
Basics of Algorithms Analysis
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 2)

Ryszard Janicki Basics of Algorithms Analysis 1/9

Big-Oh notation

Definition (Upper bounds)

T (n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0 such
that T (n) ≤ c · f (n) for all n ≥ n0.

Upper bounds. T(n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0
such that T(n) ≤ c · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is O(n2).

・T(n) is also O(n3).

・T(n) is neither O(n) nor O(n log n).

Typical usage. Insertion makes O(n2) compares to sort n elements.

Alternate definition. T(n) is O(f (n)) if

11

Big-Oh notation

choose c = 50, n0 = 1

lim sup
n��

T (n)

f(n)
< �.

c · f (n)

nn0

T(n)

Example

T (n) = 32n2 + 17n + 1.

T (n) is O(n2). ← choose c = 50, n0 = 1

T (n) is also O(n3).

T (n) is neither O(n) nor O(n log n).

Typical usage. Insertion makes O(n2) compares to sort n
elements.

Ryszard Janicki Basics of Algorithms Analysis 2/9

Notational abuses

Equals sign. O(f (n)) is a set of functions, but computer
scientists often write T (n) = O(f (n)) instead of
T (n) ∈ O(f (n)).

Example

Consider f (n) = 5n3 and g(n) = 3n2.
We have f (n) = O(n3) = g(n).

Thus, f (n) = g(n).

Domain. The domain of f (n) is typically the natural numbers
{0, 1, 2, }.

Sometimes we restrict to a subset of the natural numbers.
Other times we extend to the reals.

Nonnegative functions. When using big-Oh notation, we
assume that the functions involved are (asymptotically)
nonnegative.

Bottom line. OK to abuse notation; not OK to misuse it.

Ryszard Janicki Basics of Algorithms Analysis 3/9

Big-Omega notation
Definition (Lower bounds)

T (n) is Ω(f (n)) if there exist constants c > 0 and n0 ≥ 0 such that
T (n) ≥ c · f (n) for all n ≥ n0.

13

Big-Omega notation

Lower bounds. T(n) is Ω(f (n)) if there exist constants c > 0 and n0 ≥ 0
such that T(n) ≥ c · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is both Ω(n2) and Ω(n).

・T(n) is neither Ω(n3) nor Ω(n3 log n).

Typical usage. Any compare-based sorting algorithm requires Ω(n log n)
compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires

at least O(n log n) compares in the worst case.

choose c = 32, n0 = 1

T(n)

nn0

c · f (n)

Example

T (n) = 32n2 + 17n + 1.

T (n) is both Ω(n2) and Ω(n). ← choose c = 32, n0 = 1

T (n) is also O(n3).

T (n) is neither Ω(n3) nor Ω(n3 log n).

Typical usage. Any compare-based sorting algorithm requires
Ω(n log n) compares in the worst case.
Meaningless statement. Any compare-based sorting algorithm requires
at least O(n log n) compares in the worst case.

Ryszard Janicki Basics of Algorithms Analysis 4/9

Big-Theta notation

Definition (Tight bounds)

T (n) is Θ(f (n)) if there exist constants c1 > 0, c2 > 0 and n0 ≥ 0
such that c1 · f (c) ≤ T (n) ≤ c2 · f (n) for all n ≥ n0.

14

Big-Theta notation

Tight bounds. T(n) is Θ(f (n)) if there exist constants c1 > 0, c2 > 0, and n0 ≥ 0
such that c1 · f (n) ≤ T(n) ≤ c2 · f (n) for all n ≥ n0.

Ex. T(n) = 32n2 + 17n + 1.

・T(n) is Θ(n2).

・T(n) is neither Θ(n) nor Θ(n3).

Typical usage. Mergesort makes Θ(n log n) compares to sort n elements.

choose c1 = 32, c2 = 50, n0 = 1

T(n)

nn0

c1 · f (n)

c2 · f (n)

Example

T (n) = 32n2 + 17n + 1.

T (n) is Θ(n2). ← choose c1 = 32, c2 = 50, n0 = 1

T (n) is neither Θ(n) nor Θ(n3).

Typical usage. Mergesort makes Ω(n log n) compares to sort n
elements.

Ryszard Janicki Basics of Algorithms Analysis 5/9

Useful facts

Proposition

If lim
n→∞

f (n)

g(n)
= c > 0, then f (n) is Θ(g(n)).

Proof.

By definition of the limit, there exists n0 such such that for all n ≥ n0

1

2
c <

f (n)

g(n)
< 2c

Thus, f (n) ≤ 2cg(n) for all n ≥ n0, which implies f (n) is O(g(n)).

f (n) ≥ 1
2cg(n) for all n ≥ n0, which implies f (n) is Ω(g(n)).

Proposition

If lim
n→∞

f (n)

g(n)
= 0, then f (n) is O(g(n)).

Ryszard Janicki Basics of Algorithms Analysis 6/9

Asymptotic bounds for some common functions

Polynomials. Let T (n) = a0 + a1n + + adn
d with ad > 0.

Then, T (n) is Θ(nd).

Proof. lim
n→∞

a0 + a1n + + adn
d

nd
= ad > 0.

Logarithms. Theta(loga n) is Θ(logb n) for any constants
a, b > 0.

Proof. Since loga n =
logn n

logb a
.

Exponentials and polynomials. For every r > 1 and every
d > 0, nd is O(rn).

Proof. Since lim
n→∞

nd

rd
= 0.

Ryszard Janicki Basics of Algorithms Analysis 7/9

Big-Oh notation with multiple variables

Definition (Upper bounds)

T (m, n) is O(f (m, n)) if there exist constants c > 0, m0 ≥ 0, and
n0 ≥ 0 such that T (m, n) ≤ c · f (m, n) for all n ≥ n0 and m ≥ m0.

Example

T (m, n) = 32mn2 + 17mn + 32n3.

T (m, n) is both O(mn2 + n3) and O(mn3).

T (m, n) is neither O(n3) nor O(mn2).

Typical usage. Breadth-first search takes O(m + n) time to find
the shortest path from s to t in a digraph (recall CS/SE 2C03).

Ryszard Janicki Basics of Algorithms Analysis 8/9

Why it matters

9

Why it matters

Ryszard Janicki Basics of Algorithms Analysis 9/9

