Randomized Algorithms

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Material based on Algorithm Design by Jon Kleinberg and Eva Tardos
(Chapter 13) and An Introduction to the Analysis of Algorithms by Michael Soltys (Chapter 6)

Ryszard Janicki Randomized Algorithms

1/52

Randomized Algorithms

@ It is very interesting that we can design procedures which,
when confronted with a profusion of choices, instead of
laboriously examining all the possible answers to those
choices, they ip a coin to decide which way to go, and still
“tend to” obtain the right output.

@ Obviously we save time when we resort to randomness, but
what is very surprising is that the output of such procedures
can be meaningful.

@ That is, there are problems that computationally appear very
difficult to solve, but when allowed the use of randomness it is
possible to design procedures that solve those hard problems
in a satisfactory manner: the output of the procedure is
correct with a small probability of error.

@ Thus, many experts believe that the definition of “feasibly
computable” ought to be computable in polynomial time with
randomness, rather than just in polynomial time.

Ryszard Janicki Randomized Algorithms

Diffie-Hellman Schem

o First proposed by James Ellis in 1970, but classified until 1997.
@ Reinvented by W. Diffie and M. Hellman in 1976.

@ It is based on the Discrete Logarithm Problem.

Definition (Discrete Logarithm Problem)
Find k such that

n=g" modp

for a given natural numbers n, g and a prime number p.

@ The Discrete Logarithm Problem is infeasible for big p.

Ryszard Janicki Randomized Algorithms

Algorithm (Diffie-Hellman Protocol)

@ Shared Knowledge: p and g, where g £ 0,1,p — 1.

@ Each user chooses a private key k, and computes a public key
K, =gk mod p.

e If A and B want to communicate, they encipher the other’s

public key using they own public key using the formulas:

Sag = KéA mod p (used by A), and
Sg.a= K& mod p (used by B).

@ The protocol is based on the following theorem:

SaB=5BA l

® The key Sp g = Sg A is used for communication between A
and B.

Ryszard Janicki Randomized Algorithms

RSA Protocol

@ Invented by R. Rivest, A. Shamir and L. Adleman in 1978.
o It is based on the properties of the totient function ®(n).

Definition

A number k is relatively prime to a number n if k has no factors in
common with n.

Definition
The totient function ®(n) is the number of positive integers less
than n and relatively prime to n.

e ®(10) =4, as 1,3,7,9 are relatively prime to 10.
o ®(21) =12, as 1,2,4,5,8,10,11, 13,16, 17, 19, 20 are
relatively prime to 21.

N

Ryszard Janicki Randomized Algorithms

If p and q are two distinct primes, then ®(pg) = (p — 1)(g — 1).

Algorithm (RSA Protocol)
@ Choose two large prime numbers p and q.
Compute n = pq. Then ®(n) = (p—1)(g —1).
Choose e < n such that e is relatively prime to ®(n).
Compute d such that ed mod ®(n) = 1.
PUBLIC KEY: (e, n)
PRIVITE KEY: d
ENCIPHER: ¢ = m® mod n (uses PUBLIC KEY (e, n))
DECIPHER: m = c? mod n (uses PRIVATE KEY d)

@ Actual RSA primes p and g should be at least 512 bits long,
giving a modulus, i.e. n = pgq, of at least 1024 bits.

Ryszard Janicki Randomized Algorithms

o All modern cryptography algorithms require large random
primes (in practice about 1,000 bit long); a single prime
Diffie-Hellman, a pair of primes for RSA, and similarly for
other protocols. How to go about it?

o How to get large random primes quickly?

@ One way to determine whether a number p is prime, is to try
all possible numbers n < /p, and check if any are divisors.

@ Obviously, this brute force procedure has exponential time
complexity in the length of /p, and so it has a prohibitive
time cost.

@ Although a polytime (deterministic) algorithm for primality is
known from 2004, the randomized algorithm for primality
testing that we will present is simpler and more efficient, and
therefore still used in practice.

