NP-completeness Again

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material partially based on Algorithm Design by Jon Kleinberg and Eva Tardos (Chapter 8)

Ryszard Janicki NP-completeness Again 1/28

Polynomial-time reductions

Desiderata. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time reduces to problem Y
if arbitrary instances of problem X can be solved using:

e Polynomial number of standard computational steps, plus
e Polynomial number of calls to oracle that solves problem Y.

Notation. X <p Y.

Note. We pay for time to write down instances sent to oracle
= instances of Y must be of polynomial size.

Caveat. Don't mistake X <p Y with Y <p X!

Ryszard Janicki NP-completeness Again 2/28

Polynomial-time reductions: Design algorithms.

e If X <p Y and Y can be solved in polynomial time, then X
can be solved in polynomial time.
@ We have already used this type of reduction in this course:

o Problem 4 (CluNet) from Assignment 1 can be reduced to
Stable marriage, i.e. CluNet <p Stable marriage
o Bipartite Matching has been reduced to Max Flow, i.e.
Bipartite Matching <p Max Flow
o “Toy” Airline Scheduling has been reduced to Max Flow, i.e.
“Toy” Airline Scheduling <p Max Flow
e many other (assignments and other courses)
In all cases above transformation (cost of reduction) was
linear.

e THIS IS NOT WHAT NEEDS TO BE DONE TO
SHOW NP-COMPLETENESS.

Ryszard Janicki NP-completeness Again 3/28

Polynomial-time reductions: Establish intractability.

@ Establish intractability. If X <p Y and X cannot be solved in
polynomial time, then Y cannot be solved in polynomial time.

@ Establish equivalence. If both X <p Y and Y <p X, we use
notation X =p Y. In this case, X can be solved in polynomial
time iff Y can be.

@ Bottom line. Reductions classify problems according to
relative difficulty.

e THIS IS A PROPER WAY TO SHOW
NP-COMPLETENESS.

Ryszard Janicki NP-completeness Again 4/28

The class P

Definition

The class P (from Polynomial) consists of those problems that are
solvable in polynomial time. More specifically, they are problems
that can be solved in O(n*) for some constant k. where n is the
size of the input to the problem.

Ryszard Janicki NP-completeness Again 5/28

@ A Hamiltonian path in a directed graph G is a path that
goes through each node once.

""" {// |

@ Problem: Does a directed graph contains a Hamiltonian path
connecting two specified nodes?

@ Exponential algorithm is easy, check all cases.
@ Polynomial algorithm is not found.

@ However, for a given path we can verify (in O(n) time) if it is
Hamiltonian!

Ryszard Janicki NP-completeness Again 6/28

@ “Does G have a Hamiltonian path from s to t?" - is
polynomially verifiable.

@ “Does G have not a Hamiltonian path from s to t?" - is not
polynomially verifiable.

Definition

A verifier is an algorithm that can verify if a given instance is a
solution or not.

Ryszard Janicki NP-completeness Again 7/28

The class NP

Definition (with verifiers)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are verifiable in polynomial time. More
specifically, they are problems that can be verified in O(n¥) for
some constant k. where n is the size of the input to the problem.

Hamiltonian Path is such a problem!

Definition (with nondeterministic algorithms)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are solvable in polynomial time by
nondeterministic algorithms. More specifically, they are problems
that can be solved in O(n*) for some constant k. where n is the
size of the input to the problem, by nondeterministic algorithms.

@ The idea of Nondeterministic Algorithms is a simple
consequence of angelic semantics.

Ryszard Janicki NP-completeness Again 8/28

NP-completeness

Definition
A problem Y is NP-complete if it satisfies the following two
conditions:

Q@ YeNP

@ every X € NP is polynomially reducible to Y, i.e. X <p Y.
Let NPC denote the class of all NP-complete problems.

Suppose Y is NP-complete. Then Y € P <— P = NP.

Ryszard Janicki NP-completeness Again 9/28

NP-completeness: basic tool

If X is NP-complete, Y € NP, and X <p Y, then Y is
NP-complete.

Algorithm (Showing NP-completeness of Y)

@ First show that Y € NP. This is usually done by showing that
an instance of Y has a polynomial verifier.

© Find a problem X that has been proven to be NP-complete.
For example, 3-SAT, VECTOR-COVER, HAMILTON-CYCLE,
etc. If Y is a graph problem, try first X that is also a graph
problem.

© Show X <, Y, i.e. X can be polynomially reduced to Y.
While the fact that a transformation o X into an instance of
Y is polynomial is often almost obvious, always mention it
and explain.

Ryszard Janicki NP-completeness Again 10/28

NP-completeness: frequent errors

Algorithm (Showing NP-completeness of Y)
© First show that Y € NP.
© Find a problem X that has been proven to be NP-complete.
© Show X <, Y, i.e. X can be polynomially reduced to Y.

