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The class NP

Definition (with verifiers)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are verifiable in polynomial time. More
specifically, they are problems that can be verified in O(nk) for
some constant k . where n is the size of the input to the problem.

Hamiltonian Path is such a problem!

Definition (with nondeterministic algorithms)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are solvable in polynomial time by
nondeterministic algorithms. More specifically, they are problems
that can be solved in O(nk) for some constant k . where n is the
size of the input to the problem, by nondeterministic algorithms.

The idea of Nondeterministic Algorithms is a simple
consequence of angelic semantics.

Ryszard Janicki Solutions to Some Problems 2/28



NP-completeness

Definition

A problem Y is NP-complete if it satisfies the following two
conditions:

1 Y ∈ NP

2 every X ∈ NP is polynomially reducible to Y , i.e. X ≤P Y .

Let NPC denote the class of all NP-complete problems.

Theorem

Suppose Y is NP-complete. Then Y ∈ P ⇐⇒ P = NP.
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NP-completeness: basic tool

Theorem

If X is NP-complete, Y ∈ NP, and X ≤P Y , then Y is
NP-complete.

Algorithm (Showing NP-completeness of Y )

1 First show that Y ∈ NP. This is usually done by showing that
an instance of Y has a polynomial verifier.

2 Find a problem X that has been proven to be NP-complete.
For example, 3-SAT, VECTOR-COVER, HAMILTON-CYCLE,
etc. If Y is a graph problem, try first X that is also a graph
problem.

3 Show X ≤p Y , i.e. X can be polynomially reduced to Y .
While the fact that a transformation o X into an instance of
Y is polynomial is often almost obvious, always mention it
and explain.
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NP-completeness: frequent errors

Algorithm (Showing NP-completeness of Y )

1 First show that Y ∈ NP.

2 Find a problem X that has been proven to be NP-complete.

3 Show X ≤p Y , i.e. X can be polynomially reduced to Y .

Frequent Errors.

It is NOT shown that Y ∈ NP. Usually can be fixed.

It is attempted to show that Y ≤P X instead of X ≤P Y .
This is the most serious error.

It is not argued that transformation of X into an instance of
Y is polynomial. Usually can be fixed.
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Feedback Vertex Set
Let G = (V ,E ) be a directed graph. A feedback vertex set is a subset
S ⊆ V , such that every cycle of G contains a vertex in S .
A feedback vertex set problem is: Does a directed graph have a feedback
set with k members?

1 To prove that the problem is in NP we need to show a polynomial
time verifier.

2 All cycles are represented by strongly connected components.
Finding strongly connected components can be done in
O(|V |+ |E |) time (i.e. in O(n2) time) by using DFS (Depth First
Search) technique (last year algorithm course).

3 The number of strongly connected components is smaller than n,
we need to verify if each such component has a vertex in S , where
|S | ≤ n.

4 Each component has less than n2 vertices. We need to verify if
C ∩ S ̸= ∅ for each strongly connected component C .

5 By brute force we can do it in O(n2), so, altogether, we can do this
verification in O(n3), i.e. polynomial time.
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Feedback Vertex Set and Vertex Cover

Let G = (V ,E ) be a directed graph. A feedback vertex set
is a subset S ⊆ V , such that every cycle of G contains a
vertex in S .
A feedback vertex set problem is: Does a directed graph have
a feedback set with k members?

Let G = (V ,E ) be an undirected graph. A vertex cover of
G is a subset S ⊆ V such that every edge of G is incident
upon some vertex in S .
A vertex cover problem is: Does a directed graph have a
vertex cover with k members? It is NP-complete.

We show that vertex cover problem is polynomially
transformable into the feedback vertex set.

Ryszard Janicki Solutions to Some Problems 7/28



Vertex Cover Polynomially to Feedback Vertex Set

A rule: an arbitrary vertex cover and a specific feedback
vertex set.

Let G = (V ,E ) be an undirected graph.

Let D be a directed graph formed by replacing each edge of G
by two directed edges.

Specifically, let D = (V ,E ′), where
E ′ = {(v ,w) | {v ,w} ∈ E} ∪ {(w , v) | {v ,w} ∈ E}. Since
every edge in E has been replaced by a cycle in D. a set
S ⊆ V is a feedback set for D (every cycle of D contains a
vertex in S) if and only if S is a vertex cover for G .

Also, the representation of D can easily be found from G in
polynomial time.

Therefore, the feedback vertex set is NP-complete.
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A store trying to analyse the behaviour of its customers will often
maintain a two-dimensional array A, where the rows correspond to its
customers and the columns correspond to the products it sells.
The entry A[i , j ] specifies the quantity of product j that has been
purchased by customer I .
Here’s a tiny example of such an array A.

Exercises 505

one end of each edge ej is in the set X. Thus X is a vertex cover with at most
k nodes.

This concludes the proof that Vertex Cover ≤P Lecture Planning.

Exercises

1. For each of the two questions below, decide whether the answer is

(i) “Yes,” (ii) “No,” or (iii) “Unknown, because it would resolve the question

of whether P =NP.” Give a brief explanation of your answer.

(a) Let’s define the decision version of the Interval Scheduling Prob-

lem from Chapter 4 as follows: Given a collection of intervals on

a time-line, and a bound k, does the collection contain a subset of

nonoverlapping intervals of size at least k?

Question: Is it the case that Interval Scheduling ≤P Vertex Cover?

(b) Question: Is it the case that Independent Set ≤P Interval Scheduling?

2. A store trying to analyze the behavior of its customers will oftenmaintain

a two-dimensional array A, where the rows correspond to its customers

and the columns correspond to the products it sells. The entry A[i, j]
specifies the quantity of product j that has been purchased by customer i.

Here’s a tiny example of such an array A.

liquid detergent beer diapers cat litter

Raj 0 6 0 3

Alanis 2 3 0 0

Chelsea 0 0 0 7

One thing that a storemight want to dowith this data is the following.

Let us say that a subset S of the customers is diverse if no two of the

of the customers in S have ever bought the same product (i.e., for each

product, at most one of the customers in S has ever bought it). A diverse

set of customers can be useful, for example, as a target pool for market

research.

We can now define the Diverse Subset Problem as follows: Given an

m× n array A as defined above, and a number k ≤m, is there a subset of

at least k of customers that is diverse?

Show that Diverse Subset is NP-complete.