Ryszard Janicki Randomized Algorithms

Natural Numbers

(]
("]

Define N ={0,1,2,...}.
For all x,y € N we say the x divides y, and write x|y if
y = gx for some g € N.
If x|y we say that x is divisor (also factor) of y.
For all x,y € N, the greatest common divider of x and y,
gcd(x, y) is defined as

ged(x, y) = max{q | q[x A qly}.
For example gcd(63,147) =7, as 63 =3-3-7 and
147 =3-7-7.
Let m > 1. We say that a and b are congruent (or equal)
modulo m, and write

a=b mod m.

Proposition

If m>1, thena-b=1 mod m for some b if and only if

gcd(a,m) = 1.

Ryszard Janicki Randomized Algorithms

Fermat’'s Little Theorem and Fermat Test

o Let Z,m ={0,1,2,...,m — 1} - the set of integers modulo m.
o LetZy, ={a€Znm| gecd(a,m) =1} C Zp,.

Theorem (Fermat's Little Theorem)

Let p be a prime number and gcd(a, p) = 1. Then

a?1=1 mod p.

o We say that p passes the Fermat test at a iff a1 =1
mod p.

o All primes pass the Fermat test for all a € Z, \ {0}.

@ Unfortunately, there are also composite numbers n that pass
the Fermat test for all a € Z,,.

@ They are called Carmichael numbers, for example,
561 =3-11-17,1005=5-11-17, 1720 =7 -13- 19, etc.

Ryszard Janicki Randomized Algorithms

o We say that p passes the Fermat test at a iff s~ =1

mod p.

©Q If p is a composite non-Carmichael number, then it passes at
most half of the tests in Z,.

Q Ifgcd(a,p) # 1 then a1 #1 mod p.

@ A number is pseudoprime if it is either prime or Carmichael
number.

Algorithm for pseudoprimes:

@ On input p, check whether a2~ =1 mod p for some random
aeZp\ {0}

o If p fails this test (i.e., a1 #1 mod p), then p is
composite for sure (test gcd(a, p) # 1 first).

@ If p passes the test, then p is probably pseudoprime.

@ From the above lemma (2), it follows that the probability of
error in the case of passing the test is < %

Ryszard Janicki Randomized Algorithms 10/52

Rabin-Miller algorithm

@ The Rabin-Miller algorithm extends the pseudoprimeness test
to deal with Carmichael numbers.

Rabin-Miller Algorithm

1: Ifn=

else

[
Wy 22

14:
15: end if

2, accept; if n is even and n > 2, reject.

Choose at random a positive a in Z,.
if a("~

D #1 (mod n) then
reject

Find s, h such that s is odd and n — 1 = s2"

Compute the sequence aS'QO, as? , a5‘22, e, as?" (mod n)
if all elements in the sequence are 1 then
accept
else if the last element different from 1 is —1 then
accept
else
reject
end if

Ryszard Janicki Randomized Algorithms 11/52

1: If n = 2, accept; if n is even and n > 2, reject.

2: Choose at random a positive a in Z,,.

3. if a1 £ 1 (mod n) then

4: reject

5: else

6: Find s, h such that s is odd and n — 1 = s2"

7: Compute the sequence a®2 ,a*2",a52", ..., a52" (mod n)
8: if all elements in the sequence are 1 then

9: accept

10: else if the last element different from 1 is —1 then
11: accept

12: else

13: reject

14: end if

15: end if

@ Note that this is a polytime (randomized) algorithm:
computing powers (mod n) can be done efficiently with
repeated squaring.

elfn—1=c, ...cicg mod b, then compute:

ap = a, a1 :ag,azzaf,...,a,:af_l mod n.
o Hence a" ! = aaf'--- a5 mod n.

@ Thus obtaining the powers in lines 6 and 7 is not a problem.

Ryszard Janicki Randomized Algorithms 12/52

Rabin-Miller Algorithm

If n is a prime then the Rabin-Miller algorithm accepts it; if n is
composite, then the algorithm rejects it with probability > %

@ Note that by running the algorithm k times on independently
chosen a, we can make sure that it rejects a composite with
probability > 1 — 2% (it will always accept a prime with
probability 1).

