
Randomized Algorithms
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Material based on Algorithm Design by Jon Kleinberg and Éva Tardos
(Chapter 13) and An Introduction to the Analysis of Algorithms by Michael Soltys (Chapter 6)

Ryszard Janicki Randomized Algorithms 1/52

Randomized Algorithms

It is very interesting that we can design procedures which,
when confronted with a profusion of choices, instead of
laboriously examining all the possible answers to those
choices, they ip a coin to decide which way to go, and still
“tend to” obtain the right output.

Obviously we save time when we resort to randomness, but
what is very surprising is that the output of such procedures
can be meaningful.

That is, there are problems that computationally appear very
difficult to solve, but when allowed the use of randomness it is
possible to design procedures that solve those hard problems
in a satisfactory manner: the output of the procedure is
correct with a small probability of error.

Thus, many experts believe that the definition of “feasibly
computable” ought to be computable in polynomial time with
randomness, rather than just in polynomial time.

Ryszard Janicki Randomized Algorithms 2/52

Diffie-Hellman Schem

First proposed by James Ellis in 1970, but classified until 1997.

Reinvented by W. Diffie and M. Hellman in 1976.

It is based on the Discrete Logarithm Problem.

Definition (Discrete Logarithm Problem)

Find k such that
n = gk mod p

for a given natural numbers n, g and a prime number p.

The Discrete Logarithm Problem is infeasible for big p.

Ryszard Janicki Randomized Algorithms 3/52

Algorithm (Diffie-Hellman Protocol)

Shared Knowledge: p and g, where g 6= 0, 1, p − 1.

Each user chooses a private key ka and computes a public key
Ka = gka mod p.

If A and B want to communicate, they encipher the other’s
public key using they own public key using the formulas:

SA,B = K kA
B mod p (used by A), and

SB,A = K kB
A mod p (used by B).

The protocol is based on the following theorem:

Theorem

SA,B = SB,A

The key SA,B = SB,A is used for communication between A
and B.

Ryszard Janicki Randomized Algorithms 4/52

RSA Protocol

Invented by R. Rivest, A. Shamir and L. Adleman in 1978.

It is based on the properties of the totient function Φ(n).

Definition

A number k is relatively prime to a number n if k has no factors in
common with n.

Definition

The totient function Φ(n) is the number of positive integers less
than n and relatively prime to n.

Example

Φ(10) = 4, as 1, 3, 7, 9 are relatively prime to 10.

Φ(21) = 12, as 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are
relatively prime to 21.

Ryszard Janicki Randomized Algorithms 5/52

Theorem

If p and q are two distinct primes, then Φ(pq) = (p − 1)(q − 1).

Algorithm (RSA Protocol)

Choose two large prime numbers p and q.

Compute n = pq. Then Φ(n) = (p − 1)(q − 1).

Choose e < n such that e is relatively prime to Φ(n).

Compute d such that ed mod Φ(n) = 1.

PUBLIC KEY: (e, n)

PRIVITE KEY: d

ENCIPHER: c = me mod n (uses PUBLIC KEY (e, n))

DECIPHER: m = cd mod n (uses PRIVATE KEY d)

Actual RSA primes p and q should be at least 512 bits long,
giving a modulus, i.e. n = pq, of at least 1024 bits.

Ryszard Janicki Randomized Algorithms 6/52

Prime Numbers

All modern cryptography algorithms require large random
primes (in practice about 1,000 bit long); a single prime
Diffie-Hellman, a pair of primes for RSA, and similarly for
other protocols. How to go about it?

How to get large random primes quickly?

One way to determine whether a number p is prime, is to try
all possible numbers n <

√
p, and check if any are divisors.

Obviously, this brute force procedure has exponential time
complexity in the length of

√
p, and so it has a prohibitive

time cost.

Although a polytime (deterministic) algorithm for primality is
known from 2004, the randomized algorithm for primality
testing that we will present is simpler and more efficient, and
therefore still used in practice.

Ryszard Janicki Randomized Algorithms 7/52

Natural Numbers

Define N = {0, 1, 2, . . .}.
For all x , y ∈ N we say the x divides y , and write x |y if
y = qx for some q ∈ N.
If x |y we say that x is divisor (also factor) of y .
For all x , y ∈ N, the greatest common divider of x and y ,
gcd(x , y) is defined as

gcd(x , y) = max{q | q|x ∧ q|y}.
For example gcd(63, 147) = 7, as 63 = 3 · 3 · 7 and
147 = 3 · 7 · 7.
Let m ≥ 1. We say that a and b are congruent (or equal)
modulo m, and write

a ≡ b mod m.

Proposition

If m ≥ 1, then a · b ≡ 1 mod m for some b if and only if

gcd(a,m) = 1.

Ryszard Janicki Randomized Algorithms 8/52

Fermat’s Little Theorem and Fermat Test

Let Zm = {0, 1, 2, . . . ,m − 1} - the set of integers modulo m.

Let Z∗m = {a ∈ Zm | gcd(a,m) = 1} ⊆ Zm.

Theorem (Fermat’s Little Theorem)

Let p be a prime number and gcd(a, p) = 1. Then

ap−1 ≡ 1 mod p.

We say that p passes the Fermat test at a iff ap−1 ≡ 1
mod p.

All primes pass the Fermat test for all a ∈ Zp \ {0}.
Unfortunately, there are also composite numbers n that pass
the Fermat test for all a ∈ Zn.

They are called Carmichael numbers, for example,
561 = 3 · 11 · 17, 1005 = 5 · 11 · 17, 1720 = 7 · 13 · 19, etc.

Ryszard Janicki Randomized Algorithms 9/52

We say that p passes the Fermat test at a iff ap−1 ≡ 1
mod p.

Lemma

1 If p is a composite non-Carmichael number, then it passes at
most half of the tests in Z∗p.

2 If gcd(a, p) 6= 1 then ap−1 6≡ 1 mod p.

A number is pseudoprime if it is either prime or Carmichael
number.

Algorithm for pseudoprimes:

On input p, check whether ap−1 ≡ 1 mod p for some random
a ∈ Zp \ {0}.
If p fails this test (i.e., ap−1 6≡ 1 mod p), then p is
composite for sure (test gcd(a, p) 6= 1 first).

If p passes the test, then p is probably pseudoprime.

From the above lemma (2), it follows that the probability of
error in the case of passing the test is ≤ 1

2 .

Ryszard Janicki Randomized Algorithms 10/52

Rabin-Miller algorithm

The Rabin-Miller algorithm extends the pseudoprimeness test
to deal with Carmichael numbers.

