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Informal Definition

A greedy algorithm always makes the choice that looks best
at the moment. That is, it makes a locally optimal choice in
the hope that this choice will lead to a globally optimal
solution.

Greedy algorithms do not always yield optimal solution, but
for many problems they do, and if they do, they are usually
the most efficient.

Popular Dijkstra’s Shortest Paths algorithm is greedy.
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Coin Changes

Given currency denominations, say : 1, 5, 10, 25, 100, devise
a method to pay amount to customer using fewest number of
coins. For example: 34 = 25 + 5 + 4× 1.

Algorithm (Cashier’s algorithm)

At each iteration, add coin of the largest value that does not take
us past the amount to be paid.

4

Cashier's algorithm

At each iteration, add coin of the largest value that does not take us past 

the amount to be paid.

Q.  Is cashier's algorithm optimal?

CASHIERS-ALGORITHM (x, c1, c2, …, cn)                          


SORT n coin denominations so that c1 < c2 < … < cn

S ← φ

WHILE  x  >  0
    k  ← largest coin denomination ck such that ck  ≤  x
    IF  no such k, RETURN "no solution"
    ELSE

          x  ← x   –  ck

         S  ← S ∪ { k }

RETURN S


set of coins selected 
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Analysis of cashier’s algorithm

Proposition

Cashier’s algorithm is optimal for coins: 1, 5, 10, 25, 100.

Proof.

By analysis cases: 1 ≤ n ≤ 4, 5 ≤ n ≤ 9, 10 ≤ n ≤ 24,
25 ≤ n ≤ 99, and 100 ≤ n.

Cashier’s algorithm does not always work!

Consider a denomination 1, 4, 5, 10, and n = 8. Cashier’s
algorithm produces: 8=5+1+1+1, while the optimal solution
is 8 = 4 + 4.

Cashier’s algorithm may not even lead to a feasible solution if
c1 > 1! Consider a denomination: 7, 8, 9 and n = 15. The
optimal solution is 15 = 7 + 8, but the algorithm gives
15 = 9+??.
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Interval scheduling

Job j starts at sj and finishes at fj .

Two jobs compatible if they don’t overlap.

Goal: find maximum subset of mutually compatible jobs.
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Interval scheduling

・Job j starts at sj and finishes at fj.

・Two jobs compatible if they don't overlap.

・Goal: find maximum subset of mutually compatible jobs.
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Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order. Take each
job provided it’s compatible with the ones already taken.

Earliest start time. Consider jobs in ascending order of sj .

Earliest finish time. Consider jobs in ascending order of fj .

Shortest interval. Consider jobs in ascending order of fj − sj .

Fewest conflicts. For each job j , count the number of
conflicting jobs cj . Schedule in ascending order of cj .

Usually only some templates work!
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Templates that do not work for interval scheduling
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Interval scheduling:  greedy algorithms

Greedy template.  Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts
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Interval scheduling: earliest-finish-time-first algorithm
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Proposition.  Can implement earliest-finish-time first in O(n log n) time.

・Keep track of job j* that was added last to A.

・Job j is compatible with A iff sj  ≥  fj* .

・Sorting by finish time takes O(n log n) time.

Interval scheduling:  earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT  jobs by finish time so that  f1  ≤  f2  ≤  …  ≤  fn

A ← φ

FOR  j = 1  TO   n
     IF job j is compatible with A
         A  ← A ∪ { j }

RETURN A


set of jobs selected 

Claim

Time complexity of the part from ‘FOR’ to ‘RETURN’ is O(n).

Proof.

Keep track of job j∗ that was added last to A (constant time).

Job j is compatible with A iff sj ≥ f ∗j (constant time) .

However time complexity of the Earliest-finish-time-first algorithm
is O(n log n)! WHY?

Ryszard Janicki Greedy Algorithms 8/39



Time complexity of earliest-finish-time-first algorithm
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Proposition.  Can implement earliest-finish-time first in O(n log n) time.

・Keep track of job j* that was added last to A.

・Job j is compatible with A iff sj  ≥  fj* .

・Sorting by finish time takes O(n log n) time.

Interval scheduling:  earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT  jobs by finish time so that  f1  ≤  f2  ≤  …  ≤  fn

A ← φ

FOR  j = 1  TO   n
     IF job j is compatible with A
         A  ← A ∪ { j }

RETURN A


set of jobs selected 

Proposition

We can implement earliest-finish-time first (EFTF) in O(n log n) time.