@ Thus, for k = 100 the probability of error, i.e., of a false
positive, is negligible.

Ryszard Janicki Randomized Algorithms 13/52

Generating Primes

@ Let m(x) be the prime-counting function that gives the number of
primes less than or equal to x, for any real number x.

@ For example, 7(10.3) = 4 because there are four prime numbers (2,
3, 5 and 7) less than or equal to 10.1.

@ Let 7, denotes the n'" prime number, for example ps = 7.

Theorem (Prime Number Theorem)

fim)y
x—o0 x/ log x

@ Using asymptotic notation this result can be restated as

X
log x

(x) ~ or pp ~ nlogn.

@ This means that there are 2" /n primes among n-bit integers,
roughly 1 in n, and these primes are fairly uniformly distributed.

@ So we pick an integer at random, in a given range, and apply
the Rabin-Miller algorithm to it.
Ryszard Janicki Randomized Algorithms 14/52

Basic Probability

e A (finite) probability space (S, p) consists of a (finite) set S
and a function p : S — Reals satisfying:
e 0<p(x)<1lforall xesS,

° Zp(x) =1.

x€S
@ An event A is a subset of S and its probability is given by:
p(A) = 3" p(x).
xEA

Q p(0) =0 p(5)=1
Q@ ANB=0 = p(AUB)=p(A)+ p(B)
© p(AUB) = p(A) + p(B) — p(AU B)

Q ol JA) <D p(A)

jel icl

Ryszard Janicki Randomized Algorithms

Basic Probability

e A and B are mutually exclusive if p(AN B) = .
e A and B are independent if p(AN B) = p(A)p(B).
e Conditional probability: A and B are events and p(B) > 0
The probability of A given B is defined as:
p(ANB)
p(A|B) = ———
B == ()

Ryszard Janicki Randomized Algorithms 16/52

Random Variables

@ A function X : S — Reals is called a random variable.
e The expectation (expected value) of X is:

E(X) =3 p()X(x)

xeS

@ For x € Reals,

p(ix € S| X(x) = r}) = p(X~1(r))
is often written as p(X = r) and interpreted as “the
probability that X = r".

Ryszard Janicki Randomized Algorithms 17/52

Expected value is linear i.e.
Q@ E(X+Y)=EX)+E(Y)
Q@ E(cX) = cE(X)

@ EO) X)) => cE(X

@ Waiting for first success in independent trial:
PX =]) = (1= eV s

o E(X)=) jP(X 2) “lp=

j=1

oo
p , p 1-—p
—) jl-p)=— = -
1 pg;() 1-p p? p

o0

x

since Z kxk = 5 for |x| < 1.

— (1—x)

@ Expected number of trials to first success is %.

Ryszard Janicki Randomized Algorithms 18/52

Randomized Divide and Conquer: Finding the Median

Finding the Median
Let S ={a,, a,..
The median of S is equal to the k%" largest element in S,

where:

Assume for simplicity that all elements of S are different.

.,am} be a set of numbers.

n+1
-
2

Obvious solution: Sort first
Complexity: O(nlogn)
Cab we do better?

We will provide a randomized algorithm that can do it in

O(n) time.

Ryszard Janicki

n is odd

n is even

Randomized Algorithms

Generic Algorithm Based on Splitters

Select(S,k):
Choose a splitter a;e$
For each element g; of S
Put ¢; in §7 if g <gq
Put g; in ST if g;>gq;
Endfor
If |ST|=k—1 then
The splitter ag; was in fact the desired answer
Else if |S7| >k then
The kth largest element lies in S™

Recursively call Select(S™, k)
Else suppose |ST|=¢<k—1

The ki largest element lies in S*

Recursively call Select(St,k—1—¢)
Endif

Ryszard Janicki Randomized Algorithms 20/52

Select(S,k):
Choose a splitter a; €S
For each element g; of S
Put ¢ in S” if gi<q e(n)
Put g; in ST if g;>q;
Endfor
If |ST|=k—1 then
The splitter a; was in fact the desired answer
Else if |S7|>k then
The k™ largest element lies in S~
Recursively call Select(S™, k)
Else suppose |ST|={<k—1
The k™M largest element lies in ST
Recursively call Select(ST,k—1-¢)
Endif

@ The algorithm is always called recursively on a strictly smaller
set, so it must terminate.