Rabin-Miller Algorithm

April 3, 2012 10:24 World Scientific Book - 9in x 6in soltys˙alg

Randomized Algorithms 131

Problem 6.9. Show that if gcd(a, p) 6= 1 then a(p−1) 6≡ 1 (mod p).

The informal algorithm for pseudoprimeness described in the paragraph

above is the basis for the Rabin-Miller algorithm which we discuss next.

The Rabin-Miller algorithm extends the pseudoprimeness test to deal with

Carmichael numbers.

Algorithm 6.3 Rabin-Miller

1: If n = 2, accept; if n is even and n > 2, reject.

2: Choose at random a positive a in Zn.

3: if a(n−1) 6≡ 1 (mod n) then

4: reject

5: else

6: Find s, h such that s is odd and n− 1 = s2h

7: Compute the sequence as·2
0

, as·2
1

, as·2
2

, . . . , as·2
h

(mod n)

8: if all elements in the sequence are 1 then

9: accept

10: else if the last element different from 1 is −1 then

11: accept

12: else

13: reject

14: end if

15: end if

Note that this is a polytime (randomized) algorithm: computing powers

(mod n) can be done efficiently with repeated squaring—for example, if

(n− 1)b = cr . . . c1c0, then compute

a0 = a, a1 = a20, a2 = a21, . . . , ar = a2r−1 (mod n),

and so an−1 = ac00 a
c1
1 · · · acrr (mod n). Thus obtaining the powers in lines 6

and 7 is not a problem.

Problem 6.10. Implement the Rabin-Miller algorithm in Python. In the

first näıve version, the algorithm should run on integer inputs (the built in

int type). In the second, more sophisticated version, the algorithm should

run on inputs which are numbers encoded as binary strings, with the trick

of repeated squaring in order to cope with large numbers.

Theorem 6.11. If n is a prime then the Rabin-Miller algorithm accepts it;

if n is composite, then the algorithm rejects it with probability ≥ 1
2 .

Proof. If n is prime, then by Fermat’s Little theorem a(n−1) ≡ 1

(mod n), so line 4 cannot reject n. Suppose that line 13 rejects n; then

Ryszard Janicki Randomized Algorithms 11/52

April 3, 2012 10:24 World Scientific Book - 9in x 6in soltys˙alg

Randomized Algorithms 131

Problem 6.9. Show that if gcd(a, p) 6= 1 then a(p−1) 6≡ 1 (mod p).

The informal algorithm for pseudoprimeness described in the paragraph

above is the basis for the Rabin-Miller algorithm which we discuss next.

The Rabin-Miller algorithm extends the pseudoprimeness test to deal with

Carmichael numbers.

Algorithm 6.3 Rabin-Miller

1: If n = 2, accept; if n is even and n > 2, reject.

2: Choose at random a positive a in Zn.

3: if a(n−1) 6≡ 1 (mod n) then

4: reject

5: else

6: Find s, h such that s is odd and n− 1 = s2h

7: Compute the sequence as·2
0

, as·2
1

, as·2
2

, . . . , as·2
h

(mod n)

8: if all elements in the sequence are 1 then

9: accept

10: else if the last element different from 1 is −1 then

11: accept

12: else

13: reject

14: end if

15: end if

Note that this is a polytime (randomized) algorithm: computing powers

(mod n) can be done efficiently with repeated squaring—for example, if

(n− 1)b = cr . . . c1c0, then compute

a0 = a, a1 = a20, a2 = a21, . . . , ar = a2r−1 (mod n),

and so an−1 = ac00 a
c1
1 · · · acrr (mod n). Thus obtaining the powers in lines 6

and 7 is not a problem.

Problem 6.10. Implement the Rabin-Miller algorithm in Python. In the

first näıve version, the algorithm should run on integer inputs (the built in

int type). In the second, more sophisticated version, the algorithm should

run on inputs which are numbers encoded as binary strings, with the trick

of repeated squaring in order to cope with large numbers.

Theorem 6.11. If n is a prime then the Rabin-Miller algorithm accepts it;

if n is composite, then the algorithm rejects it with probability ≥ 1
2 .

Proof. If n is prime, then by Fermat’s Little theorem a(n−1) ≡ 1

(mod n), so line 4 cannot reject n. Suppose that line 13 rejects n; then

Note that this is a polytime (randomized) algorithm:
computing powers (mod n) can be done efficiently with
repeated squaring.

If n − 1 = cr . . . c1c0 mod b, then compute:

a0 = a, a1 = a2
0, a2 = a2

1, . . . , ar = a2
r−1 mod n.

Hence an−1 = ac0
0 ac1

1 · · · acrr mod n.

Thus obtaining the powers in lines 6 and 7 is not a problem.

Ryszard Janicki Randomized Algorithms 12/52

Rabin-Miller Algorithm

Theorem

If n is a prime then the Rabin-Miller algorithm accepts it; if n is
composite, then the algorithm rejects it with probability ≥ 1

2 .

Note that by running the algorithm k times on independently
chosen a, we can make sure that it rejects a composite with
probability ≥ 1− 1

2k
(it will always accept a prime with

probability 1).

Thus, for k = 100 the probability of error, i.e., of a false
positive, is negligible.

Ryszard Janicki Randomized Algorithms 13/52

Generating Primes

Let π(x) be the prime-counting function that gives the number of
primes less than or equal to x , for any real number x .

For example, π(10.3) = 4 because there are four prime numbers (2,
3, 5 and 7) less than or equal to 10.1.

Let πn denotes the nth prime number, for example p4 = 7.

Theorem (Prime Number Theorem)

lim
x→∞

π(x)

x/ log x
= 1

Using asymptotic notation this result can be restated as

π(x) ∼ x
log x or pn ∼ n log n.

This means that there are 2n/n primes among n-bit integers,
roughly 1 in n, and these primes are fairly uniformly distributed.

So we pick an integer at random, in a given range, and apply
the Rabin-Miller algorithm to it.

Ryszard Janicki Randomized Algorithms 14/52

Basic Probability

A (finite) probability space (S , p) consists of a (finite) set S
and a function p : S → Reals satisfying:

0 ≤ p(x) ≤ 1 for all x ∈ S ,∑
x∈S

p(x) = 1.

An event A is a subset of S and its probability is given by:

p(A) =
∑
x∈A

p(x).

Facts

1 p(∅) = 0, p(S) = 1

2 A ∩ B = ∅ =⇒ p(A ∪ B) = p(A) + p(B)

3 p(A ∪ B) = p(A) + p(B)− p(A ∪ B)

4 p(
⋃
j∈I

Ai) ≤
∑
i∈I

p(Ai)

Ryszard Janicki Randomized Algorithms 15/52

Basic Probability

A and B are mutually exclusive if p(A ∩ B) = ∅.
A and B are independent if p(A ∩ B) = p(A)p(B).

