Basics of Algorithms Analysis CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 2)

・ロト ・日本 ・モート ・モート

Big-Oh notation

Definition (Upper bounds)

T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$.

Example

$$T(n) = 32n^2 + 17n + 1.$$

- T(n) is $O(n^2)$. \leftarrow choose $c = 50, n_0 = 1$
- T(n) is also $O(n^3)$.
- T(n) is neither O(n) nor $O(n \log n)$.

Typical usage. Insertion makes $O(n^2)$ compares to sort n elements.

Notational abuses

• Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$.

Example

Consider
$$f(n) = 5n^3$$
 and $g(n) = 3n^2$.

• We have
$$f(n) = O(n^3) = g(n)$$
.

• Thus,
$$f(n) = g(n)$$
.

- **Domain.** The domain of f(n) is typically the natural numbers $\{0, 1, 2, \}$.
 - Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals.
- Nonnegative functions. When using big-Oh notation, we assume that the functions involved are (asymptotically) nonnegative.
- Bottom line. OK to abuse notation; not OK to misuse it.

Big-Omega notation

Definition (Lower bounds)

T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$.

T(n) $c \cdot f(n)$ n_0 n

Example

 $T(n) = 32n^2 + 17n + 1.$

- T(n) is both $\Omega(n^2)$ and $\Omega(n)$. \leftarrow choose $c = 32, n_0 = 1$
- T(n) is also $O(n^3)$.
- T(n) is neither $\Omega(n^3)$ nor $\Omega(n^3 \log n)$.

Typical usage. Any compare-based sorting algorithm requires $\Omega(n \log n)$ compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires at least $O(n \log n)$ compares in the worst case.

Big-Theta notation

Definition (Tight bounds)

T(n) is $\Theta(f(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(c) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$.

Example

 $T(n) = 32n^2 + 17n + 1.$

- T(n) is $\Theta(n^2)$. \leftarrow choose $c_1 = 32, c_2 = 50, n_0 = 1$
- T(n) is neither $\Theta(n)$ nor $\Theta(n^3)$.

Typical usage. Mergesort makes $\Omega(n \log n)$ compares to sort n elements.

Useful facts

Proposition

If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$$
, then $f(n)$ is $\Theta(g(n))$.

Proof.

By definition of the limit, there exists n_0 such such that for all $n \ge n_0$

$$\frac{1}{2}c < \frac{f(n)}{g(n)} < 2c$$

• Thus, $f(n) \leq 2cg(n)$ for all $n \geq n_0$, which implies f(n) is O(g(n)).

• $f(n) \ge \frac{1}{2}cg(n)$ for all $n \ge n_0$, which implies f(n) is $\Omega(g(n))$.

Proposition

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n)$ is $O(g(n))$.

Asymptotic bounds for some common functions

• Polynomials. Let $T(n) = a_0 + a_1 n + a_d n^d$ with $a_d > 0$. Then, T(n) is $\Theta(n^d)$. Proof. $\lim_{n \to \infty} \frac{a_0 + a_1 n + a_d n^d}{n^d} = a_d > 0.$ • Logarithms. Theta($\log_2 n$) is $\Theta(\log_b n)$ for any constants *a*, b > 0. *Proof.* Since $\log_a n = \frac{\log_n n}{\log_k a}$. • **Exponentials and polynomials.** For every r > 1 and every $d > 0, n^{d}$ is $O(r^{n})$. *Proof.* Since $\lim_{n\to\infty} \frac{n^d}{r^d} = 0.$

Definition (Upper bounds)

T(m, n) is O(f(m, n)) if there exist constants c > 0, $m^0 \ge 0$, and $n_0 \ge 0$ such that $T(m, n) \le c \cdot f(m, n)$ for all $n \ge n_0$ and $m \ge m_0$.

Example

$$T(m,n) = 32mn^2 + 17mn + 32n^3.$$

- T(m, n) is both $O(mn^2 + n^3)$ and $O(mn^3)$.
- T(m, n) is neither $O(n^3)$ nor $O(mn^2)$.

Typical usage. Breadth-first search takes O(m + n) time to find the shortest path from s to t in a digraph (recall CS/SE 2C03).

・ロン ・回と ・ヨン ・ヨン

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

æ

・ロト ・回ト ・ヨト ・ヨト