0 |S|=1 = k=1

Ryszard Janicki Randomized Algorithms 21/52

Generic Algorithm Based on Splitters

Regardless of how the splitter is chosen, the algorithm returns the
k' largest element of S.

e CHOOSING A GOOD SPLITTER
o LUCKY CASE: We always choose the median as the splitter:
T(n) < T(n/2)+dn
Master theorem: T(n) = aT(n/b) = f(n),
a=1,b=2log,1=0
f(n)=f-n=Q(n"e) forany 0 < ¢ < 1,
a-f(n/b) = f(n/2) = 3dn < 3f(n) = cf(c),
where ¢ = % < 1.
Thus, by (3) of Master Theorem: T(n) = ©(f(n)) = ©(n).

e WEIRD, as we just compute median!

Ryszard Janicki Randomized Algorithms 22/52

“Well-centered” Case

“WELL-CENTERED” CASE

@ We are able to choose splitter a; such that always at least € - n
elements both larger and smaller than a; for any fixed
constant € > 0.

T(n) < T((1—-¢)n)+dn

T(n)=dn+(1—¢e)dn+ (1 —¢)dn+...=
[1—|—(1—5)+(1—5)2+...]dn:%dn:@(n)

1 q; 1
2 since Y 2o xk=1= |x|<1

o “Lucky case” is when ¢ = %:

@ Very “OF CENTER" splitter:
T(n)<T(n—1)+dn
dn(n+1
T(n)=dn+d(n—1)+d(n—2)+...= 2 — g(p?).
@ Choose a splitter a; € S uniformly at random.
@ Intuitively random case should be close to well centered case.

Ryszard Janicki Randomized Algorithms 23/52

Random Case Analysis

@ The algorithm is in phase j if the set under consideration has

a size s such that

n(3Y+ <s<n(3y
@ For a set A, a element a € A is central, if
{x € A|x<a} >3A| and
{xe Al x < a}| > 1A

@ Splitter is central = at least % of elements is thrown away,

i.e. the set shrinks by % factor.
@ Probability of being central is %
@ Expected number of trials to find a central element is 2.
@ Expected number of iterations in phase j, for any j is 2.

Ryszard Janicki Randomized Algorithms 24/52

X - random variable modeling the number of steps taken by
the algorithm:

X:XO—I—X1+X2+...
where Xj is the expected number of steps in phase j.

In phase j, the set has size at most n(%)j, so the number of
steps for one iteration is at most ¢ - n- (3)/, some constant c.

Expected number of iterations in phase j is 2, so
E(X;) < 2cn(%)j.

J_ 31’
ZE) < Z2cn 2C"Z(Z) <

J

Hence

1
2cnz f = 2cn73 =8c-n

4
as E Xk:
k=0

Theiexpected time of Select(n, k) is O(n).

for |x| < 1.
— X

Ryszard Janicki Randomized Algorithms

Random Case Analysis

@ The expected time of Select(n, k) is O(n).
@ How to implement randomness?

@ If the distribution is uniform, probability of value x on any
position of the list of n elements is %

@ Solution:
For example: Choose the last (first) element on the list as a

splitter.

Ryszard Janicki Randomized Algorithms 26/52

Quick Sort (C. A. R. Hoare 1962)

Quicksort(S):
If |S| <3 then
Sort S
Output the sorted list
Else
Choose a splitter g; €S uniformly at random

For each element g; of S

Put g; in §7 if gj<q
Put g; in ST if g;>q
Endfor
Recursively call Quicksort(S™) and Quicksort(S™)
Output the sorted set S™, then q;, then the sorted set St
Endif

@ For this algorithm, splitter is called pivot.

Ryszard Janicki Randomized Algorithms 27/52

Quick Sort: Analysis

Lucky Case: Splitters are medians. Then
T(n) <2T(n/2)+cn
By Master Theorem (case 2), O(nlog n).
colorblue Worst Case: Splitters split 1 and n— 1
T(n) < T(n—1)+cn= 0(n?)