Conditional probability: A and B are events and p(B) > 0
The probability of A given B is defined as:

p(A|B) =
p(A ∩ B)

p(B)

Ryszard Janicki Randomized Algorithms 16/52

Random Variables

A function X : S → Reals is called a random variable.

The expectation (expected value) of X is:

E (X) =
∑
x∈S

p(x)X (x)

For x ∈ Reals,

p({x ∈ S | X (x) = r}) = p(X−1(r))

is often written as p(X = r) and interpreted as “the
probability that X = r”.

Fact

E (X) =
∑

r∈X (S)

r · p(X = r)

Ryszard Janicki Randomized Algorithms 17/52

Fact

Expected value is linear i.e.

1 E (X + Y) = E (X) + E (Y)

2 E (cX) = cE (X)

3 E (
∑
i

ciXi) =
∑
i

ciE (Xi)

Waiting for first success in independent trial:

P(X = j) = (1− p)j−1p

E (X) =
∞∑
j=1

jP(X = j) =
∞∑
j=1

j(1− p)j−1p =

p

1− p

∞∑
j=1

j(1− p)j =
p

1− p
· 1− p

p2
=

1

p

since
∞∑
k=0

kxk =
x

(1− x)2
for |x | < 1.

Expected number of trials to first success is 1
p .

Ryszard Janicki Randomized Algorithms 18/52

Randomized Divide and Conquer: Finding the Median

Finding the Median

Let S = {aa, a2, . . . , am} be a set of numbers.

The median of S is equal to the kth largest element in S ,
where:

k =

{
n+1

2 n is odd
n
2 n is even

Assume for simplicity that all elements of S are different.

Obvious solution: Sort first
Complexity: O(n log n)

Cab we do better?

We will provide a randomized algorithm that can do it in
O(n) time.

Ryszard Janicki Randomized Algorithms 19/52

Generic Algorithm Based on Splitters

728 Chapter 13 Randomized Algorithms

“middle position”; thus we define things precisely as follows: The median of
S= {a1, a2, . . . , an} is equal to the kth largest element in S, where k= (n + 1)/2
if n is odd, and k = n/2 if n is even. In what follows, we’ll assume for the sake
of simplicity that all the numbers are distinct. Without this assumption, the
problem becomes notationally more complicated, but no new ideas are brought
into play.

It is clearly easy to compute the median in time O(n log n) if we simply
sort the numbers first. But if one begins thinking about the problem, it’s far
from clear why sorting is necessary for computing the median, or even why
�(n log n) time is necessary. In fact, we’ll show how a simple randomized
approach, based on divide-and-conquer, yields an expected running time of
O(n).

Designing the Algorithm
A Generic Algorithm Based on Splitters The first key step toward getting
an expected linear running time is to move from median-finding to the more
general problem of selection. Given a set of n numbers S and a number k
between 1and n, consider the function Select(S, k) that returns the kth largest
element in S. As special cases, Select includes the problem of finding the
median of S via Select(S, n/2) or Select(S, (n + 1)/2); it also includes the
easier problems of finding the minimum (Select(S, 1)) and the maximum
(Select(S, n)). Our goal is to design an algorithm that implements Select so
that it runs in expected time O(n).

The basic structure of the algorithm implementing Select is as follows.
We choose an element ai ∈ S, the “splitter,” and form the sets S− = {aj :aj < ai}
and S+ = {aj : aj > ai}. We can then determine which of S− or S+ contains the
kth largest element, and iterate only on this one. Without specifying yet how
we plan to choose the splitter, here’s a more concrete description of how we
form the two sets and iterate.

Select(S,k):

Choose a splitter ai ∈ S

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| = k − 1 then

The splitter ai was in fact the desired answer

Else if |S−| ≥ k then

The kth largest element lies in S−

Recursively call Select(S−, k)

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 729

Else suppose |S−| = � < k − 1

The kth largest element lies in S+

Recursively call Select(S+, k − 1− �)

Endif

Observe that the algorithm is always called recursively on a strictly smaller set,
so it must terminate. Also, observe that if |S| = 1, then we must have k = 1,
and indeed the single element in S will be returned by the algorithm. Finally,
from the choice of which recursive call to make, it’s clear by induction that the
right answer will be returned when |S|> 1 as well. Thus we have the following

(13.17) Regardless of how the splitter is chosen, the algorithm above returns
the kth largest element of S.

Choosing a Good Splitter Now let’s consider how the running time of Select
depends on the way we choose the splitter. Assuming we can select a splitter
in linear time, the rest of the algorithm takes linear time plus the time for the
recursive call. But how is the running time of the recursive call affected by the
choice of the splitter? Essentially, it’s important that the splitter significantly
reduce the size of the set being considered, so that we don’t keep making
passes through large sets of numbers many times. So a good choice of splitter
should produce sets S− and S+ that are approximately equal in size.

For example, if we could always choose the median as the splitter, then
we could show a linear bound on the running time as follows. Let cn be the
running time for Select, not counting the time for the recursive call. Then,
with medians as splitters, the running time T(n) would be bounded by the
recurrence T(n)≤ T(n/2)+ cn. This is a recurrence that we encountered at the
beginning of Chapter 5, where we showed that it has the solution T(n)=O(n).

Of course, hoping to be able to use the median as the splitter is rather
circular, since the median is what we want to compute in the first place! But,
in fact, one can show that any “well-centered” element can serve as a good
splitter: If we had a way to choose splitters ai such that there were at least
εn elements both larger and smaller than ai, for any fixed constant ε > 0,
then the size of the sets in the recursive call would shrink by a factor of at
least (1− ε) each time. Thus the running time T(n) would be bounded by
the recurrence T(n)≤ T((1− ε)n)+ cn. The same argument that showed the
previous recurrence had the solution T(n) = O(n) can be used here: If we
unroll this recurrence for any ε > 0, we get

Ryszard Janicki Randomized Algorithms 20/52

728 Chapter 13 Randomized Algorithms

“middle position”; thus we define things precisely as follows: The median of
S= {a1, a2, . . . , an} is equal to the kth largest element in S, where k= (n + 1)/2
if n is odd, and k = n/2 if n is even. In what follows, we’ll assume for the sake
of simplicity that all the numbers are distinct. Without this assumption, the
problem becomes notationally more complicated, but no new ideas are brought
into play.

It is clearly easy to compute the median in time O(n log n) if we simply
sort the numbers first. But if one begins thinking about the problem, it’s far
from clear why sorting is necessary for computing the median, or even why
�(n log n) time is necessary. In fact, we’ll show how a simple randomized
approach, based on divide-and-conquer, yields an expected running time of
O(n).