Proof.

O(EFTF) = O(SORT) + O(A← ∅) + O(FOR...RETURN A)
O(SORT) = O(n log n)
O(A← ∅) = O(1)
O(FOR...RETURN A) = O(n)
Hence O(EFTF) = O(n log n) + O(1) + O(n) = O(n log n).
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Analysis of of earliest-finish-time-first algorithm (1)

Theorem

The earliest-finish-time-first algorithm is optimal.

Proof.

(By contradiction)

Assume greedy is not optimal, and let’s see what happens.

Let i1, i2, . . . , ik denote set of jobs selected by greedy.

Let j1, j2, . . . , jm denote set of jobs in an optimal solution with
i1 = j1, i2 = j2, . . . , ir = jr for the largest possible value of r .

13

Interval scheduling:  analysis of earliest-finish-time-first algorithm

Theorem.  The earliest-finish-time-first algorithm is optimal.

Pf.  [by contradiction]

・Assume greedy is not optimal, and let's see what happens.

・Let i1, i2, ... ik denote set of jobs selected by greedy.

・Let j1, j2, ... jm  denote set of jobs in an optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

why not replace job jr+1

with job ir+1?

job ir+1 exists and finishes before jr+1

i1 i2 ir ir+1Greedy: ik. . .

j1 j2 jr jmOPT: jr+1
. . .
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Analysis of of earliest-finish-time-first algorithm (2)

Theorem

The earliest-finish-time-first algorithm is optimal.

Proof.

(By contradiction)

Assume greedy is not optimal, and let’s see what happens.

Let i1, i2, . . . , ik denote set of jobs selected by greedy.

Let j1, j2, . . . , jm denote set of jobs in an optimal solution with
i1 = j1, i2 = j2, . . . , ir = jr for the largest possible value of r .

i2i1 ir ik

jmjrj1 j2

ir+1

Theorem.  The earliest-finish-time-first algorithm is optimal.

Pf.  [by contradiction]

・Assume greedy is not optimal, and let's see what happens.

・Let i1, i2, ... ik denote set of jobs selected by greedy.

・Let j1, j2, ... jm  denote set of jobs in an optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

14

Interval scheduling:  analysis of earliest-finish-time-first algorithm

solution still feasible and optimal
(but contradicts maximality of r)

ir+1

Greedy:

OPT:

. . .

. . .

job ir+1 exists and finishes before jr+1
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Interval partitioning

Lecture j starts at sj and finishes at fj .

Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Example.This schedule uses 4 classrooms to schedule 10 lectures.

Interval partitioning.

・Lecture j starts at sj and finishes at fj.

・Goal:  find minimum number of classrooms to schedule all lectures

so that no two lectures occur at the same time in the same room.

Ex.  This schedule uses 4 classrooms to schedule 10 lectures.
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Interval partitioning
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Example.This schedule uses 3 classrooms to schedule 10 lectures.
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Interval partitioning

Interval partitioning.

・Lecture j starts at sj and finishes at fj.

・Goal:  find minimum number of classrooms to schedule all lectures

so that no two lectures occur at the same time in the same room.

Ex.  This schedule uses 3 classrooms to schedule 10 lectures.
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Interval partitioning: greedy algorithms

Greedy template. Consider jobs in some natural order. Assign
each lecture to an available classroom (which one?); allocate a
new classroom if none are available.

Earliest start time. Consider jobs in ascending order of sj .

Earliest finish time. Consider jobs in ascending order of fj .

Shortest interval. Consider jobs in ascending order of fj − sj .

Fewest conflicts. For each job j , count the number of
conflicting jobs cj . Schedule in ascending order of cj .

Usually only some templates work!
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Templates that do not work for interval partitioning
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Interval partitioning:  greedy algorithms

Greedy template.  Consider lectures in some natural order.