Intuition tells us that random case is close to lucky case.

(]

We assume uniform distribution.

We assume that all elements are different. this assumption
can be dropped, but then proofs need to be modified.

Ryszard Janicki Randomized Algorithms

Quick Sort: intuition

o Consider the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced.

T(n) = T(9n/10) + T(n/10) + cn
@ It can be proved, either by expansion, or by analyzing
recursion tree that:
T(n) = T(9n/10) + T(n/10) + cn = O(nlog n)
@ Even a 99-to-1 split yields an O(nlog n) running time (big
constant).

Ryszard Janicki Randomized Algorithms

Quick Sort: Average Case Complexity

@ Average case complexity for Quick Sort is considered difficult
and in most textbooks, including Kleinberg-Tardos, is not
provided.

@ The proof in this lecture notes is probably the easier known in
literature, it uses a trick that often makes proofs easier; it
generalizes a discrete case to continuous case and replaces
sums with integrals.

Ryszard Janicki Randomized Algorithms 30/52

Quick Sort: Average Case Complexity

@ Suppose |ST|=j—1and |ST|=n—j, ie.
T(n)<TG—-1)+T(n—j)+cn.

@ Since j is random with % probability, we have
n

Toug(n) < S (Tavglj — 1) + Taugln— j)) +n =
j=1

) n—1 .
cn+ = 2; Tag(j), n > 2
J:
@ Assume T,,4(0) < b, Tayg(1) < b and define d =2(b+ ¢).
@ We will show by induction that, for n > 2

Tavg(n) < dnlog,n= O(nlogn),
where e = 2.71838...

Ryszard Janicki Randomized Algorithms 31/52

Quick Sort: Average Case Complexity

@ Base: n=2
Tag(2) <2c+ 2(T(0) + T(1)) <2c+b+b=2(b+c) =
d<d-2log.2
——
>1
@ We will use the 2" induction scheme.
@ Induction Assumption: for 1 < n
Tavg(m) < dnlog, n.
@ We need to show that
Tavg(n+1) < d(n+1)log.(n+1).

Ryszard Janicki Randomized Algorithms 32/52

@ Recall that [xInxdx = x?(!%* — 1).

) m—1 .
o Let m=n+1. Recall T,g(m)=cn+ - z(:) Tavg(J)-
j:
)) m—1
Tavg(m) < em+ —(T(0)+ T(1) + — > Tag()) <
m s~ >~~~ m — N——
<b <b J=2 <djlog, j
4b 2dT= 4b 2d
cm—i——i—zgjlogej <cm++m/ xloge x dx =
J
4b 2d[m?logem m? 4b dm
cm+—+— | —— — — :cm+—+dmlogem—— =
m m 2 4 m 2
+4b 2bm 2cm+d | _
cm+ 24b > mlog, m =
dmlog, m+ (m — bm> < dmlog, m
N——
<0 if m>2

e Hence: T,z(n) = O(nlog, n) = O(nlog n).

Ryszard Janicki Randomized Algorithms 33/52

@ Quick Sort is considered the fastest sorting when input is
random. WHY?
@ Because it allows a very efficient implementation which is

superfast for half of cases!
@ Less abstract formulation:
Input: unsorted array A[l..n]
Output: sorted array A[l..n]

We want to use only one array.

o QUICK SORT Algorithm:

QuickSort(A[1..n])

v <= PIVOT(A[1..n]) <+ it chooses the splitter

k <~ PARTITION(v,A[l..n]) < it maintains S~ and S in A.
QuickSort(A[1..k — 1])
QuickSort(A[k..n])

Ryszard Janicki Randomized Algorithms 34/52

How to implement: v < PIVOT (A[l..n]) ?

@ v < Random(A[l..n]) <+ not feasible in full
@ v < A[n] <« asgood as random if input has uniform distribution

@ v <« largest from the first two different values of A[/], starting
from A[1] + original choice of C. A. R. Hoare, slightly better if
distribution not entirely uniform

@ v < a formula that depends on input distribution, if known.