Designing the Algorithm
A Generic Algorithm Based on Splitters The first key step toward getting
an expected linear running time is to move from median-finding to the more
general problem of selection. Given a set of n numbers S and a number k
between 1and n, consider the function Select(S, k) that returns the kth largest
element in S. As special cases, Select includes the problem of finding the
median of S via Select(S, n/2) or Select(S, (n + 1)/2); it also includes the
easier problems of finding the minimum (Select(S, 1)) and the maximum
(Select(S, n)). Our goal is to design an algorithm that implements Select so
that it runs in expected time O(n).

The basic structure of the algorithm implementing Select is as follows.
We choose an element ai ∈ S, the “splitter,” and form the sets S− = {aj :aj < ai}
and S+ = {aj : aj > ai}. We can then determine which of S− or S+ contains the
kth largest element, and iterate only on this one. Without specifying yet how
we plan to choose the splitter, here’s a more concrete description of how we
form the two sets and iterate.

Select(S,k):

Choose a splitter ai ∈ S

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| = k − 1 then

The splitter ai was in fact the desired answer

Else if |S−| ≥ k then

The kth largest element lies in S−

Recursively call Select(S−, k)

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 729

Else suppose |S−| = � < k − 1

The kth largest element lies in S+

Recursively call Select(S+, k − 1− �)

Endif

Observe that the algorithm is always called recursively on a strictly smaller set,
so it must terminate. Also, observe that if |S| = 1, then we must have k = 1,
and indeed the single element in S will be returned by the algorithm. Finally,
from the choice of which recursive call to make, it’s clear by induction that the
right answer will be returned when |S|> 1 as well. Thus we have the following

(13.17) Regardless of how the splitter is chosen, the algorithm above returns
the kth largest element of S.

Choosing a Good Splitter Now let’s consider how the running time of Select
depends on the way we choose the splitter. Assuming we can select a splitter
in linear time, the rest of the algorithm takes linear time plus the time for the
recursive call. But how is the running time of the recursive call affected by the
choice of the splitter? Essentially, it’s important that the splitter significantly
reduce the size of the set being considered, so that we don’t keep making
passes through large sets of numbers many times. So a good choice of splitter
should produce sets S− and S+ that are approximately equal in size.

For example, if we could always choose the median as the splitter, then
we could show a linear bound on the running time as follows. Let cn be the
running time for Select, not counting the time for the recursive call. Then,
with medians as splitters, the running time T(n) would be bounded by the
recurrence T(n)≤ T(n/2)+ cn. This is a recurrence that we encountered at the
beginning of Chapter 5, where we showed that it has the solution T(n)=O(n).

Of course, hoping to be able to use the median as the splitter is rather
circular, since the median is what we want to compute in the first place! But,
in fact, one can show that any “well-centered” element can serve as a good
splitter: If we had a way to choose splitters ai such that there were at least
εn elements both larger and smaller than ai, for any fixed constant ε > 0,
then the size of the sets in the recursive call would shrink by a factor of at
least (1− ε) each time. Thus the running time T(n) would be bounded by
the recurrence T(n)≤ T((1− ε)n)+ cn. The same argument that showed the
previous recurrence had the solution T(n) = O(n) can be used here: If we
unroll this recurrence for any ε > 0, we get

Θ(n)

The algorithm is always called recursively on a strictly smaller
set, so it must terminate.

|S | = 1 =⇒ k = 1.

Ryszard Janicki Randomized Algorithms 21/52

Generic Algorithm Based on Splitters

Conclusion

Regardless of how the splitter is chosen, the algorithm returns the
kth largest element of S.

CHOOSING A GOOD SPLITTER

LUCKY CASE: We always choose the median as the splitter:

T (n) ≤ T (n/2) + dn

Master theorem: T (n) = aT (n/b) = f (n),
a = 1, b = 2, log2 1 = 0
f (n) = f · n = Ω(n0+ε) for any 0 < ε ≤ 1,
a · f (n/b) = f (n/2) = 1

2dn ≤ 1
2 f (n) = cf (c),

where c = 1
2 < 1.

Thus, by (3) of Master Theorem: T (n) = Θ(f (n)) = Θ(n).

WEIRD, as we just compute median!

Ryszard Janicki Randomized Algorithms 22/52

“Well-centered” Case

“WELL-CENTERED” CASE

We are able to choose splitter ai such that always at least ε · n
elements both larger and smaller than ai for any fixed
constant ε > 0.

T (n) ≤ T ((1− ε)n) + dn

T (n) = dn + (1− ε)dn + (1− ε)2dn + . . . =
[1 + (1− ε) + (1− ε)2 + . . .]︸ ︷︷ ︸

1
ε

since
∑∞

k=0 x
k= 1

1−x
,|x |<1

dn = 1
εdn = Θ(n)

“Lucky case” is when ε = 1
2 :

Very “OF CENTER” splitter:

T (n) ≤ T (n − 1) + dn

T (n) = dn + d(n − 1) + d(n − 2) + . . . = dn(n+1)
2 = Θ(n2).

Choose a splitter ai ∈ S uniformly at random.

Intuitively random case should be close to well centered case.

Ryszard Janicki Randomized Algorithms 23/52

Random Case Analysis

The algorithm is in phase j if the set under consideration has
a size s such that

n(3
4)j+1 < s ≤ n(3

4)j

For a set A, a element a ∈ A is central, if

{x ∈ A | x < a}| > 1
4 |A|, and

{x ∈ A | x < a}| > 1
4 |A|

Splitter is central =⇒ at least 1
4 of elements is thrown away,

i.e. the set shrinks by 3
4 factor.

Probability of being central is 1
2 .

Expected number of trials to find a central element is 2.

Expected number of iterations in phase j , for any j is 2.

Ryszard Janicki Randomized Algorithms 24/52

X - random variable modeling the number of steps taken by
the algorithm:

X = X0 + X1 + X2 + . . .

where Xj is the expected number of steps in phase j .

In phase j , the set has size at most n(3
4)j , so the number of

steps for one iteration is at most c · n · (3
4)j , some constant c .

Expected number of iterations in phase j is 2, so

E (Xj) ≤ 2cn(3
4)j .

Hence

E (X) =
∑
j

E (Xj) ≤
∑
j

2cn(
3

4
)j = 2cn

∑
j

(
3

4
)j <

2cn
∞∑
j=0

(
3

4
)j = 2cn

1

1− 3
4

= 8c · n

as
∞∑
k=0

xk =
1

1− x
for |x | < 1.

The expected time of Select(n, k) is O(n).

Ryszard Janicki Randomized Algorithms 25/52

Random Case Analysis

The expected time of Select(n, k) is O(n).

How to implement randomness?