3. Suppose you’re helping to organize a summer sports camp, and the

following problem comes up. The camp is supposed to have at least

One thing that a store might want to do with this data is the following.
Let us say that a subset S of the customers is diverse if no two of the of
the customers in S have ever bought the same product (i.e., for each
product, at most one of the customers in S has ever bought it).
A diverse set of customers can be useful, for example, as a target pool for
market research.
We can now define the Diverse Subset Problem as follows: Given an
m × n array A as defined above, and a number k ≤ m, is there a subset
of at least k of customers that is diverse?
Show that Diverse Subset is NP-complete.
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INDEPENDENT-SET is NP-complete

11

Independent set

INDEPENDENT-SET.  Given a graph G = (V, E) and an integer k, is there a subset 

of vertices S ⊆ V such that | S |  ≥  k, and for each edge at most one of its 

endpoints is in S ?

Ex.  Is there an independent set of size ≥ 6 ?
Ex.  Is there an independent set of size ≥ 7 ?

independent set of size 6

30

How to find closest pair with one point in each side?

Def.  Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim.  If | i – j |  ≥  12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥  2 (½ δ).   ▪

Fact.  Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮
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Diverse Subset is NP-complete

The problem is in NP because we can exhibit a set of k customers,
and in polynomial time it can be checked that no two bought the
same common product.

We now show that Independent Set ≤P Diverse Subset.

A rule: an arbitrary independent set and a specific diverse subset.

Given a grapg G and a number k , we construct a customer for each
node of G , and a product for each edge of G .

We then build and array that says customer v bought product e if
edge e is incident to the nove n.

Finally, we ask whether this array has a diverse subset of size k.

We claim that this holds only if G has an independent set of size k.

If there is a diverse subset of size k , then the corresponding set of
nodes has the property that no two are incident to the same edge -
so it is in an independent set of size k .

Conversely, if there is an independent set of size k, then the
corresponding set of customers has the property that no two bought
the same product, so it is diverse.
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Greedy Algorithms

A greedy algorithm always makes the choice that looks best
at the moment. That is, it makes a locally optimal choice in
the hope that this choice will lead to a globally optimal
solution.

Greedy algorithms do not always yield optimal solution, but
for many problems they do, and if they do, they are usually
the most efficient.

Popular Dijkstra’s Shortest Paths algorithm is greedy.

For most of algorithmic problems one might find some greedy
solution, but it is optima only for some special.
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One of many ’sum’ problems

Given a set S of n positive integers and a positive number W , we
want to produce the maximal number of pairs {a, b} from S such
that a+ b ≤ W . (No member of S may be used twice). For
example, if S = {8, 9, 6, 1, 4, 7} and W = 10), an optimal solution
would be {{1, 7}, {4, 6}}.
Design an O(n log n) algorithm for this problem that uses the
following greedy strategy - repeatedly pick a number a (any way
you like) and pair it with the largest element b such that
a+ b ≤ W .
Part of your task is to decide exactly how the choices of a will be
made.
Prove your algorithm finds an optimal solution.
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Solution to the ’sum’ problem

Start by sorting the numbers in ascending order. This is the part
that costs O(N log n). The reminder will run in O(n).
For each number ai (processed in ascending order), pick bi as
described in the problem statement, excluding, of course, umbers
that have already been used.
Continue until no bi is available to be chosen.
Let m be the number of pairs (ai , bi ) so determined.
Notice that ai < bi for each i (since when bi is chosen, all items
smaller than ai have already been used)
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Pseudo-code

/* Given an array S of length n and an integer W
/* Output the maximum number of pairs (a, b) such that a+ b ≤ W

FindMaximumPairs( int W, array S[1..n])
Sort(S);
IndexA = 1; //points to the smaller element
IndexB = n; //points to the larger element
result = ∅
while (IndexA ¡ IndexB )

if (S[InxexA]+S[IndexB] ≤ W)
result = result ∪ { S[InxexA],S[IndexB] }
IndexA = IndexA + 1
IndexB = IndexB - 1

else IndexB = IndexB - 1
endif

endwhile
return result

end FindMaximimPairs
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Proof

We claim that this give an optimal solution. This is because the
greedy solution “ stays ahead” of any other competitive solution.
Specifically, suppose that we have an optimal solution O that
agrees with the greedy solution on the first k − 1 pairs, for some
integer k with 1 ≤ k ≤ m. Here we agree to list the pairs of of the
optimal solution in ascending order according to the smaller item
of each pair - just like the greedy solution. Then we show that
there is a (perheps different) optimal solution that agrees with the
greedy solution on the first k points.
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Let (a, b) be the kth pair in the optimal solution O.
If (a, b) = (ak , bk), there is nothing to do.
Otherwise, ak ≤ a because of the definition of the greedy
algorithm, and thus ak + b ≤ a+ b ≤ W . Since bk was the largest
unused element satisfying the inequality, we have bk ≥ b.
If O does not use ak (i.e. a > ak), replace (a, b) by (ak , b) in O.
We still have an optimal solution, but now (ak , b) is part of it.
Now, let S1 be what remains of S after removing the (greedy
solution) pairs {ai , b1} for 1 ≤ i ≤ k.
Let S2 be what remains of after removing the (optimal solution)
pairs {ak , b} and {ai , bi} for 1 ≤ i ≤ k − 1.
S1 and S2 have 2k − 1 elements in common and differ only in that
S1 has b and S2 has bk . The smallest of these is b.
Thus, for any set of pairs from S2, there is an equally large set of
pairs from S1 whatever pair involves bk , if any, can be replace by a
pair involving b. Our “greedy pair” {ai , bi} for 1 ≤ i ≤ k together
with any optimal solution for S1 will be an optimal solution for S .
This completes the proof by induction.
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Because of the inductive poof, we now know that there is an
optimal solution that agrees with the greedy solution, up to and
including the mth pair. Can the optimal solution contain any
additional pair? The answer is‘no’.
If there were such a pair (a, b), we would have a > am. Let a

′ be
the smallest unused number. Then a′ + b ≤ a+ b ≤ W . Let b′ be
the largest unused number such that a′ + b′ ≤ W . Note that
a′ ≤ a < b ≤ W .
This contradicts the fact that the greedy algorithm terminates at
i = m. It would have chosen (m + 1)st pair (a′, b′).
We conclude that the greedy algorithm indeed produces an optimal
solution.
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Algorithms paradigms

Greedy. Build up a solution incrementally, myopically
optimizing some local criterion.

Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, and combine solution to
subproblems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping subproblems, and build up solutions to larger and
larger subproblems.