Ryszard Janicki Randomized Algorithms

o Consider the case v = A[n] (simplest)

o We may now write:

QuickSort(A, p,r)
IF p < r THEN
q < PARTITION(A, p,r) < must guarantee p = r at some
point
QuickSort(A, p,g — 1)
QuickSort(A, g + 1, n)
ENDIF

@ It is use as QuickSort(A, 1, n) for A[l.n].

Ryszard Janicki Randomized Algorithms 36/52

o Partition is tricky and important.

PARTITION(A, p,r)

x < Alr]

i< p—1
FORj=pTOr—1DO

IF A[j] < x THEN 1
BEGIN
fe i1 nothing if A[j] > x.
swap(A[i], Alj]) It happens in about % cases!
END Very efficient
ENDIF
ENDFOR -

swap(A[i + 1], [A[r])
return(i + 1)

Ryszard Janicki Randomized Algorithms 37/52

@ The procedure Partition maintains 4 regions on a subarray A[p..r]

<x > X unrestricted

@ Swapping when A[j] > x:
p i J r

CT T T |- 111]

e Swapping when A[j] < x:
i J r

p
CT T T g 11]

<x > X

@ / is incremented
e A[i] and A[j] are swapped

@ j is incremented

Randomized Algorithms

I pJj r
(a) |2 81711135 6|4

pi r P i J r

(b) |2|8 711]3]5 6|4 ®]2|1|3|8|7|5\6|4\

P i jor
© IEIIIIIEI @ [2[1[3)s]Ts] o4
Dol j r p i r
()]2|8|7|1\3\5\6|4\ (h)]2|1|3!8|7|5|6!4\
p i J r p i r
(e]2|1|7|8|3\5\6|4\ (i)]2|1|3!4!7|5|6|8!

Ryszard Janicki Randomized Algorithms

Randomized Caching

@ Another description of a class of Marking Algorithms.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked
On a request to item s:
Mark s
If s is in the cache, then evict nothing
Else s is not in the cache:
If all items currently in the cache are marked then
Declare the phase over
Processing of s is deferred to start of next phase
Else evict an unmarked item from the cache
Endif
Endif

@ These is no precise description of eviction procedure.
@ LRU and FWF are special cases of the above algorithm.

Ryszard Janicki Randomized Algorithms 41/52

Randomized Caching

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked
On a request to item s:
Mark s
If s is in the cache, then evict nothing
Else s is not in the cache:
If all items currently in the cache are marked then
Declare the phase over
Processing of s is deferred to start of next phase

Else evict an unmarked item chosen uniformly at random

from the cache
Endif
Endif

@ Some random number generator is needed!

Ryszard Janicki Randomized Algorithms 42/52

Randomized Caching

The random marking algorithm RALG is O(log k)-competitive
against OPT (i.e. LFD), where k is the size of its cache.

Ryszard Janicki Randomized Algorithms 43/52

Randomized Approximation Algorithm for MAX 3-SAT

o We will show how randomization may help solving
NP-complete problems, as 3-SAT.

Ryszard Janicki Randomized Algorithms 44/52

3-SAT Problem

Literal. A boolean variable or its negation. X; or Xx;
Clause. A disjunction of literals. C,=x, VX VX5
Conjunctive normal form. A propositional D= CACA Cya C,

formula ® that is the conjunction of clauses.

SAT. Given CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

yes instance: x; = true, X, = true, x3 = false, x, = false

3-SAT: Given a set of clauses {Cy,..., Cx}, each of length 3, over a
set of variables X = {x1, ..., x,}, does there exist a satisfying
truth assignment?

Ryszard Janicki Randomized Algorithms

MAX 3-SAT

@ Given the set of input clauses {Cy, ..., Cx}, each of length 3,
over a set of variables X = {x1,...,xp}, find a truth
assighment that satisfies as many clauses as possible.

e We will the Maximum 3-Satisfiability Problem (or MAX
3-SAT for short).

@ This is an NP-hard optimization problem, since it is
NP-complete to decide whether the maximum number of
simultaneously satisfiable clauses is equal to k.

