
Local Search
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 12)

Ryszard Janicki Local Search 1/13

Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What
should I do?

A. Theory says you are unlikely to find poly-time algorithm.

We must sacrifice one of three desired features.

Solve problem to optimality.

Solve problem in polynomial time.

Solve arbitrary instances of the problem.

Ryszard Janicki Local Search 2/13

Local Search

Local search is a very general technique; it describes any
algorithm that “explores” the space of possible solutions in a
sequential fashion, moving in one step from a current solution
to a “nearby” one.

The generality and flexibility of this notion has the advantage
that it is not difficult to design a local search approach to
almost any computationally hard problem.

The counterbalancing disadvantage is that it is often very
difficult to say anything precise or provable about the quality
of the solutions that a local search algorithm finds, and
consequently very hard to tell whether one is using a good
local search algorithm or a poor one.

Ryszard Janicki Local Search 3/13

Local Search

Our discussion of local search will reflect these trade-offs.

Local search algorithms are generally heuristics designed to
find good, but not necessarily optimal, solutions to
computational problems, and we begin by talking about what
the search for such solutions looks like at a global level.

Much of the core of local search was developed by people
thinking in terms of analogies with physics.

Physical systems are performing minimization all the time,
when they seek to minimize their potential energy.

What can we learn from the ways in which nature performs
minimization?

Does it suggest new kinds of algorithms?

Ryszard Janicki Local Search 4/13

Local search

6

Local search

Local search. Algorithm that explores the space of possible solutions in

sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S ∼ S ' be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S ' of S
with strictly lower cost, replace S with the neighbor whose cost is as small

as possible. Otherwise, terminate the algorithm.

A funnel a jagged funnel

Ryszard Janicki Local Search 5/13

Gradient descent: vertex cover

Gradient descent: vertex cover

Vertex cover. Given a graph G = (V, E), find a subset of nodes S of minimal

cardinality such that for each (u, v) ∈ E, either u or v (or both) are in S.

Neighbor relation. S ∼ S ' if S ' can be obtained from S by adding or deleting a

single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S ' that is a vertex

cover and has lower cardinality, replace S with S '.

Remark. Algorithm terminates after at most n steps since each update

decreases the size of the cover by one.

4

Ryszard Janicki Local Search 6/13

Gradient descent: vertex cover

Ryszard Janicki Local Search 7/13

Local Optimum for GraphsGradient descent: vertex cover

Local optimum. No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node

5
Ryszard Janicki Local Search 8/13

Hopfield neural networks

13

Hopfield neural networks

Hopfield networks. Simple model of an associative memory, in which a

large collection of units are connected by an underlying network, and

neighboring units try to correlate their states.

Input: Graph G = (V, E) with integer (positive or negative) edge weights w.

Configuration. Node assignment su = ± 1.

Intuition. If wuv < 0, then u and v want to have the same state;

if wuv > 0 then u and v want different states.

Note. In general, no configuration respects all constraints.

5

7

6

Ryszard Janicki Local Search 9/13

Hopfield neural networks

14

Hopfield neural networks

Def. With respect to a configuration S, edge e = (u, v) is good if

we 𐄂 su 𐄂 sv < 0. That is, if we < 0 then su = sv ; if we > 0, then su ≠ sv.

Def. With respect to a configuration S, a node u is satisfied

if the weight of incident good edges ≥ weight of incident bad edges.

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge

€

 we su sv
v: e=(u,v)∈ E

∑ ≤ 0

satisfied node: 5 – 4 – 1 – 1 < 0

Ryszard Janicki Local Search 10/13

Hopfield neural networks

Goal. Find a stable configuration, if such a configuration
exists.

State-flipping algorithm: Repeated flip state of an
unsatisfied node.

15

Hopfield neural networks

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeated flip state of an unsatisfied node.

HOPFIELD-FLIP (G, w)
__

S ← arbitrary configuration.
WHILE (current configuration is not stable)

u ← unsatisfied node.
su ← -su.

RETURN S.
__

Ryszard Janicki Local Search 11/13

State-flipping algorithm example

16

State-flipping algorithm example

unsatisfied node
10 – 8 > 0

unsatisfied node
8 – 4 – 1 – 1 > 0

stable

Ryszard Janicki Local Search 12/13

Complexity of Hopfield neural network

Theorem

The state-flipping algorithm terminates with a stable configuration

after at most W =
∑
e

|we | iterations.

Hopfield network search problem: Given a weighted graph,
find a stable configuration if one exists.

Hopfield network decision problem: Given a weighted
graph, does there exist a stable configuration?

Remark. The decision problem is trivially solvable (always
yes), but there is no known poly-time (i.e. polynomial in n
and logW) algorithm for the search problem.

Ryszard Janicki Local Search 13/13