Frequent Errors.
@ It is NOT shown that Y € NP. Usually can be fixed.

o It is attempted to show that Y <p X instead of X <p Y.
This is the most serious error.

@ It is not argued that transformation of X into an instance of
Y is polynomial. Usually can be fixed.

Ryszard Janicki NP-completeness Again 11/28

A proof that INDEPENDENT-SET is NP-complete

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset
of vertices SC V such that I S| > k, and for each edge at most one of its
endpoints is in S?

Ex. Is there an independent set of size 267
Ex. Is there an independent set of size =77

. independent set of size 6

N

Ryszard Janicki NP-completeness Again 12/28

A proof that INDEPENDENT-SET is NP-complete

@ We need to show first that INDEPENDENT-SET € NP.

Proposition
INDEPENDENT-SET € NP.

Proof.

It suffices to show that an instance of INDEPENDENT-SET has a
polynomial verifier. Let G = (V, E) be a graph. Consider a given
set of vertices S C V with |S| > k. The brute force algorithm
takes each edge e = (v, w) form E and checks if v € Sand w € S.
Hence the time complexity is O(|E||S|) = O(n? - n) = O(n%) i.e. it
is polynomial. Hence INDEPENDENT-SET € NP. O

<

© Assume that we know that 3-SAT is NP-complete.
© We now need to show that
3-SAT <p INDEPENDENT-SET
NOT vice versal!

Ryszard Janicki NP-completeness Again 13/28

3-SAT

Literal. A boolean variable or its negation. X; or Xx;
Clause. A disjunction of literals. C; =X, VX V X3
Conjunctive normal form. A propositional ® = CACyA Cya C,

formula @ that is the conjunction of clauses.

SAT. Given CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

yes instance: x, = true, X, = true, X3 = false, x, = false

Ryszard Janicki NP-completeness Again 14/28

3-SAT reduces to INDEPENDENT-SET

Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ®@ is satisfiable.

Construction.
* G contains 3 nodes for each clause, one for each literal.
» Connect 3 literals in a clause in a triangle.
» Connect literal to each of its negations.

X X3 Xy X3 X2 Xy

1D=(x1vx2vx3)/\(xlvx2vx3) A(x,vxzvx4)

Ryszard Janicki NP-completeness Again 15/28

Complexity of Reduction

e Constructing k triangles is O(k).
e Connecting literals to their negations is also O(k).
@ Hence the reduction is polynomial.

@ You do not always be so precise, it often goes without saying,
but at least needs to be mentioned.

Ryszard Janicki NP-completeness Again 16/28

3-SAT reduces to INDEPENDENT-SET

Lemma. G contains independent set of size k=1® | iff ® is satisfiable

Pf. = Let S be independent set of size k.
* S must contain exactly one node in each triangle.

* Set these literals to true (and remaining variables consistently).
» Truth assignment is consistent and all clauses are satisfied.

Pf < Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k. =

X1

X

X2 X3 X X3 RY) X4

fD=(x1vx2vx3)A(x,vx2vx3)A(xlvxzvx4)

Ryszard Janicki NP-completeness Again 17/28

A proof that INDEPENDENT-SET is NP-complete

O INDEPENDENT-SET € NP. We proved by showing that
INDEPENDENT-SET has polynomial verifier.

@ 3-SAT is NP-complete. We assume we know it.

© 3-SAT <p INDEPENDENT-SET. We provided a
construction, and showed that it was polynomial.

©Q Hence INDEPENDENT-SET is NP-complete.

Ryszard Janicki NP-completeness Again 18/28

Hitting Set Problem

e Consider a set A= {a1,...,a,} and a collection
Bi, By, ..., B of subsets of A (i.e., B C A for each /).

@ We say that a set H C A is a hitting set for the collection

Bi, By, ..., By if H contains at least one element from each
B; - that is, if HN B; is not empty for each i (so H “hits" all
the sets B;).

@ We now define the Hitting Set Problem as follows:

We are given a set A= {aj,...,an}, a collection

Bi,Bs, ..., B, of subsets of A, and a number k.

We are asked: Is there a hitting set H C A for By, B>, ..., Bny,
so that the size of H is at most k?

Ryszard Janicki NP-completeness Again 19/28

A proof that HITTING-SET is NP-complete

© We need to show first that HITTING-SET € NP.
@ Assume that we know that VERTEX-COVER is NP-complete.
© We now need to show that
VERTEX-COVER <p HITTING-SET
NOT vice versa!

Ryszard Janicki NP-completeness Again 20/28

HITTING-SET € NP

@ We will show that an instance of the problem has polynomial
verifier.