If the distribution is uniform, probability of value x on any
position of the list of n elements is 1

n .

Solution:
For example: Choose the last (first) element on the list as a
splitter.

Ryszard Janicki Randomized Algorithms 26/52

Quick Sort (C. A. R. Hoare 1962)

13.5 Randomized Divide and Conquer: Median-Finding and Quicksort 731

elements in the set are central, and so the probability that our random choice
of splitter produces a central element is 1

2. Hence, by our simple waiting-time
bound (13.7), the expected number of iterations before a central element is
found is 2; and so the expected number of iterations spent in phase j, for any
j, is at most 2.

This is pretty much all we need for the analysis. Let X be a random variable
equal to the number of steps taken by the algorithm. We can write it as the
sum X = X0 + X1+ X2+ . . ., where Xj is the expected number of steps spent
by the algorithm in phase j. When the algorithm is in phase j, the set has
size at most n(3

4)j, and so the number of steps required for one iteration in
phase j is at most cn(3

4)j for some constant c. We have just argued that the
expected number of iterations spent in phase j is at most two, and hence we
have E

[
Xj
] ≤ 2cn(3

4)j. Thus we can bound the total expected running time
using linearity of expectation,

E [X]=
∑

j

E
[
Xj
]≤∑

j

2cn
(

3
4

)j

= 2cn
∑

j

(
3
4

)j

≤ 8cn,

since the sum
∑

j(
3
4)j is a geometric series that converges. Thus we have the

following desired result.

(13.18) The expected running time of Select(n, k) is O(n).

A Second Application: Quicksort
The randomized divide-and-conquer technique we used to find the median
is also the basis of the sorting algorithm Quicksort. As before, we choose a
splitter for the input set S, and separate S into the elements below the splitter
value and those above it. The difference is that, rather than looking for the
median on just one side of the splitter, we sort both sides recursively and glue
the two sorted pieces together (with the splitter in between) to produce the
overall output. Also, we need to explicitly include a base case for the recursive
code: we only use recursion on sets of size at least 4. A complete description
of Quicksort is as follows.

Quicksort(S):

If |S| ≤ 3 then

Sort S

Output the sorted list

Else

Choose a splitter ai ∈ S uniformly at random

For each element aj of S

732 Chapter 13 Randomized Algorithms

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

Recursively call Quicksort(S−) and Quicksort(S+)
Output the sorted set S−, then ai, then the sorted set S+

Endif

As with median-finding, the worst-case running time of this method is
not so good. If we always select the smallest element as a splitter, then the
running time T(n) on n-element sets satisfies the same recurrence as before:
T(n)≤ T(n − 1)+ cn, and so we end up with a time bound of T(n)=�(n2).
In fact, this is the worst-case running time for Quicksort.

On the positive side, if the splitters selected happened to be the medians
of the sets at each iteration, then we get the recurrence T(n)≤ 2T(n/2)+ cn,
which arose frequently in the divide-and-conquer analyses of Chapter 5; the
running time in this lucky case is O(n log n).

Here we are concerned with the expected running time; we will show that
this can be bounded by O(n log n), almost as good as in the best case when the
splitters are perfectly centered. Our analysis of Quicksort will closely follow
the analysis of median-finding. Just as in the Select procedure that we used
for median-finding, the crucial definition is that of a central splitter—one that
divides the set so that each side contains at least a quarter of the elements. (As
we discussed earlier, it is enough for the analysis that each side contains at
least some fixed constant fraction of the elements; the use of a quarter here is
chosen for convenience.) The idea is that a random choice is likely to lead to a
central splitter, and central splitters work well. In the case of sorting, a central
splitter divides the problem into two considerably smaller subproblems.

To simplify the presentation, we will slightly modify the algorithm so that
it only issues its recursive calls when it finds a central splitter. Essentially, this
modified algorithm differs from Quicksort in that it prefers to throw away
an “off-center” splitter and try again; Quicksort, by contrast, launches the
recursive calls even with an off-center splitter, and at least benefits from the
work already done in splitting S. The point is that the expected running time
of this modified algorithm can be analyzed very simply, by direct analogy
with our analysis for median-finding. With a bit more work, a very similar but
somewhat more involved analysis can also be done for the original Quicksort
algorithm as well; however, we will not describe this analysis here.

Modified Quicksort(S):

If |S| ≤ 3 then

Sort S

For this algorithm, splitter is called pivot.

Ryszard Janicki Randomized Algorithms 27/52

Quick Sort: Analysis

Lucky Case: Splitters are medians. Then

T (n) ≤ 2T (n/2) + cn

By Master Theorem (case 2), O(n log n).

colorblue Worst Case: Splitters split 1 and n − 1

T (n) ≤ T (n − 1) + cn = O(n2)

Intuition tells us that random case is close to lucky case.

We assume uniform distribution.

We assume that all elements are different. this assumption
can be dropped, but then proofs need to be modified.

Ryszard Janicki Randomized Algorithms 28/52

Quick Sort: intuition

Consider the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced.

T (n) = T (9n/10) + T (n/10) + cn

It can be proved, either by expansion, or by analyzing
recursion tree that:

T (n) = T (9n/10) + T (n/10) + cn = O(n log n)

Even a 99-to-1 split yields an O(n log n) running time (big
constant).

Ryszard Janicki Randomized Algorithms 29/52

Quick Sort: Average Case Complexity

Average case complexity for Quick Sort is considered difficult
and in most textbooks, including Kleinberg-Tardos, is not
provided.

The proof in this lecture notes is probably the easier known in
literature, it uses a trick that often makes proofs easier; it
generalizes a discrete case to continuous case and replaces
sums with integrals.

Ryszard Janicki Randomized Algorithms 30/52

Quick Sort: Average Case Complexity

Suppose |S−| = j − 1 and |S+| = n − j , i.e.

T (n) ≤ T (j − 1) + T (n − j) + cn.

Since j is random with 1
n probability, we have

Tavg (n) ≤ 1

n

n∑
j=1

(Tavg (j − 1) + Tavg (n − j)) + cn =

cn +
2

n

n−1∑
j=0

Tavg (j), n ≥ 2

Assume Tavg (0) ≤ b, Tavg (1) ≤ b and define d = 2(b + c).

We will show by induction that, for n ≥ 2

Tavg (n) ≤ dn loge n = O(n log n),

where e = 2.71838...

Ryszard Janicki Randomized Algorithms 31/52

Quick Sort: Average Case Complexity

Base: n = 2
Tavg (2) ≤ 2c + 2

2 (T (0) + T (1)) ≤ 2c + b + b = 2(b + c) =
d ≤ d · 2 loge 2︸ ︷︷ ︸

≥1

We will use the 2nd induction scheme.

