Basics of Algorithms Analysis

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Eva Tardos (Chapter 2)

Ryszard Janicki Basics of Algorithms Analysis

Big-Oh notation

Definition (Upper bounds)

T(n) is O(f(n)) if there exist constants ¢ > 0 and ng > 0 such
that T(n) < c-f(n) for all n > ng.

no n

T(n)=32n%> +17n+ 1.
@ T(n)is O(n?). < choose c =50, ny = 1
e T(n)is also O(n®).
@ T(n) is neither O(n) nor O(n log n).

Typical usage. Insertion makes O(n?) compares to sort n
elements.

Ryszard Janicki Basics of Algorithms Analysis 2/9

Notational abuses

e Equals sign. O(f(n)) is a set of functions, but computer
scientists often write T(n) = O(f(n)) instead of

T(n) € O(f(n)).

Consider f(n) = 5n and g(n) = 3n°.

@ o We have f(n) = O(n?)
o Thus, f(n) = g(n).

g(n).

e Domain. The domain of f(n) is typically the natural numbers
{0,1,2,}.
e Sometimes we restrict to a subset of the natural numbers.
Other times we extend to the reals.
@ Nonnegative functions. When using big-Oh notation, we
assume that the functions involved are (asymptotically)
nonnegative.

o Bottom line. OK to abuse notation; not OK to misuse it.

Ryszard Janicki Basics of Algorithms Analysis

Big-Omega notation

Definition (Lower bounds)

T(n) is Q(f(n)) if there exist constants ¢ > 0 and ng > 0 such that
T(n) > c-f(n) for all n > no.

no n
v

T(n)=32n*+17n+ 1.
@ T(n) is both Q(n?) and Q(n). < choose ¢ =32,y =1
@ T(n)is also O(n).
@ T(n) is neither Q(n®) nor Q(n® log n).
Typical usage. Any compare-based sorting algorithm requires
Q(n log n) compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires
at least O(n log n) compares in the worst case.

Ryszard Janicki Basics of Algorithms Analysis 4/9

Big-Theta notation

Definition (Tight bounds)

T(n) is ©(f(n)) if there exist constants ¢c; >0, c; > 0and ng >0
such that ¢; - f(c) < T(n) < ¢ - f(n) for all n > ng.
o f(n)

| \

Example

T(n) =32n%+17n+ 1.
@ T(n) is ©(n?). « choose ¢; =32, ¢, = 50,y = 1
o T(n) is neither ©(n) nor ©(n3).

Typical usage. Mergesort makes Q(n log n) compares to sort n
elements.

Ryszard Janicki Basics of Algorithms Analysis

Useful facts

i f(n)—c en f(n) is n
Ifnll_>nc1>og(n) =c >0, then f(n) is ©(g(n)).

By definition of the limit, there exists ng such such that for all n > ng

1 f(n)
2" g(n)

< 2c

@ Thus, f(n) < 2cg(n) for all n > ng, which implies f(n) is O(g(n)).
@ f(n) > 3cg(n) for all n > no, which implies f(n) is Q(g(n)). O

im £(7) = en f(n) is n
If lim 2(r) =0, then f(n) is O(g(n)).

Ryszard Janicki Basics of Algorithms Analysis 6/9

Asymptotic bounds for some common functions

e Polynomials. Let T(n) = ag + ain+ + agn? with ag > 0.
Then, T(n) is ©(n9).

d
Proof. lim 22t aNE £ _, g
n—o0 n
o Logarithms. Theta(log, n) is ©(log, n) for any constants
a,b>0.
I
Proof. Since log, n = 28n
log, a

o Exponentials and polynomials. For every r > 1 and every
d >0, n?is O(r").

. . n
Proof. Since |lim — = 0.
n—oo

Ryszard Janicki Basics of Algorithms Analysis

Big-Oh notation with multiple variables

Definition (Upper bounds)

T(m, n) is O(f(m, n)) if there exist constants ¢ >0, m® > 0, and
no > 0 such that T(m,n) < c-f(m,n) for all n > ng and m > my.

Example

T(m, n) = 32mn? + 17mn + 32n3.
e T(m,n) is both O(mn? + n®) and O(mn3).
e T(m,n) is neither O(n®) nor O(mn?).

A\

Typical usage. Breadth-first search takes O(m + n) time to find
the shortest path from s to t in a digraph (recall CS/SE 2C03).

Ryszard Janicki Basics of Algorithms Analysis

y it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n? LG 2 n!
n=10 < 1sec < 1 sec < 1sec < 1 sec < 1sec < 1 sec 4 sec
n=30 <lsec <lsec <1sec < 1sec < 1sec 18min 10% years
n=>50 < 1 sec <1 sec < 1sec <1 sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 10'7 years very long

n = 1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long

n =1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Ryszard Janicki Basics of Algorithms Analysis