Dynamic programming is a fancy name for caching away
intermediate results in a table for later reuse.
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Sequence Alignment

String similarity

Q.  How similar are two strings?

Ex.  ocurrance and occurrence.

3

6 mismatches, 1 gap

o c u r r a n c e –

o c c u r r e n c e

1 mismatch, 1 gap

o c – u r r a n c e

o c c u r r e n c e

0 mismatches, 3 gaps

o c – u r r – a n c e

o c c u r r e – n c e
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Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

・Gap penalty δ; mismatch penalty αpq.

・Cost = sum of gap and mismatch penalties.

Applications.  Unix diff, speech recognition, computational biology, ...

Edit distance

4

cost = δ + αCG + αTA

C T – G A C C T A C G

C T G G A C G A A C G
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Goal.  Given two strings x1 x2 ... xm and y1 y2 ... yn find min cost alignment.

Def.  An alignment M is a set of ordered pairs xi – yj such that each item 

occurs in at most one pair and no crossings.

Def.  The cost of an alignment M is:

Sequence alignment

  

€ 

cost(M ) = α xi y j
(xi , y j ) ∈ M
∑

mismatch
! " # # $ # # 

+ δ
i : xi  unmatched

∑ + δ
j : y j  unmatched

∑

gap
! " # # # # # $ # # # # # 

5

C T A C C – G

– T A C A T G

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

M = { x2–y1, x3–y2, x4–y3, x5–y4, x6–y6 }
an alignment of CTACCG and TACATG:

xi – yj and xi' – yj' cross if i < i ', but j > j '
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Sequence alignment:  problem structure

Def.  OPT(i, j) = min cost of aligning prefix strings x1 x2 ... xi and y1 y2 ... yj.

Case 1.  OPT matches xi – yj.

Pay mismatch for xi – yj  + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj–1. 

Case 2a.  OPT leaves xi unmatched.

Pay gap for xi + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj. 

Case 2b.  OPT leaves yj unmatched.

Pay gap for yj + min cost of aligning x1 x2 ... xi and y1 y2 ... yj–1.

€ 

OPT (i, j) =

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

jδ if  i = 0

min  

α xi y j +OPT (i−1, j −1)

δ +OPT (i−1, j)
δ +OPT (i, j −1)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

otherwise

iδ if  j = 0

6

optimal substructure property
(proof via exchange argument)
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Sequence alignment:  algorithm

7

SEQUENCE-ALIGNMENT (m, n, x1, …, xm, y1, …, yn, δ, α)                          


FOR  i = 0 TO m
M [i, 0] ← i δ.

FOR  j = 0 TO n
M [0, j] ← j δ.

FOR  i = 1  TO  m
FOR  j = 1  TO  n

M [i, j] ← min { α[xi, yj] + M [i – 1, j – 1],
                           δ + M [i – 1, j],
                           δ + M [i, j – 1]).

RETURN M [m, n].
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Sequence alignment:  analysis

Theorem.  The dynamic programming algorithm computes the edit distance 

(and optimal alignment) of two strings of length m and n in Θ(mn) time and 

Θ(mn) space.

Pf.

・Algorithm computes edit distance.

・Can trace back to extract optimal alignment itself.  ▪

Q.  Can we avoid using quadratic space?

A.  Easy to compute optimal value in O(mn) time and O(m + n) space.

・Compute OPT(i, •) from OPT(i – 1, •).

・But, no longer easy to recover optimal alignment itself.

8
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Stanley Cup Odds

Suppose two teams, A and B, are playing a match to see who first
win n games for some particular n. The Stanley Cup Series is such
a match with n = 4. Suppose A has a probability pi of winning i
games (so B has 1− pi probability of winning i games). Let P(i , j)
be the probability that if A needs i games to win, and B needs j
games, thatA will eventually win the match. The set of all P(i , j),
i , j = 1, ..., n, is called a ‘table of odds’. Use the dynamic
programming technique to design an algorithm that produces such
table of odds. Your algorithm should have time complexity not
worse that O(n2). Show the solution for n = 4, p1 = 0.6, p2 = 0.5,
p3 = 0.4, p4 = 0.3 .
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Solution

First note that P(0, j) = 1 for all j , since this means that A has
won the match already, and P(i , 0) = 0 for all i , since this means
that B has won the match already.
Hence create an n × n array of P(i , j) and fill it with 0 for all
P(i , 0) and with 1 for allP(0, j).
If team A needsi games to win, then it has won n − i games
already. Thus, we obtain the following recurrence for the remaining
i and j :

P(i , j) = pn−i+1P(i − 1, j) + (1− pn−i+1)P(i , j − 1).

The rest is just a plain calculation.
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Dynamic Programming

Bellman-Ford Algorithm (negative weight allowed)
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Shortest paths

Shortest path problem.  Given a digraph G = (V, E), with arbitrary edge 

weights or costs cvw, find cheapest path from node s to node t.

7

1 3

source s

-1

8

5

7

5
4

-3

-512

10

13

9

cost of path = 9 - 3 + 1 + 11 = 18
destination t

0

4

5

2

6

9

-3

1 11
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Shortest paths:  failed attempts

Dijkstra.  Can fail if negative edge weights.

Reweighting.  Adding a constant to every edge weight can fail.

u

s t

wv

2 2

3 3

-3

5 5

6 6

0

s

v

u2

-8 w

1 3
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Negative cycles

Def.  A negative cycle is a directed cycle such that the sum of its edge 

weights is negative.

-3

5

-3

-44

a negative cycle W :  c(W ) =
�

e�W

ce < 0
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Shortest paths and negative cycles

Lemma 1.  If some path from v to t contains a negative cycle, then there 

does not exist a cheapest path from v to t.

Pf.  If there exists such a cycle W, then can build a v↝t path of arbitrarily 

negative weight by detouring around cycle as many times as desired.  ▪

W

c(W) < 0

v t
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Shortest paths and negative cycles

Lemma 2.  If G has no negative cycles, then there exists a cheapest path 

from v to t that is simple (and has ≤  n – 1 edges).

Pf.

・Consider a cheapest v↝t path P that uses the fewest number of edges.

・If P contains a cycle W, can remove portion of P corresponding to W 

without increasing the cost.  ▪

W

c(W) ≥ 0

v t
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Shortest path and negative cycle problems

Shortest path problem.  Given a digraph G = (V, E) with edge weights cvw and 

no negative cycles, find cheapest v↝t path for each node v.

Negative cycle problem.  Given a digraph G = (V, E) with edge weights cvw, 

find a negative cycle (if one exists). 