Ryszard Janicki Randomized Algorithms 46/52

Randomized Approximation Algorithm for MAX 3-SAT

@ Suppose we set each variable {xi,...,x,} independently to 0
or 1 with probability % each.

@ Let Z denote the random variable equal to the number of
satisfied clauses.

@ ThusZ =21+ 2>+ ...+ Z, where Z; = 1 if the clause C; is
satisfies and Z; = 0 otherwise.
e Now E(Z;) is equal to the probability that C; is satisfied.

@ In order for C; not to be satisfied, each of its three variables
must be assigned the value that fails to make it true; since the
variables are set independently, the probability of this is

(3=}

@ Thus clause C; is satisfied with probability 1 — % = %, and so
E(Z) =4

o Hence: E(Z) = E(Z1) + E(Z) + ...+ E(Z) = §k.

Ryszard Janicki Randomized Algorithms 47/52

Randomized Approximation Algorithm for MAX 3-SAT

Consider a 3-SAT formula, where each clause has three different
variables. The expected number of clauses satisfied by a random
assignment is within an approximation factor % of optimal.

Since E(Z) = E(Z1) + E(Z) + ... + E(Z) = §k. O

For every instance of 3-SAT, there is a truth assignment that
satisfies at least a % fraction of all clauses.

Proof.

For every instance of 3-SAT, a random truth assignment satisfies a
% fraction of all clauses in expectation; so, in particular, there must
exist a truth assignment that satisfies a number of clauses that is

at least as large as this expectation. O

Ryszard Janicki Randomized Algorithms 48/52

Waiting to Find a Good Assignment

@ Suppose we are not satisfied with a “one-shot” algorithm that
produces a single assignment with a large number of satisfied
clauses in expectation.

@ Rather, we would like a randomized algorithm whose expected
running time is polynomial and that is guaranteed to output a
truth assignment satisfying at least a % fraction of all clauses.

@ A simple way to do this is to generate random truth
assignments until one of them satisfies at least %k clauses.
We know that such an assignment exists, but how long will it
take until we find one by random trials?

@ If we can show that the probability a random assignment
satisfies at least %k clauses is at least p, then the expected
number of trials performed by the algorithm is %} (see page
18).

@ In particular, we would like to show that this quantity p is at
least as large as an inverse polynomial in n and k.

Ryszard Janicki Randomized Algorithms

Waiting to Find a Good Assignment

@ If we can show that the probability a random assignment
satisfies at least %k clauses is at least p, then the expected
number of trials performed by the algorithm is l% (see page
18).

@ In particular, we would like to show that this quantity p is at
least as large as an inverse polynomial in n and k.

@ For j=0,1,2,...,k, let p; denote the probability that a
random assignment satisfies exactly j clauses.

k
@ Hence: E(X) = ij,- = gk.
=0
@ Now we have:
k
7 . . .
gk =EX)=>_ipi= > Jpi+ > _Jpi
j=0

J<tk >tk
e and E pj=1—p.
J<tk

Ryszard Janicki Randomized Algorithms 50/52

Waiting to Find a Good Assignment

@ Thus: ijzl—p, ij:pand

i<tk j>Lk
7 k
gk=2_dpi="D_Jpi+ > _Jpi
J=0 J<gk i>Lk

o Let kK’ denote the largest natural number that is strictly
smaller than Zk.
° Now7we have:
/ ol /
gk < > Kpi+ > kpi=K(1—-p)+kp <K +kp
J<gk =gk
7

?

k — k', and, since k' is a natural number strictly
another natural number, so 7k k' > ,
kp >tk — K > %.

@ Hence kp >
smaller that

@ Which means:

Ryszard Janicki Randomized Algorithms

Waiting to Find a Good Assignment

o We have 1 < 8k.
p

@ The expected number of trials needed to find the satisfying
assignment we want is at most 8k.

Proposition

There is a randomized algorithm with polynomial expected running
time that is guaranteed to produce a truth assignment satisfying at
least a % fraction of all clauses.

Ryszard Janicki Randomized Algorithms 52/52