Induction Assumption: for 1 ≤ n

Tavg (m) ≤ dn loge n.

We need to show that

Tavg (n + 1) ≤ d(n + 1) loge(n + 1).

Ryszard Janicki Randomized Algorithms 32/52

Recall that
∫
x ln x dx = x2(ln x

2 − 1
4).

Let m = n + 1. Recall Tavg (m) = cn +
2

m

m−1∑
j=0

Tavg (j).

Tavg (m) ≤ cm +
2

m
(T (0)︸ ︷︷ ︸
≤b

+T (1)︸ ︷︷ ︸
≤b

) +
2

m

m−1∑
j=2

Tavg (j)︸ ︷︷ ︸
≤dj loge j

≤

cm +
4b

m
+

2d

m

m−1∑
j=2

j loge j ≤ cm +
4b

m
+

2d

m

∫ m

0
x loge x dx =

cm+
4b

m
+

2d

m

[
m2 loge m

2
− m2

4

]
= cm+

4b

m
+ dm loge m−

dm

2
=

cm +
4b

m
− 2bm

2
− 2cm

2
+ dm loge m =

dm loge m +

(
4b

m
− bm

)
︸ ︷︷ ︸
≤0 if m≥2

≤ dm loge m

Hence: Tavg (n) = O(n loge n) = O(n log n).

Ryszard Janicki Randomized Algorithms 33/52

Quick Sort

Quick Sort is considered the fastest sorting when input is
random. WHY?
Because it allows a very efficient implementation which is
superfast for half of cases!
Less abstract formulation:

Input: unsorted array A[1..n]
Output: sorted array A[1..n]

We want to use only one array.

QUICK SORT Algorithm:

————————————————————————————
QuickSort(A[1..n])

v ← PIVOT (A[1..n]) ← it chooses the splitter

k ← PARTITION(v ,A[1..n]) ← it maintains S− and S+ in A.

QuickSort(A[1..k − 1])
QuickSort(A[k ..n])

————————————————————————————

Ryszard Janicki Randomized Algorithms 34/52

Pivot

How to implement: v ← PIVOT (A[1..n]) ?

v ← Random(A[1..n]) ← not feasible in full

v ← A[n] ← as good as random if input has uniform distribution

v ← largest from the first two different values of A[i], starting
from A[1] ← original choice of C. A. R. Hoare, slightly better if

distribution not entirely uniform

v ← a formula that depends on input distribution, if known.

Ryszard Janicki Randomized Algorithms 35/52

Pivot

Consider the case v = A[n] (simplest)

We may now write:

————————————————————————————
QuickSort(A, p, r)
IF p < r THEN
q ← PARTITION(A, p, r) ← must guarantee p = r at some

point

QuickSort(A, p, q − 1)
QuickSort(A, q + 1, n)

ENDIF
————————————————————————————

It is use as QuickSort(A, 1, n) for A[1.n].

Ryszard Janicki Randomized Algorithms 36/52

Partition

Partition is tricky and important.

————————————————————————————
PARTITION(A, p, r)
x ← A[r]
i ← p − 1
FOR j = p TO r − 1 DO

IF A[j] ≤ x THEN
BEGIN

i ← i + 1
swap(A[i],A[j])

END
ENDIF

ENDFOR
swap(A[i + 1], [A[r])
return(i + 1)

————————————————————————————


nothing if A[j] > x .
It happens in about 1

2 cases!
Very efficient

Ryszard Janicki Randomized Algorithms 37/52

The procedure Partition maintains 4 regions on a subarray A[p..r]

7.1 Description of quicksort 173

≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp : : r�. The
values in AŒp : : i � are all less than or equal to x, the values in AŒi C 1 : : j � 1� are all greater than x,
and AŒr� D x. The subarray AŒj : : r � 1� can take on any values.

Initialization: Prior to the first iteration of the loop, i D p � 1 and j D p. Be-
cause no values lie between p and i and no values lie between i C 1 and j � 1,
the first two conditions of the loop invariant are trivially satisfied. The assign-
ment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj � > x;
the only action in the loop is to increment j . After j is incremented, condition 2
holds for AŒj � 1� and all other entries remain unchanged. Figure 7.3(b) shows
what happens when AŒj � � x; the loop increments i , swaps AŒi� and AŒj �,
and then increments j . Because of the swap, we now have that AŒi� � x, and
condition 1 is satisfied. Similarly, we also have that AŒj � 1� > x, since the
item that was swapped into AŒj � 1� is, by the loop invariant, greater than x.

Termination: At termination, j D r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with
the leftmost element greater than x, thereby moving the pivot into its correct place
in the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisfies the specifications given for the divide step. In fact, it
satisfies a slightly stronger condition: after line 2 of QUICKSORT, AŒq� is strictly
less than every element of AŒq C 1 : : r�.

The running time of PARTITION on the subarray AŒp : : r� is ‚.n/, where
n D r � p C 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i.

Swapping when A[j] > x :

174 Chapter 7 Quicksort

≤ x > x

x

p i j r

>x(a)

≤ x > x

x

p i j r

≤ x > x

x

p i j r

≤ x(b)

≤ x > x

x

p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj � > x, the only
action is to increment j , which maintains the loop invariant. (b) If AŒj � � x, index i is incremented,
AŒi� and AŒj � are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-2
What value of q does PARTITION return when all elements in the array AŒp : : r�

have the same value? Modify PARTITION so that q D b.p C r/=2c when all
elements in the array AŒp : : r� have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n

is ‚.n/.

7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, which in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge

The only action is j ← j + 1!

Ryszard Janicki Randomized Algorithms 38/52

Swapping when A[j] ≤ x :

174 Chapter 7 Quicksort

≤ x > x

x

p i j r

>x(a)

≤ x > x

x

p i j r

≤ x > x

x

p i j r

≤ x(b)

≤ x > x

x

p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj � > x, the only
action is to increment j , which maintains the loop invariant. (b) If AŒj � � x, index i is incremented,
AŒi� and AŒj � are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-2
What value of q does PARTITION return when all elements in the array AŒp : : r�

have the same value? Modify PARTITION so that q D b.p C r/=2c when all
elements in the array AŒp : : r� have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n

is ‚.n/.