-3

5

-3

-44

negative cycle

4

t

1

-3

shortest-paths tree

52
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Shortest paths:  dynamic programming

Def.  OPT(i, v) = cost of shortest v↝t path that uses ≤ i edges.

・Case 1:  Cheapest v↝t path uses ≤ i – 1 edges.
- OPT(i, v) = OPT(i – 1, v)

・Case 2:  Cheapest v↝t path uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best w↝t 

path using ≤ i – 1 edges

Observation.  If no negative cycles, OPT(n – 1, v) = cost of cheapest v↝t path.

Pf.  By Lemma 2, cheapest v↝t path is simple.  ▪

  

€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

∞

optimal substructure property
(proof via exchange argument)
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Shortest paths:  implementation

SHORTEST-PATHS (V, E, c, t)                          


FOREACH node v ∈ V

M [0, v] ← ∞.
M [0, t] ← 0.
FOR i = 1 TO n – 1

FOREACH node v ∈ V

M [i, v] ← M [i – 1, v].
FOREACH edge (v, w) ∈ E 

M [i, v] ← min { M [i, v],  M [i – 1, w] + cvw }.
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Shortest paths:  implementation

Theorem 1.  Given a digraph G = (V, E) with no negative cycles, the dynamic 

programming algorithm computes the cost of the cheapest v↝t path for

each node v in Θ(mn) time and Θ(n2) space.

Pf.

・Table requires Θ(n2) space.

・Each iteration i takes Θ(m) time since we examine each edge once.  ▪

Finding the shortest paths.

・Approach 1:  Maintain a successor(i, v) that points to next node on 

cheapest v↝t path using at most i edges.

・Approach 2:   Compute optimal costs M[i, v] and consider only edges 

with M[i, v] = M[i – 1, w] + cvw. 
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Shortest paths:  practical improvements

Space optimization.  Maintain two 1d arrays (instead of 2d array).

・d(v) = cost of cheapest v↝t path that we have found so far.

・successor(v) = next node on a v↝t path.

Performance optimization.  If d(w) was not updated in iteration i – 1,

then no reason to consider edges entering w in iteration i.
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Bellman-Ford:  efficient implementation

BELLMAN-FORD (V, E, c, t)                          


FOREACH node v ∈ V

d(v) ← ∞.
successor(v) ← null.

d(t) ← 0.
FOR i = 1 TO n – 1

FOREACH node w ∈ V

IF (d(w) was updated in previous iteration) 
FOREACH edge (v, w) ∈ E 

IF ( d(v) > d(w) +  cvw)
d(v) ← d(w) +  cvw.
successor(v) ← w.

IF no d(w) value changed in iteration i, STOP.


1 pass
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Bellman-Ford:  analysis

Claim.  After the ith pass of Bellman-Ford, d(v) equals the cost of the cheapest 

v↝t path using at most i edges.

Counterexample.  Claim is false!

wv t2

d(t) = 0d(w) = 2

1

if nodes w considered before node v,
then d(v) = 3 after 1 pass

d(v) = 3

4
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Bellman-Ford:  analysis

Lemma 3.  Throughout Bellman-Ford algorithm, d(v) is the cost of some v↝t 
path; after the ith pass, d(v) is no larger than the cost of the cheapest v↝t path 

using ≤ i edges.

Pf.  [by induction on i]

・Assume true after ith pass.

・Let P be any v↝t path with i + 1 edges.

・Let (v, w) be first edge on path and let P' be subpath from w to t.

・By inductive hypothesis, d(w) ≤  c(P') since P' is a w↝t path with i edges.

・After considering v in pass i+1:  

Theorem 2.  Given a digraph with no negative cycles, Bellman-Ford computes 

the costs of the cheapest v↝t paths in O(mn) time and Θ(n) extra space.

Pf.  Lemmas 2 + 3.  ▪
can be substantially

faster in practice

d(v) ≤ cvw + d(w)

≤ cvw + c(P')
= c(P)   ▪



Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).
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Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).
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Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

・Successor graph may have cycles.
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Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

・Successor graph may have cycles.
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Bellman-Ford:  finding the shortest path

Lemma 4.  If the successor graph contains a directed cycle W,

then W is a negative cycle.

Pf.

・If successor(v) = w, we must have d(v)  ≥  d(w) + cvw.

(LHS and RHS are equal when successor(v) is set; d(w) can only decrease; 

d(v) decreases only when successor(v) is reset) 

・Let v1 → v2 → … → vk   be the nodes along the cycle W.

・Assume that (vk, v1) is the last edge added to the successor graph.

・Just prior to that:

・Adding inequalities yields c(v1, v2) + c(v2, v3)  + … + c(vk–1, vk) + c(vk, v1)  <  0. ▪ 

d(v1) ≥ d(v2) +  c(v1, v2)
d(v2) ≥ d(v3) +  c(v2, v3)
 ⋮   ⋮ ⋮

d(vk–1) ≥ d(vk) +  c(vk–1, vk)
d(vk) > d(v1) +  c(vk, v1)

W is a negative cycle

holds with strict inequality
since we are updating d(vk)
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Bellman-Ford:  finding the shortest path

Theorem 3.  Given a digraph with no negative cycles, Bellman-Ford finds the 

cheapest s↝t paths in O(mn) time and Θ(n) extra space.

Pf.

・The successor graph cannot have a negative cycle.  [Lemma 4]

・Thus, following the successor pointers from s yields a directed path to t.

・Let s = v1 → v2 → … → vk = t  be the nodes along this path P.

・Upon termination, if successor(v) = w, we must have d(v)  =  d(w) + cvw.

(LHS and RHS are equal when successor(v) is set; d(·) did not change)

・Thus,

・

Adding equations yields d(s) = d(t) + c(v1, v2) + c(v2, v3)  + … + c(vk–1, vk).  ▪ 

d(v1) = d(v2) +  c(v1, v2)
d(v2) = d(v3) +  c(v2, v3)
 ⋮   ⋮ ⋮

d(vk–1) = d(vk) +  c(vk–1, vk)

cost of path P
min cost

of any s↝t path
(Theorem 2)

0

since algorithm
terminated



Divide-and-conquer paradigm

Divide-and-conquer.

Divide up problem into several subproblems.

Solve each subproblem recursively.

Combine solutions to subproblems into overall solution.

Most common usage.

Divide problem of size n into two subproblems of size n/2 in
linear time.

Solve two subproblems recursively.

Combine two solutions into overall solution in linear time.

