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Fig. 5.4 LRU stack implementation with a doubly-linked list. The requested page is

page 4; the left list shows the state before page 4 is requested, and the right list shows
the state after the request has been serviced.

requested more recently than j, but no page was requested later than i and

sooner than j.

Lemma 5.16. LRU does not incur Belady’s anomaly (on any cache size

and any request sequence).

Proof. Let σ = p1, p2, . . . , pn be a request sequence, and let LRUi(σ) be

the number of faults that LRU incurs on σ with a cache of size i. We show

that for all i and σ, the following property holds:

LRUi(σ) ≥ LRUi+1(σ). (5.7)

Once we show (5.7), it follows that for any pair i < j and any request

sequence σ, LRUi(σ) ≥ LRUj(σ), and conclude that LRU does not incur

Belady’s anomaly.

To show (5.7), we define a property of doubly-linked lists which we call

“embedding.” We say that a doubly-linked list of size i can be embedded

in another doubly-linked list of size i + 1, if the two doubly-linked lists

are identical, except that the longer one may have one more item at the
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Least Recently Used (LRU) Algorithm

Lemma

LRU does not incur Belady’s anomaly (on any cache size and any
request sequence).

Proof.

Let σ = p1, p2, . . . , p3 be a request sequence, and let LRUi (σ)
be the number of faults that LRU incurs on σ with a cache of
size i .

It can be shown that LRUi (σ) ≥ LRUi+1(σ).

From the above it follows that for any pair i < j and any
request sequence σ, LRUi (σ) ≥ LRUj(σ).

LRU does not incur Belady’s anomaly.
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Marking algorithms

Consider a cache of size k and a request sequence σ.
We divide the request sequence into phases as follows: phase
0 is the empty sequence.
For every i ≥ 1, phase i is the maximal sequence following
phase i − 1 that contains at most k distinct page requests;
that is, if it exists, phase i + 1 begins on the request that
constitutes the k + 1 distinct page request since the start of
the i-th phase.
Such a partition is called a k-phase partition.
This partition is independent of any particular algorithm
processing σ.
Examples of 3-phase and 2-phase partitions:
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5.2.4 Marking algorithms

Consider a cache of size k and fix a request sequence σ. We divide the

request sequence into phases as follows: phase 0 is the empty sequence. For

every i ≥ 1, phase i is the maximal sequence following phase i − 1 that

contains at most k distinct page requests; that is, if it exists, phase i + 1

begins on the request that constitutes the k+ 1 distinct page request since

the start of the i-th phase. Such a partition is called a k-phase partition.

This partition is well defined and is independent of any particular algorithm

processing σ.

For example, a 3-phase partition:

1, 2, 1, 2, 1, 2, 3︸ ︷︷ ︸
3-phase #1

, 4, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5, 4︸ ︷︷ ︸
3-phase #2

, 7, 7, 7, 7, 1, 2︸ ︷︷ ︸
3-phase #3

.

Let σ be any request sequence and consider its k-phase partition. Associate

with each page a bit called the mark. The marking is done for the sake

of analysis (this is not implemented by the algorithm, but “by us” to keep

track of the doings of the algorithm). For each page, when its mark bit is

set we say that the page is marked, and otherwise, unmarked.

Suppose that at the beginning of each k-phase we unmark all the pages,

and we mark a page when it is first requested during the k-phase. A marking

algorithm never evicts a marked page from its fast memory.

For example, suppose that k = 2, and σ is a request sequence. We show

the 2-phases of σ:

σ = 1, 1, 3, 1︸ ︷︷ ︸
2-phase #1

, 5, 1, 5, 1, 5, 1︸ ︷︷ ︸
2-phase #2

, 3, 4, 4, 4︸ ︷︷ ︸
2-phase #3

, 2, 2, 2, 2︸ ︷︷ ︸
2-phase #4

. (5.8)

See figure 5.6 to examine the marking in this example. Note that after each

phase, every page is unmarked and we begin marking afresh, and except for

the last phase, all phases are always complete (they have exactly k distinct

requests, 2 in this case).