7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, which in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge

i is incremented

A[i] and A[j] are swapped

j is incremented

Ryszard Janicki Randomized Algorithms 39/52

Example
172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4

p,j ri

(a)

2 8 7 1 3 5 6 4

p,i rj

(b)

2 8 7 1 3 5 6 4

p,i rj

(c)

2 8 7 1 3 5 6 4

p,i rj

(d)

2 871 3 5 6 4

p rj

(e)

i

2 8 71 3 5 6 4

p rj

(f)

i

2 8 71 3 5 6 4

p rj

(g)

i

2 8 71 3 5 6 4

p r

(h)

i

2 871 3 5 64

p r

(i)

i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr� becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8

are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r � 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4

p,j ri

(a)

2 8 7 1 3 5 6 4

p,i rj

(b)

2 8 7 1 3 5 6 4

p,i rj

(c)

2 8 7 1 3 5 6 4

p,i rj

(d)

2 871 3 5 6 4

p rj

(e)

i

2 8 71 3 5 6 4

p rj

(f)

i

2 8 71 3 5 6 4

p rj

(g)

i

2 8 71 3 5 6 4

p r

(h)

i

2 871 3 5 64

p r

(i)

i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr� becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8

are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r � 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

Ryszard Janicki Randomized Algorithms 40/52

Randomized Caching

Another description of a class of Marking Algorithms.

752 Chapter 13 Randomized Algorithms

We first show that the number of misses incurred by LRU, on any request
sequence, can be bounded by roughly k times the optimum. We then use
randomization to develop a variation on LRU that has an exponentially stronger
bound on its performance: Its number of misses is never more than O(log k)

times the optimum.

Designing the Class of Marking Algorithms
The bounds for both LRU and its randomized variant will follow from a
general template for designing online eviction policies—a class of policies
called marking algorithms. They are motivated by the following intuition.
To do well against the benchmark of f (σ), we need an eviction policy that
is sensitive to the difference between the following two possibilities: (a) in
the recent past, the request sequence has contained more than k distinct
items; or (b) in the recent past, the request sequence has come exclusively
from a set of at most k items. In the first case, we know that f (σ) must be
increasing, since no algorithm can handle more than k distinct items without
incurring a cache miss. But, in the second case, it’s possible that σ is passing
through a long stretch in which an optimal algorithm need not incur any
misses at all. It is here that our policy must make sure that it incurs very
few misses.

Guided by these considerations, we now describe the basic outline of a
marking algorithm, which prefers evicting items that don’t seem to have been
used in a long time. Such an algorithm operates in phases; the description of
one phase is as follows.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked

On a request to item s:

Mark s

If s is in the cache, then evict nothing

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over

Processing of s is deferred to start of next phase

Else evict an unmarked item from the cache

Endif

Endif

Note that this describes a class of algorithms, rather than a single spe-
cific algorithm, because the key step—evict an unmarked item from the

———————————————–

These is no precise description of eviction procedure.

LRU and FWF are special cases of the above algorithm.

Ryszard Janicki Randomized Algorithms 41/52

Randomized Caching

752 Chapter 13 Randomized Algorithms

We first show that the number of misses incurred by LRU, on any request
sequence, can be bounded by roughly k times the optimum. We then use
randomization to develop a variation on LRU that has an exponentially stronger
bound on its performance: Its number of misses is never more than O(log k)

times the optimum.

Designing the Class of Marking Algorithms
The bounds for both LRU and its randomized variant will follow from a
general template for designing online eviction policies—a class of policies
called marking algorithms. They are motivated by the following intuition.
To do well against the benchmark of f (σ), we need an eviction policy that
is sensitive to the difference between the following two possibilities: (a) in
the recent past, the request sequence has contained more than k distinct
items; or (b) in the recent past, the request sequence has come exclusively
from a set of at most k items. In the first case, we know that f (σ) must be
increasing, since no algorithm can handle more than k distinct items without
incurring a cache miss. But, in the second case, it’s possible that σ is passing
through a long stretch in which an optimal algorithm need not incur any
misses at all. It is here that our policy must make sure that it incurs very
few misses.

Guided by these considerations, we now describe the basic outline of a
marking algorithm, which prefers evicting items that don’t seem to have been
used in a long time. Such an algorithm operates in phases; the description of
one phase is as follows.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked

On a request to item s:

Mark s

If s is in the cache, then evict nothing

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over

Processing of s is deferred to start of next phase

Else evict an unmarked item from the cache

Endif

Endif

Note that this describes a class of algorithms, rather than a single spe-
cific algorithm, because the key step—evict an unmarked item from the

13.8 Randomized Caching 755

Proof. The number of misses incurred by the marking algorithm is at most

kr = k(r − 1)+ k ≤ k · f (σ)+ k,

where the final inequality is just (13.37).

Note that the “+k” in the bound of (13.38) is just an additive constant,
independent of the length of the request sequence σ , and so the key aspect
of the bound is the factor of k relative to the optimum. To see that this factor
of k is the best bound possible for some marking algorithms, and for LRU in
particular, consider the behavior of LRU on a request sequence in which k + 1
items are repeatedly requested in a round-robin fashion. LRU will each time
evict the item that will be needed just in the next step, and hence it will incur
a cache miss on each access. (It’s possible to get this kind of terrible caching
performance in practice for precisely such a reason: the program is executing a
loop that is just slightly too big for the cache.) On the other hand, the optimal
policy, evicting the page that will be requested farthest in the future, incurs
a miss only every k steps, so LRU incurs a factor of k more misses than the
optimal policy.

Designing a Randomized Marking Algorithm
The bad example for LRU that we just saw implies that, if we want to obtain
a better bound for an online caching algorithm, we will not be able to reason
about fully general marking algorithms. Rather, we will define a simple Ran-
domized Marking Algorithm and show that it never incurs more than O(log k)

times the number of misses of the optimal algorithm—an exponentially better
bound.

Randomization is a natural choice in trying to avoid the unfortunate
sequence of “wrong” choices in the bad example for LRU. To get this bad
sequence, we needed to define a sequence that always evicted precisely the
wrong item. By randomizing, a policy can make sure that, “on average,” it is
throwing out an unmarked item that will at least not be needed right away.

Specifically, where the general description of a marking contained the line

Else evict an unmarked item from the cache

without specifying how this unmarked item is to be chosen, our Randomized
Marking Algorithm uses the following rule:

Else evict an unmarked item chosen uniformly at random

from the cache

752 Chapter 13 Randomized Algorithms

We first show that the number of misses incurred by LRU, on any request
sequence, can be bounded by roughly k times the optimum. We then use
randomization to develop a variation on LRU that has an exponentially stronger
bound on its performance: Its number of misses is never more than O(log k)

times the optimum.

Designing the Class of Marking Algorithms
The bounds for both LRU and its randomized variant will follow from a
general template for designing online eviction policies—a class of policies
called marking algorithms. They are motivated by the following intuition.
To do well against the benchmark of f (σ), we need an eviction policy that
is sensitive to the difference between the following two possibilities: (a) in
the recent past, the request sequence has contained more than k distinct
items; or (b) in the recent past, the request sequence has come exclusively
from a set of at most k items. In the first case, we know that f (σ) must be
increasing, since no algorithm can handle more than k distinct items without
incurring a cache miss. But, in the second case, it’s possible that σ is passing
through a long stretch in which an optimal algorithm need not incur any
misses at all. It is here that our policy must make sure that it incurs very
few misses.