Consequence.

Other method: Θ(n2).

Divide-and-conquer: Θ(n log n).

Ryszard Janicki Divide and Conquer 2/36
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Music site tries to match your song preferences with others.

・You rank n songs.

・Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.

・My rank:  1, 2, …, n.

・Your rank:  a1, a2, …, an.

・Songs i and j are inverted if i  <  j, but ai  >  aj.

Brute force:  check all Θ(n2) pairs.

Counting inversions

A B C D E

me

you

1 2 3 4 5

1 3 4 2 5

2 inversions:  3-2, 4-2
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Counting inversions:  applications

・Voting theory.

・Collaborative filtering.

・Measuring the "sortedness" of an array.

・Sensitivity analysis of Google's ranking function. 

・Rank aggregation for meta-searching on the Web.

・Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork Ravi Kumar Moni Naor D. Sivakumar

ABSTRACT

1. INTRODUCTION

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

1.1 Motivation
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ACM 1-58113-348-0/01/0005.
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Counting inversions:  divide-and-conquer

・Divide:  separate list into two halves A and B.

・Conquer:  recursively count inversions in each list.

・Combine:  count inversions (a, b) with a ∈ A and b ∈ B.

・Return sum of three counts.

1 5 4 8 10 2 6 9 3 7

input

output 1 + 3 + 13 = 17

count inversions in left half A

5-4

1 5 4 8 10 2 6 9 3 7

6-3 9-3 9-7

count inversions in right half B

count inversions (a, b) with a ∈ A and b ∈ B

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

2 6 9 3 71 5 4 8 10



Q.  How to count inversions (a, b) with a ∈ A and b ∈ B?

A.  Easy if A and B are sorted! 

Warmup algorithm.

・Sort A and B.

・For each element b ∈ B,
- binary search in A to find how elements in A are greater than b. 

16

Counting inversions:  how to combine two subproblems?

2 11 16 17 23

sort A

3 7 10 14 18

sort B

binary search to count inversions (a, b) with a ∈ A and b ∈ B

5 2 1 1 0

2 11 16 17 233 7 10 14 18

17 23 2 11 16

list A

7 10 18 3 14

list B



Count inversions (a, b) with a ∈ A and b ∈ B, assuming A and B are sorted.

・Scan A and B from left to right.

・Compare ai and bj.

・If ai < bj, then ai is not inverted with any element left in B.

・If ai > bj, then bj is inverted with every element left in A.

・Append smaller element to sorted list C.

17

Counting inversions:  how to combine two subproblems?

count inversions (a, b) with a ∈ A and b ∈ B

5 2

2 3 7 10 11

merge to form sorted list C

2 11 bj 17 233 7 10 ai 18
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Counting inversions:  divide-and-conquer algorithm implementation

Input.  List L.

Output.  Number of inversions in L and sorted list of elements L'.

SORT-AND-COUNT (L)                          


IF list L has one element
     RETURN (0, L).

DIVIDE  the list into two halves A and B.
(rA , A) ← SORT-AND-COUNT(A).
(rB , B) ← SORT-AND-COUNT(B).
(rAB , L') ← MERGE-AND-COUNT(A, B).

RETURN  (rA + rB + rAB ,  L').
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions 

in a permutation of size n in O(n log n) time.

Pf.  The worst-case running time T(n) satisfies the recurrence:

Θ(1) if n = 1
T ( ⎡n / 2⎤ )  +   T ( ⎣n / 2⎦ )  +  Θ(n) otherwiseT(n)  =



Integer multiplication

Multiplication. Given two n-bit integers a and b, compute a Ö
b.

Grade-school algorithm. Θ(n2) bit operations.

Multiplication. Given two n-bit integers a and b, compute a × b.

Grade-school algorithm.  Θ(n2) bit operations.

Conjecture.  [Kolmogorov 1952]  Grade-school algorithm is optimal.

Theorem.  [Karatsuba 1960]  Conjecture is wrong.
14

Integer multiplication

1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

Question. Is grade-school algorithm optimal?

No.

Ryszard Janicki Divide and Conquer 30/36



Divide-and-conquer multiplication

To multiply two n-bit integers x and y :

Divide x and y into low- and high-order bits.
Example. x = 1000︸︷︷︸

a

1101︸︷︷︸
b

y = 1110︸︷︷︸
c

0001︸︷︷︸
d

m = ⌈n/2⌉
a = ⌊x/2m⌋ b = x mod 2m

c = ⌊y/2m⌋ d = y mod 2m

Bit shifting can be used to compute a, b, c and d .

Now we have: x = 2ma+ b and y = 2mc + d .

Multiply four 1
2n-bit integers, recursively.

Add and shift to obtain result.

xy = (2ma+ b)(2mc + d) = 22m ac︸︷︷︸
1

+2m( bc︸︷︷︸
2

+ ad︸︷︷︸
3

) + bd︸︷︷︸
4

Ryszard Janicki Divide and Conquer 31/36



Divide-and-conquer multiplication

16

Divide-and-conquer multiplication

MULTIPLY(x, y, n)


IF  (n = 1)

RETURN  x 𐄂 y.

ELSE

m ← ⎡ n / 2 ⎤.

a ← ⎣ x / 2m⎦;   b ← x mod 2m.

c ← ⎣ y / 2m⎦;   d ← y mod 2m.

e ← MULTIPLY(a, c, m).

f  ← MULTIPLY(b, d, m).

g ← MULTIPLY(b, c, m).

h ← MULTIPLY(a, d, m).

RETURN 22m e + 2m (g + h) + f.
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ryszard Janicki Divide and Conquer 32/36



Divide-and-conquer multiplication analysis

Proposition

The divide-and-conquer multiplication algorithm requires Θ(n2) bit
operations to multiply two n-bit integers.

Proof.

Apply case 1 of the master theorem to the recurrence:

T (n) = 4T (n/2)︸ ︷︷ ︸
recursive calls

+ Θ(n)︸ ︷︷ ︸
add, shift

=⇒ T (n) = Θ(n2)

Not better than grade-school algorithm!