With a marking algorithm, once a request for page p in phase i is made, p

stays in the cache until the end of phase i—the first time p is requested, it is

marked, and it stays marked for the entire phase, and a marking algorithm

never evicts a marked page.

The intuition is that marking algorithms are good schemes for page

replacement because, in any given phase, there are at most k distinct pages,

so they all fit in a cache of size k, so it does not make sense to evict them

in that phase (we can only lose by evicting, as the evicted page might be

requested again).
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5.2.4 Marking algorithms

Consider a cache of size k and fix a request sequence σ. We divide the

request sequence into phases as follows: phase 0 is the empty sequence. For

every i ≥ 1, phase i is the maximal sequence following phase i − 1 that

contains at most k distinct page requests; that is, if it exists, phase i + 1

begins on the request that constitutes the k+ 1 distinct page request since

the start of the i-th phase. Such a partition is called a k-phase partition.

This partition is well defined and is independent of any particular algorithm

processing σ.

For example, a 3-phase partition:

1, 2, 1, 2, 1, 2, 3︸ ︷︷ ︸
3-phase #1

, 4, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5, 4︸ ︷︷ ︸
3-phase #2

, 7, 7, 7, 7, 1, 2︸ ︷︷ ︸
3-phase #3

.

Let σ be any request sequence and consider its k-phase partition. Associate

with each page a bit called the mark. The marking is done for the sake

of analysis (this is not implemented by the algorithm, but “by us” to keep

track of the doings of the algorithm). For each page, when its mark bit is

set we say that the page is marked, and otherwise, unmarked.

Suppose that at the beginning of each k-phase we unmark all the pages,

and we mark a page when it is first requested during the k-phase. A marking

algorithm never evicts a marked page from its fast memory.

For example, suppose that k = 2, and σ is a request sequence. We show

the 2-phases of σ:

σ = 1, 1, 3, 1︸ ︷︷ ︸
2-phase #1

, 5, 1, 5, 1, 5, 1︸ ︷︷ ︸
2-phase #2

, 3, 4, 4, 4︸ ︷︷ ︸
2-phase #3

, 2, 2, 2, 2︸ ︷︷ ︸
2-phase #4

. (5.8)

See figure 5.6 to examine the marking in this example. Note that after each

phase, every page is unmarked and we begin marking afresh, and except for

the last phase, all phases are always complete (they have exactly k distinct

requests, 2 in this case).

With a marking algorithm, once a request for page p in phase i is made, p

stays in the cache until the end of phase i—the first time p is requested, it is

marked, and it stays marked for the entire phase, and a marking algorithm

never evicts a marked page.

The intuition is that marking algorithms are good schemes for page

replacement because, in any given phase, there are at most k distinct pages,

so they all fit in a cache of size k, so it does not make sense to evict them

in that phase (we can only lose by evicting, as the evicted page might be

requested again).
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Marking algorithms

Let σ be any request sequence and consider its k-phase
partition. Associate with each page a bit called the mark.

The marking is done for the sake of analysis (this is not
implemented by the algorithm, but “by us” to keep track of
the doings of the algorithm).

For each page, when its mark bit is set we say that the page is
marked, and otherwise, unmarked.

Suppose that at the beginning of each k-phase we unmark all
the pages, and we mark a page when it is first requested
during the k-phase.

A marking algorithm never evicts a marked page from its fast
memory.
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Marking algorithms

Consider the case:
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5.2.4 Marking algorithms

Consider a cache of size k and fix a request sequence σ. We divide the

request sequence into phases as follows: phase 0 is the empty sequence. For

every i ≥ 1, phase i is the maximal sequence following phase i − 1 that

contains at most k distinct page requests; that is, if it exists, phase i + 1

begins on the request that constitutes the k+ 1 distinct page request since

the start of the i-th phase. Such a partition is called a k-phase partition.