Guided by these considerations, we now describe the basic outline of a
marking algorithm, which prefers evicting items that don’t seem to have been
used in a long time. Such an algorithm operates in phases; the description of
one phase is as follows.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked

On a request to item s:

Mark s

If s is in the cache, then evict nothing

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over

Processing of s is deferred to start of next phase

Else evict an unmarked item from the cache

Endif

Endif

Note that this describes a class of algorithms, rather than a single spe-
cific algorithm, because the key step—evict an unmarked item from the

————————————————————–
——————

Some random number generator is needed!

Ryszard Janicki Randomized Algorithms 42/52

Randomized Caching

Theorem

The random marking algorithm RALG is O(log k)-competitive
against OPT (i.e. LFD), where k is the size of its cache.

Ryszard Janicki Randomized Algorithms 43/52

Randomized Approximation Algorithm for MAX 3-SAT

We will show how randomization may help solving
NP-complete problems, as 3-SAT.

Ryszard Janicki Randomized Algorithms 44/52

3-SAT Problem
Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional

formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Key application. Electronic design automation (EDA).

21

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

3-SAT: Given a set of clauses {C1, . . . ,Ck}, each of length 3, over a
set of variables X = {x1, . . . , xn}, does there exist a satisfying
truth assignment?

Ryszard Janicki Randomized Algorithms 45/52

MAX 3-SAT

Given the set of input clauses {C1, . . . ,Ck}, each of length 3,
over a set of variables X = {x1, . . . , xn}, find a truth
assignment that satisfies as many clauses as possible.

We will the Maximum 3-Satisfiability Problem (or MAX
3-SAT for short).

This is an NP-hard optimization problem, since it is
NP-complete to decide whether the maximum number of
simultaneously satisfiable clauses is equal to k .

Ryszard Janicki Randomized Algorithms 46/52

Randomized Approximation Algorithm for MAX 3-SAT

Suppose we set each variable {x1, . . . , xn} independently to 0
or 1 with probability 1

2 each.

Let Z denote the random variable equal to the number of
satisfied clauses.

Thus Z = Z1 + Z2 + . . .+ Zk , where Zi = 1 if the clause Ci is
satisfies and Zi = 0 otherwise.

Now E (Zi) is equal to the probability that Ci is satisfied.

In order for Ci not to be satisfied, each of its three variables
must be assigned the value that fails to make it true; since the
variables are set independently, the probability of this is
(1

2)3 = 1
8 .

Thus clause Ci is satisfied with probability 1− 1
8 = 7

8 , and so
E (Zi) = 7

8 .

Hence: E (Z) = E (Z1) + E (Z2) + . . .+ E (Zk) = 7
8k .

Ryszard Janicki Randomized Algorithms 47/52

Randomized Approximation Algorithm for MAX 3-SAT

Proposition

Consider a 3-SAT formula, where each clause has three different
variables. The expected number of clauses satisfied by a random
assignment is within an approximation factor 7

8 of optimal.

Proof.

Since E (Z) = E (Z1) + E (Z2) + . . .+ E (Zk) = 7
8k.

Theorem

For every instance of 3-SAT, there is a truth assignment that
satisfies at least a 7

8 fraction of all clauses.

Proof.

For every instance of 3-SAT, a random truth assignment satisfies a
7
8 fraction of all clauses in expectation; so, in particular, there must
exist a truth assignment that satisfies a number of clauses that is
at least as large as this expectation.

Ryszard Janicki Randomized Algorithms 48/52

Waiting to Find a Good Assignment

Suppose we are not satisfied with a “one-shot” algorithm that
produces a single assignment with a large number of satisfied
clauses in expectation.

Rather, we would like a randomized algorithm whose expected
running time is polynomial and that is guaranteed to output a
truth assignment satisfying at least a 7

8 fraction of all clauses.

A simple way to do this is to generate random truth
assignments until one of them satisfies at least 7

8k clauses.
We know that such an assignment exists, but how long will it
take until we find one by random trials?

If we can show that the probability a random assignment
satisfies at least 7

8k clauses is at least p, then the expected
number of trials performed by the algorithm is 1

p (see page
18).

In particular, we would like to show that this quantity p is at
least as large as an inverse polynomial in n and k .

Ryszard Janicki Randomized Algorithms 49/52

Waiting to Find a Good Assignment

If we can show that the probability a random assignment
satisfies at least 7

8k clauses is at least p, then the expected
number of trials performed by the algorithm is 1

p (see page
18).
In particular, we would like to show that this quantity p is at
least as large as an inverse polynomial in n and k .
For j = 0, 1, 2, . . . , k , let pj denote the probability that a
random assignment satisfies exactly j clauses.

Hence: E (X) =
k∑

j=0

jpi =
7

8
k.

Now we have:

7

8
k = E (X) =

k∑
j=0

jpi =
∑
j< 7

8
k

jpi +
∑
j≥ 7

8
k

jpi .

and
∑
j< 7

8
k

pj = 1− p.

Ryszard Janicki Randomized Algorithms 50/52

Waiting to Find a Good Assignment

Thus:
∑
j< 7

8
k

pj = 1− p,
∑
j≥ 7

8
k

pj = p and

7

8
k =

k∑
j=0

jpi =
∑
j< 7

8
k

jpi +
∑
j≥ 7

8
k

jpi

Let k ′ denote the largest natural number that is strictly
smaller than 7

8k .
Now we have:

7

8
k ≤

∑
j< 7

8
k

k ′pi +
∑
j≥ 7

8
k

kpi = k ′(1− p) + kp ≤ k ′ + kp

Hence kp ≥ 7
8k − k ′, and, since k ′ is a natural number strictly

smaller that 7
8 another natural number, so 7

8k − k ′ ≥ 1
8 , i.e.

kp ≥ 7
8k − k ′ ≥ 1

8 .

Which means:

p ≥
7
8k − k ′

k
≥ 1

8k
i.e.

1

p
≤ 8k .

Ryszard Janicki Randomized Algorithms 51/52

Waiting to Find a Good Assignment

We have
1

p
≤ 8k.

The expected number of trials needed to find the satisfying
assignment we want is at most 8k .

Proposition

There is a randomized algorithm with polynomial expected running
time that is guaranteed to produce a truth assignment satisfying at
least a 7

8 fraction of all clauses.

Ryszard Janicki Randomized Algorithms 52/52