Ryszard Janicki Divide and Conquer 33/36



Karatsuba trick

x = 1000︸︷︷︸
a

1101︸︷︷︸
b

y = 1110︸︷︷︸
c

0001︸︷︷︸
d

m = ⌈n/2⌉
a = ⌊x/2m⌋ b = x mod 2m

c = ⌊y/2m⌋ d = y mod 2m

xy = (2ma+ b)(2mc + d) = 22m ac︸︷︷︸
1

+2m
middle term︷ ︸︸ ︷

( bc︸︷︷︸
2

+ ad︸︷︷︸
3

)+ bd︸︷︷︸
4

To compute middle term bc + ad , use identity:
bc + ad = ac + bd − (a− b)(c − d)

Now we have:

xy = 22m ac︸︷︷︸
1

+2m( ac︸︷︷︸
1

+ bd︸︷︷︸
2

− (a− b)(c − d)︸ ︷︷ ︸
3

) + bd︸︷︷︸
2

Bottom line. Only three multiplications of 1
2 -bit integers!

Ryszard Janicki Divide and Conquer 34/36



Karatsuba (divide-and-conquer) multiplication

19

Karatsuba multiplication

KARATSUBA-MULTIPLY(x, y, n)


IF  (n = 1)

RETURN  x 𐄂 y.

ELSE

m ← ⎡ n / 2 ⎤.

a ← ⎣ x / 2m⎦;   b ← x mod 2m.

c ← ⎣ y / 2m⎦;   d ← y mod 2m.

e ← KARATSUBA-MULTIPLY(a, c, m).

f ← KARATSUBA-MULTIPLY(b, d, m).

g ← KARATSUBA-MULTIPLY(a – b, c – d, m).

RETURN  22m e + 2m (e + f – g) + f.


Ryszard Janicki Divide and Conquer 35/36



Karatsuba analysis

Proposition

Karatsuba’s multiplication algorithm requires Θ(n1.585) bit
operations to multiply two n-bit integers.

Proof.

Apply case 1 of the master theorem to the recurrence:

T (n) = 3T (n/2)︸ ︷︷ ︸
recursive calls

+ Θ(n)︸ ︷︷ ︸
add, shift

=⇒ T (n) = Θ(nlog2 3) = Θ(n1.585)

Practice. Faster than grade-school algorithm for about 320-640
bits.

Ryszard Janicki Divide and Conquer 36/36
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Dot product.  Given two length n vectors a and b, compute c = a ⋅ b.

Grade-school.   Θ(n) arithmetic operations.

Remark.  Grade-school dot product algorithm is asymptotically optimal.

Dot product

€ 

a ⋅ b = ai bi
i=1

n

∑

€ 

a  = .70 .20 .10[ ]
b  = .30 .40 .30[ ]
a  ⋅  b  =  (.70 × .30)  +  (.20 × .40)  +  (.10 × .30)  =  .32
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.

Grade-school.   Θ(n3) arithmetic operations.

Q.  Is grade-school matrix multiplication algorithm asymptotically optimal?

Matrix multiplication

€ 

cij = aik bkj
k=1

n

∑

    

€ 

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

×

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

€ 

.59 .32 .41

.31 .36 .25

.45 .31 .42

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

.70 .20 .10

.30 .60 .10

.50 .10 .40

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  ×     
.80 .30 .50
.10 .40 .10
.10 .30 .40

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Block matrix multiplication

€ 

C
11

 =   A11 ×B11  +  A12 ×B21  =   
0 1
4 5
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ×  

16 17
20 21
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   +   

2 3
6 7
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ×  

24 25
28 29
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   =   

152 158
504 526
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

152 158 164 170
504 526 548 570
856 894 932 970

1208 1262 1316 1370

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 =  

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 ×  

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

C11
A11 A12 B11

B11
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Matrix multiplication:  warmup

To multiply two n-by-n matrices A and B:

・Divide:  partition A and B into ½n-by-½n blocks.

・Conquer:  multiply 8 pairs of ½n-by-½n matrices, recursively.

・Combine:  add appropriate products using 4 matrix additions.

Running time.  Apply case 1 of Master Theorem.

  

€ 

C11 = A11 × B11( )  +  A12 × B21( )
C12 = A11 × B12( )  +  A12 × B22( )
C21 = A21 × B11( )  +  A22 × B21( )
C22 = A21 × B12( )  +  A22 × B22( )  

€ 

C11 C12

C21 C22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  =  

A11 A12

A21 A22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ×  

B11 B12

B21 B22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

  

€ 

T (n) = 8T n /2( )
recursive calls
! " # $ # 

 +  Θ(n2 )
add, form submatrices
! " # # $ # # ⇒ T (n) =Θ(n3)
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Strassen's trick

Key idea.  multiply 2-by-2 blocks with only 7 multiplications.

(plus 11 additions and 7 subtractions)

Pf.   C12  = P1 + P2

                = A11 𐄂 (B12 – B22) + (A11 + A12) 𐄂 B22

                = A11 𐄂 B12 + A12 𐄂 B22.  ✔

  

€ 

C11 C12

C21 C22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  =  

A11 A12

A21 A22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ×  

B11 B12

B21 B22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ P1 ←  A11 𐄂 (B12 – B22)

P2 ←  (A11 + A12) 𐄂 B22

P3 ←  (A21 + A22) 𐄂 B11

P4 ←  A22 𐄂 (B21 – B11)

P5 ←  (A11 + A22) 𐄂 (B11 + B22)

P6 ←  (A12 – A22) 𐄂 (B21 + B22)

P7 ←  (A11 – A21) 𐄂 (B11 + B12)

C11  =   P5 + P4 – P2 + P6

C12  =   P1 + P2

C21  =   P3 + P4

C22  =   P1 + P5 – P3 – P7
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Strassen's algorithm

STRASSEN (n, A, B)                          


IF  (n = 1) RETURN  A 𐄂 B.

Partition A and B into 2-by-2 block matrices.
P1 ← STRASSEN (n / 2, A11, (B12 – B22)).
P2 ←  STRASSEN (n / 2, (A11 + A12), B22).
P3 ←  STRASSEN (n / 2, (A21 + A22), B11).
P4 ←  STRASSEN (n / 2,  A22, (B21 – B11)).
P5 ←  STRASSEN (n / 2, (A11 + A22) 𐄂 (B11 + B22)).

P6 ←  STRASSEN (n / 2, (A12 – A22) 𐄂 (B21 + B22)).

P7 ←  STRASSEN (n / 2, (A11 – A21) 𐄂 (B11 + B12)).

C11  =   P5 + P4 – P2 + P6.
C12  =   P1 + P2.
C21  =   P3 + P4.
C22  =   P1 + P5 – P3 – P7.
RETURN  C.


assume n is
a power of 2

keep track of indices of submatrices
(don't copy matrix entries)
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Analysis of Strassen's algorithm

Theorem.  Strassen's algorithm requires O(n2.81) arithmetic operations to 

multiply two n-by-n matrices.