This partition is well defined and is independent of any particular algorithm

processing σ.

For example, a 3-phase partition:

1, 2, 1, 2, 1, 2, 3︸ ︷︷ ︸
3-phase #1

, 4, 5, 6, 6, 6, 6, 6, 6, 6, 4, 5, 4︸ ︷︷ ︸
3-phase #2

, 7, 7, 7, 7, 1, 2︸ ︷︷ ︸
3-phase #3

.

Let σ be any request sequence and consider its k-phase partition. Associate

with each page a bit called the mark. The marking is done for the sake

of analysis (this is not implemented by the algorithm, but “by us” to keep

track of the doings of the algorithm). For each page, when its mark bit is

set we say that the page is marked, and otherwise, unmarked.

Suppose that at the beginning of each k-phase we unmark all the pages,

and we mark a page when it is first requested during the k-phase. A marking

algorithm never evicts a marked page from its fast memory.

For example, suppose that k = 2, and σ is a request sequence. We show

the 2-phases of σ:

σ = 1, 1, 3, 1︸ ︷︷ ︸
2-phase #1

, 5, 1, 5, 1, 5, 1︸ ︷︷ ︸
2-phase #2

, 3, 4, 4, 4︸ ︷︷ ︸
2-phase #3

, 2, 2, 2, 2︸ ︷︷ ︸
2-phase #4

. (5.8)

See figure 5.6 to examine the marking in this example. Note that after each

phase, every page is unmarked and we begin marking afresh, and except for

the last phase, all phases are always complete (they have exactly k distinct

requests, 2 in this case).

With a marking algorithm, once a request for page p in phase i is made, p

stays in the cache until the end of phase i—the first time p is requested, it is

marked, and it stays marked for the entire phase, and a marking algorithm

never evicts a marked page.

The intuition is that marking algorithms are good schemes for page

replacement because, in any given phase, there are at most k distinct pages,

so they all fit in a cache of size k, so it does not make sense to evict them

in that phase (we can only lose by evicting, as the evicted page might be

requested again).

Marking for the case above:
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step 1 2 3 4 5

1 x

2 x

3 x x

4 x x

5 x

6 x x

7 x x

8 x x

9 x x

step 1 2 3 4 5

10 x x

11 x

12 x x

13 x x

14 x x

15 x

16 x

17 x

18 x

Fig. 5.6 Marking in example (5.8).

Theorem 5.20. LRU is a marking algorithm

Proof. We argue by contradiction; suppose that LRU on a cache of size k

is not a marking algorithm. Let σ be a request sequence where there exists

a k-phase partition, during which some marked page p is evicted. Consider

the first request for p during this k-phase:

σ = p1, p2, p3, . . . , . . . , . . . , p, . . . , . . . , . . .︸ ︷︷ ︸
k-phase

, . . . , . . .

Immediately after p is serviced, it is marked as the most recently used page

in the cache (i.e., it is put at the top of the doubly-linked list).

In order for p to leave the cache, LRU must incur a page fault while

p is the least recently used page. It follows that during the k-phase in

question, k+1 distinct pages were requested: there are the k−1 pages that

pushed p to the end of the list, there is p, and the page that got p evicted.

Contradiction; a k-phase has at most k distinct pages. �

5.2.5 FWF

Flush When Full (FWF) is a very näıve page replacement algorithm that

works as follows: whenever there is a page fault and there is no space left in

the cache, evict all pages currently in the cache—call this action a “flush.”

More precisely, we consider the following version of the FWF algorithm:

each slot in the cache has a single bit associated with it. At the beginning,

all these bits are set to zero. When a page p is requested, FWF checks only

the slots with a marked bit. If p is found, it is serviced. If p is not found,
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Theorem

LRU is a marking algorithm.

Proof.

Suppose that LRU on a cache of size k is not a marking algorithm.