@ Clearly given an instance of the problem, and a proposed set
H, we can check in polynomial time whether H has size at
most k (this can be done in O(k)), and whether some
member of each set B; belongs to H. Checking if B;NH # ()
is O(|Bj||H|). Clearly s|B;j||H| < n? (as B; C A and H C A),
so altogether we have O(mn?), i.e. polynomial time.

@ Hence HITTING-SET € NP

@ This part CANNOT be omitted!

Ryszard Janicki NP-completeness Again 21/28

VERTEX-COVER in NP-complete

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of
vertices SC V such that I S| < k, and for each edge, at least one of its
endpoints is in §?

Ex. Is there a vertex cover of size <47?
Ex. Is there a vertex cover of size <3?

. independent set of size 6

O vertex cover of size 4

O

Ryszard Janicki NP-completeness Again 22/28

VERTEX-COVER <p HITTING-SET

@ Assume that we know that VERTEX-COVER is NP-complete.

@ HITTING-SET looks like a covering problem, since we are
trying to choose at mist k objects subject to some constraints.

@ He we will try to show VERTEX-COVER <p HITTING-SET.

@ We begin with an instance of VERTEX-COVER, specified by
a graph G(V, E) and a number k.

@ We must construct an equivalent instance of HITTING SET.

@ In VERTEX-COVER, we are trying to choose at most k nodes
to form a vertex cover.

@ In HITTING-SET, we are trying to choose at most k elements
to form a hitting set.

@ This suggest that we define the set A in the HITTING-SET
instance to be the V of nodes in the VERTEX-COVER
instance. For each edge e; = (uj, v;) € E, we define a set
Bi = {uj, v} in the HITTING-SET instance.

@ The above construction is just some renaming so it is at most
O(|V[?), so it is polynomial.

Ryszard Janicki NP-completeness Again 23/28

VERTEX-COVER <p HITTING-SET

@ Now we claim that there is a hitting set of size an most k for
this instance, if and only if the original graph has a vertex
cover of size at most k.

= If we consider a hitting set H of size at most k as a subset of
the nodes of G, we see that every set is “hit", and hence every
edge has at least one end in H, H is a vertex cover of G.

< |f we consider a vertex cover C of G, and consider C as a
subset of A, we see that each of the sets B; is “hit” by C.

@ Hence VERTEX-COVER <p HITTING-SET.
@ Consequently HITTING-SET is NP-complete.

Ryszard Janicki NP-completeness Again 24/28

NP-completeness and the class P

Consider Interval Scheduling problem from a class on Greedy
Algorithms. It has a solution in O(nlog n)!

@ Job j starts at s; and finishes at f;.

@ Two jobs compatible if they don’t overlap.

@ Goal: find maximum subset of mutually compatible jobs.

d I
\ jobs d and g

7are incompatible

0 1 2 3 4 5 6 7 8 9 10 11

INTERVAL-SCHEDULING: For any given k, does there exists a
subset of mutually compatible jobs > k?

Ryszard Janicki NP-completeness Again 25/28

NP-completeness and the class P

o INTERVAL-SCHEDULING: For any given k, does there exists
a subset of mutually compatible jobs > k7

o INTERVAL-SCHEDULING has O(nlog n) solution: we just
find a maximum subset of mutually compatible jobs in
O(nlog n) using greedy algorithm from Lecture Notes 3, and
then compare if the number of found jobs with k.

@ Hence INTERVAL-SCHEDULING € P.

@ Suppose | will give you an assignment question: Which of the
below is true:

© INTERVAL-SCHEDULING <p HITTING-SET
@ HITTING-SET <p INTERVAL-SCHEDULING

What should be your answer?

Ryszard Janicki NP-completeness Again 26/28

NP-completeness and the class P

(1) Is INTERVAL-SCHEDULING <p HITTING-SET? The answer
is YES.

o Since HITTING-SET is NP-complete, then, by definition (see
page 9 of this Lecture Notes), every X € NP is polynomially
reducible to HITTING-SET, i.e.

X <p HITTING-SET.

o Since INTERVAL-SCHEDULING € P and P C NP, then
INTERVAL-SCHEDULING € NP.
e But this means

INTERVAL-SCHEDULING <p HITTING-SET!

Ryszard Janicki NP-completeness Again 27/28

NP-completeness and the class P

(2) Is HITTING-SET <p INTERVAL-SCHEDULING? The answer
is | DO NOT KNOW. Probably NOT.

e We have a theorem:

Suppose Y is NP-complete. Then Y € P <— P = NP.

e Since INTERVAL-SCHEDULING € P,
if HITTING-SET <p INTERVAL-SCHEDULING
then HITTING-SET e P!
o But HITTING-SET is NP-complete, so

HITTING-SET e P — P = NP.
e Hence if you could prove
HITTING-SET <p INTERVAL-SCHEDULING,
you are one million of US dollars richer!

Ryszard Janicki NP-completeness Again 28/28