Pf.  Apply case 1 of the master theorem to the recurrence:

Q.  What if n is not a power of 2 ?
A.  Could pad matrices with zeros.

  

€ 

T (n) = 7T n /2( )
recursive calls
! " # $ # 

+ Θ(n2 )
add, subtract
! " # $ # ⇒ T (n) =Θ(n log2 7 ) =O(n2.81)

�

���

1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 0

�

��� �

�

���

10 11 12 0
13 14 15 0
16 17 18 0
0 0 0 0

�

��� =

�

���

84 90 96 0
201 216 231 0
318 342 366 0
0 0 0 0

�

���
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Strassen's algorithm:  practice

Implementation issues.

・Sparsity.

・Caching effects.

・Numerical stability.

・Odd matrix dimensions.

・Crossover to classical algorithm when n is "small" . 

Common misperception.  “Strassen is only a theoretical curiosity.”

・Apple reports 8x speedup on G4 Velocity Engine when n ≈ 2,048.

・Range of instances where it's useful is a subject of controversy.
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Linear algebra reductions

Matrix multiplication.  Given two n-by-n matrices, compute their product.

problem linear algebra order of growth

matrix multiplication A × B Θ(MM(n))

matrix inversion A –1 Θ(MM(n))

determinant | A | Θ(MM(n))

system of linear equations Ax = b Θ(MM(n))

LU decomposition A = L U Θ(MM(n))

least squares min ||Ax – b ||2 Θ(MM(n))

numerical linear algebra problems with the same complexity as matrix multiplication



Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

A.  Yes!  [Strassen 1969]

Q.  Multiply two 2-by-2 matrices with 6 scalar multiplications?

A.  Impossible.  [Hopcroft and Kerr 1971]

Q.  Multiply two 3-by-3 matrices with 21 scalar multiplications?

A.  Unknown.

Begun, the decimal wars have.  [Pan, Bini et al, Schönhage, …]

・Two 20-by-20 matrices with 4,460 scalar multiplications.

・Two 48-by-48 matrices with 47,217 scalar multiplications.

・A year later.

・December 1979.

・January 1980.

33

Fast matrix multiplication:  theory

  

€ 

Θ (n log3 21) = O(n 2.77 )

€ 

O(n 2.7801)

  

€ 

Θ(n log2 6) = O(n 2.59 )
€ 

Θ(n log2 7 ) =O(n 2.807 )

€ 

O(n 2.521813)

€ 

O(n 2.521801)
€ 

O(n 2.7799 )
€ 

O(n 2.805)
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History of asymptotic complexity of matrix multiplication

year algorithm order of growth

? brute force O (n 3 )

1969 Strassen O (n 2.808 )

1978 Pan O (n 2.796 )

1979 Bini O (n 2.780 )

1981 Schönhage O (n 2.522 )

1982 Romani O (n 2.517 )

1982 Coppersmith-Winograd O (n 2.496 )

1986 Strassen O (n 2.479 )

1989 Coppersmith-Winograd O (n 2.376 )

2010 Strother O (n 2.3737 )

2011 Williams O (n 2.3727 )

? ? O (n 2 + ε )

number of floating-point operations to multiply two n-by-n matrices



Approximation Algorithms
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Suppose you’re acting as a consultant for the Port Authority
of a small Pacific Rim nation.

They’re currently doing a multi-billion-dollar business per year,
and their revenue is constrained almost entirely by the rate at
which they can unload ships that arrive in the port.

Here’s a basic sort of problem they face. A ship arrives, with n
containers of weight w1,w2, . . . ,wn.

Standing on the dock is a set of trucks, each of which can
hold K units of weight. (You can assume that K and each wi

is an integer.)

You can stack multiple containers in each truck, subject to the
weight restriction of K ; the goal is to minimize the number of
trucks that are needed in order to carry all the containers.

This problem is NP-complete (you don’t have to prove this).
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A greedy algorithm you might use for this is the following.
Start with an empty truck, and begin piling containers
1, 2, 3, . . . into it until you get to a container that would
overflow the weight limit.

Now declare this truck “loaded” and send it off; then continue
the process with a fresh truck.

This algorithm, by considering trucks one at a time, may not
achieve the most efficient way to pack the full set of
containers into an available collection of trucks.

(a) Give an example of a set of weights, and a value of K , where
this algorithm does not use the minimum possible number of
trucks.

(b) Show, however, that the number of trucks used by this
algorithm is within a factor of 2 of the minimum possible
number, for any set of weights and any value of K .
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A greedy algorithm you might use for this is the following.
Start with an empty truck, and begin piling containers
1, 2, 3, . . . into it until you get to a container that would
overflow the weight limit.

(a) Give an example of a set of weights, and a value of K , where
this algorithm does not use the minimum possible number of
trucks.

Solution

Let w1 = 1,w2 = 2,w3 = 1 and K = 2.
Then the greedy algorithm here will use three trucks, whereas
there is away to use just two, as w1 + w3 = 2, w1 + w3 + w2 = 4
and 2 + 2 = 4.
In a sense this is a typical case where greediness does not work!
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A greedy algorithm you might use for this is the following. Start
with an empty truck, and begin piling containers 1, 2, 3, . . . into it
until you get to a container that would overflow the weight limit.

(b) Show, however, that the number of trucks used by this algorithm is
within a factor of 2 of the minimum possible number, for any set of
weights and any value of K .

Solution

Let W =
∑

i wi . Note that in any solution, each truck holds at most K
units of weight, so W /K is a lower bound on the number of trucks
needed.
Suppose the number of trucks used by our greedy algorithm is an odd
number m = 2q + 1 (the case when m is even is essentially the same, a
little easier).
Divide the trucks used into consecutive groups of two, for a total q + 1
groups (the last group contains only one truck).
In each group but the last, the total weight of containers must be strictly
greater than K (else, the second truck in group would not have been
started then) - thus, W > 1K , and so W /K > q.
It follows by our argument above that the optimum solution uses at least
q + 1 trucks, which is within a factor of 2 of m = 2q + 1.
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Which strategy/approach should be used?
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Let G = (V ,E ) be an undirected graph with n nodes.
A subset of the nodes is called an independent set if no two of them are
joined by an edge.
Finding large independent sets is difficult in general (the problem is
NP-complete); but here we’ll see that it can be done efficiently if the
graph is “simple” enough.
Call a graphG = (V ,E ) a path if its nodes can be written as
v1, v2, . . . , vn, with an edge between vi and vj if and only if the numbers i
and j differ by exactly 1.
With each node vi , we associate a positive integer weight wi .
Consider, for example, the five-node path drawn below.