Let σ be a request sequence where there exists a k-phase partition,
during which some marked page p is evicted.

Consider the first request for p during this k-phase:
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step 1 2 3 4 5

1 x

2 x

3 x x

4 x x

5 x

6 x x

7 x x

8 x x

9 x x

step 1 2 3 4 5

10 x x

11 x

12 x x

13 x x

14 x x

15 x

16 x

17 x

18 x

Fig. 5.6 Marking in example (5.8).

Theorem 5.20. LRU is a marking algorithm

Proof. We argue by contradiction; suppose that LRU on a cache of size k

is not a marking algorithm. Let σ be a request sequence where there exists

a k-phase partition, during which some marked page p is evicted. Consider

the first request for p during this k-phase:

σ = p1, p2, p3, . . . , . . . , . . . , p, . . . , . . . , . . .︸ ︷︷ ︸
k-phase

, . . . , . . .

Immediately after p is serviced, it is marked as the most recently used page

in the cache (i.e., it is put at the top of the doubly-linked list).

In order for p to leave the cache, LRU must incur a page fault while

p is the least recently used page. It follows that during the k-phase in

question, k+1 distinct pages were requested: there are the k−1 pages that

pushed p to the end of the list, there is p, and the page that got p evicted.

Contradiction; a k-phase has at most k distinct pages. �

5.2.5 FWF

Flush When Full (FWF) is a very näıve page replacement algorithm that

works as follows: whenever there is a page fault and there is no space left in

the cache, evict all pages currently in the cache—call this action a “flush.”

More precisely, we consider the following version of the FWF algorithm:

each slot in the cache has a single bit associated with it. At the beginning,

all these bits are set to zero. When a page p is requested, FWF checks only

the slots with a marked bit. If p is found, it is serviced. If p is not found,

Immediately after p is serviced, it is marked as most recently used
page in the cache (i.e., it is put at the top of the doubly-linked list).

In order for p to leave the cache, LRU must incur a page fault while
p is the least recently used page.

It follows that during the k-phase in question, k + 1 distinct pages
were requested: there are the k − 1 pages that pushed p to the end
of the list, there is p, and the page that got p evicted.

Contradiction; a k-phase has at most k distinct pages.
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Flush When Full (FWF) Algoritm

Flush When Full (FWF): whenever there is a page fault and
there is no space left in the cache, evict all pages currently in
the cache—call this action a “flush”.
Each slot in the cache has a single bit associated with it. At
the beginning, all these bits are set to zero.
When a page p is requested, FWF checks only the slots with a
marked bit.
If p is found, it is serviced.
If p is not found, then it has to be brought in from the slow
memory (even if it actually is in the cache, in an unmarked
slot).
FWF looks for a slot with a zero bit, and one of the following
happens:

1 a slot with a zero bit (an unmarked page) is found, in which
case FWF replaces that page with p.

2 a slot with a zero bit is not found (all pages are marked), in
which case FWF unmarks all the slots, and replaces any page
with p, and it marks p’s bit.
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FWF and FIFO

Proposition

1 FWF is a marking algorithm.

2 FIFO is not a marking algorithm.

Proof.

1 FWF really implements the marking bit, so it is almost a
marking algorithm by definition.

2 FIFO is not a marking algorithm because with k = 3, and the
request sequence 1, 2, 3, 4, 2, 1 it will evict 2 in the second
phase even though it is marked.
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Longest Forward Distance (LFD)

Theorem

LFD is the optimal (offline) page replacement algorithm, i.e., OPT
= LFD.

Proof.

see Lecture Notes 8, pages 15-21.

LFD evicts the page that will not be used for the longest
period of time, and as such, it cannot be implemented online
because it requires knowledge of the future.

However, it is very useful for comparison studies, i.e., for
example: competitive analysis.

Theorem

Any marking algorithm ALG is
(

k
k−h+1

)
-competitive, where k is

the size of its cache, and h is the size of the cache of OPT.
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