312 Chapter 6 Dynamic Programming

Exercises

1. Let G = (V , E) be an undirected graph with n nodes. Recall that a subset

of the nodes is called an independent set if no two of them are joined by

an edge. Finding large independent sets is difficult in general; but here

we’ll see that it can be done efficiently if the graph is “simple” enough.

Call a graphG= (V , E) apath if its nodes can bewritten as v1, v2, . . . , vn,

with an edge between vi and vj if and only if the numbers i and j differ by

exactly 1. With each node vi, we associate a positive integer weight wi.

Consider, for example, the five-node path drawn in Figure 6.28. The

weights are the numbers drawn inside the nodes.

The goal in this question is to solve the following problem:

Find an independent set in a path G whose total weight is as large as possible.

(a) Give an example to show that the following algorithm does not always

find an independent set of maximum total weight.

The "heaviest-first" greedy algorithm

Start with S equal to the empty set

While some node remains in G

Pick a node vi of maximum weight

Add vi to S

Delete vi and its neighbors from G

Endwhile

Return S

(b) Give an example to show that the following algorithm also does not

always find an independent set of maximum total weight.

Let S1 be the set of all vi where i is an odd number

Let S2 be the set of all vi where i is an even number

(Note that S1 and S2 are both independent sets)

Determine which of S1 or S2 has greater total weight,

and return this one

1 8 6 3 6

Figure 6.28 Apaths with weights on the nodes. Themaximumweight of an independent
set is 14.

The weights are the numbers drawn inside the nodes. The maximum
weight of an independent set is 14.
The goal in this question is to solve the following problem:
Find an independent set in a path G whose total weight is as large as
possible.
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Greedy

Give an example to show that the following algorithm does
not always find an independent set of maximum total weight.

The "heaviest-first" greedy algorithm

Start with S equal to the empty set

While some node remains in G
Pick a node vi of maximum weight

Add vi to S
Delete vi and its neighbours from G
Endwhile

Return S

Solution

Consider the sequence of weights 2, 3, 2.
The greedy algorithm will pick the middle node, while the
maximum weight independent set consists with the first and the
third.
So, the greedy approach does not work.
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Divide and Conquer

Give an example to show that the following algorithm also
does not always find an independent set of maximum total
weight.

Let S1 be the set of all vi where i is an odd

number

Let S2 be the set of all vi where i is an even

number

(Note that S1 and S2 are both independent sets)

Determine which of S1 or S2 has greater total

weight, and return this one

Solution

Consider the sequence of weights 3, 1, 2, 3.
The given algorithm will pick up the first and the third nodes,
while the maximum weight independent set consists of the first
and the fourth.
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Dynamic Programming

Let Si denote an independent set on {v1, . . . , vi}, and let Xi

denote its weight.
Define X0 = 0 and note that X1 = w1.
Now, for i > 1, either vi belongs to Si , or it doesn’t.
In the first case, we know that vi−1 cannot belong to Si , and so
Xi = wi + Xi−2.
In the second case, Xi = Xi−1.
Thus we have the recurrence:

Xi = max(Xi−1,wi + Xi−2).
We thus compute the values of Xi , in increasing order from i = 1
to n.
Xn is the value want, and we can compute Sn by tracting back
through the computation of the max operator.
Since we spend constant time per iteration, over n iterations, the
total running time is O(n).
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Randomized Algorithms

They are often simple and efficient, but do not guarantee
optimal solution.
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Basic Probability

A and B are mutually exclusive if p(A ∩ B) = ∅.
A and B are independent if p(A ∩ B) = p(A)p(B).

Conditional probability: A and B are events and p(B) > 0
The probability of A given B is defined as:

p(A|B) = p(A ∩ B)

p(B)
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Random Variables

A function X : S → Reals is called a random variable.

The expectation (expected value) of X is:

E (X ) =
∑
x∈S

p(x)X (x)

For x ∈ Reals,

p({x ∈ S | X (x) = r}) = p(X−1(r))

is often written as p(X = r) and interpreted as “the
probability that X = r”.

Fact

E (X ) =
∑

r∈X (S)

r · p(X = r)
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Fact

Expected value is linear i.e.

1 E (X + Y ) = E (X ) + E (Y )

2 E (cX ) = cE (X )

3 E (
∑
i

ciXi ) =
∑
i

ciE (Xi )

Waiting for first success in independent trial:

P(X = j) = (1− p)j−1p

E (X ) =
∞∑
j=1

jP(X = j) =
∞∑
j=1

j(1− p)j−1p =

p

1− p

∞∑
j=1

j(1− p)j =
p

1− p
· 1− p

p2
=

1

p

since
∞∑
k=0

kxk =
x

(1− x)2
for |x | < 1.

Expected number of trials to first success is 1
p .
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Maximal 3-Colouring

3-Coluoring is a yes/no question, but we can phrase it as an
optimization problem as follows.
Suppose we are given a graph G = (V ,E ), and we want to colour
each node with one of three colours, even if we aren’t necessarily
able to give different colours to every pair of adjacent nodes.
Rather, we say that an edge (u, v) is satisfied if the colours
assigned to u and v are different.
Consider a 3-colouring that maximizes the number of satisfied
edges, and let c∗ denote this number.
Give a polynomial-time algorithm that produces a 3-colouring that
satisfies at least (2/3)c∗. edges.
If you want, your algorithm can be randomized; in this case, the
expected number of edges it satisfies should be at least (2/3)c∗.
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Solution

As this is a maximization problem, we need an upper bound of c∗,
and the is an easy one: c∗ ≤ m, where m = |E |.
The algorithm is: colouring every node independently with one of
the three colours, each with probability 1

3 .
Let random variable

Xe =

{
1 edge e is satisfied
0 otherwise

Then for any given edge e, there are 9 ways to colour its two ends,
each of which appears with the same probability, and 3 of them are
not satisfying, i.e.

Exp[Xe ] = Pr [e is satisfied] = 6
9 = 2

3 .
Let Y be the random cariable denoting the number of satisfied
edges, then by linearity of expectations,

Exp[Y ] = Exp[
∑

e∈E Xe ] =
∑

e∈E Exp[xe ] =
2
3m ≥ 2

3c
∗.

Hence, Exp[Y ] ≥ 2
3c

∗.
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