Assign each lecture to an available classroom (which one?);

allocate a new classroom if none are available.

counterexample for earliest finish time

counterexample for fewest conflicts
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counterexample for shortest interval
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Interval partitioning: earliest-start-time-first algorithm
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Interval partitioning:  earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)                          


SORT  lectures by start time so that s1  ≤  s2  ≤  …  ≤  sn.
d ← 0

FOR  j = 1 TO  n
     IF lecture j is compatible with some classroom
         Schedule lecture j in any such classroom k.
     ELSE

         Allocate a new classroom d + 1.
         Schedule lecture j in classroom d + 1.
         d ← d  + 1

RETURN  schedule.


number of allocated classrooms
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Time complexity of earliest-start-time-first algorithm

Proposition

The earliest-start-time-first algorithm can be implemented in
O(n log n) time.

Proof.

Store classrooms in a priority queue (key = finish time of its last
lecture).

To determine whether lecture j is compatible with some
classroom, compare sj to key of min classroom k in priority
queue.

To add lecture j to classroom k , increase key of classroom k
to fj .

Total number of priority queue operations is O(n).

Sorting by start time takes O(n log n) time.

Remark. This implementation chooses the classroom k whose
finish time of its last lecture is the earliest.
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Interval partitioning: lower bound on optimal solution

Definition

The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Question. Does number of classrooms needed always equal depth?

Answer. Yes! Moreover, earliest-start-time-first algorithm finds one.

21

Interval partitioning:  lower bound on optimal solution

Def.  The depth of a set of open intervals is the maximum number that 

contain any given time.

Key observation.  Number of classrooms needed  ≥  depth.

Q.  Does number of classrooms needed always equal depth?

A.  Yes! Moreover, earliest-start-time-first algorithm finds one.
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Analysis of earliest-start-time-first algorithm

Key Observation. The earliest-start-time first algorithm never
schedules two incompatible lectures in the same classroom.

Theorem

Earliest-start-time-first algorithm is optimal.

Proof.

Let d = number of classrooms that the algorithm allocates.

Classroom d is opened because we needed to schedule a
lecture, say j , that is incompatible with all d − 1 other
classrooms.

These d lectures each end after sj .

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than sj .

Thus, we have d lectures overlapping at time sj + ε.

Key observation =⇒ all schedules use ≥ d classrooms.
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Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of
the greedy algorithm, its solution is at least as good as any
other algorithm’s.

Structural. Discover a simple ”structural” bound asserting
that every possible solution must have a certain value. Then
show that your algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its quality.

Other greedy algorithms. Dijkstra (shortest paths),Kruskal,
Prim (spanning trees), Huffman (compression), Optimal
Offline Caching, etc.

Dijkstra (shortest paths),Kruskal and Prim (spanning trees)
were discussed in CS 2C03, Huffman (compression) and
Optimal Offline Caching will be now be discussed.
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Huffman codes and data compression

We have a set of characters A = {a1, . . . , ak}.
A string or message: x1x2 . . . xn where xi ∈ A.

For each ai ∈ A, f (ai ) is the frequency (or probability) of
appearance ai in the message.

We assume
∑
ai∈A

f (ai ) = 1.

Encoding: assign a binary code c(ai ) for each ai , and extend
c to strings by c(x1x2 . . . xn) = c(x1)c(x2) . . . c(xn).

Decoding: Given a code b1b2 . . . bm find the unique message
x1x2 . . . xn such that c(x1x2 . . . xn) = b1b2 . . . bm.

Encoding Length or Average Code Length:∑
ai∈A

f (ai )length(c(ai )).
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Prefix Property

Character Frequency Code 1 Code 2 Code 3

a
b
c
d
e

0.3
0.1
0.1
0.1
0.4

000
001
010
011
100

01
0010
0011
000

1

00
01
10
000

1

average
code length

3.0 2.1 1.7

Prefix Property: c(ai ) is not a prefix of c(aj) for any c 6= j .

No prefix property =⇒ no decoding!

Code1 and Code 2 have prefix property.

Code 3 does not have prefix property.
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Binary Tree Representation of codes

Codes with prefix properties: all letters as leaves.

code 1 code 2
c(a) = 000, c(b) = 001, c(a) = 000, c(b) = 11,
c(c) = 010, c(d) = 011, c(c) = 01, c(d) = 001,
c(e) = 100 c(e) = 10
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Binary Tree Representation of codes

Codes with out prefix properties: some letters as interior
nodes.

code 3
c(a) = 00, c(b) = 01,
c(c) = 10, c(d) = 000,
c(e) = 1
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Huffman Algorithm

Huffman code: an optimal (minimal length) code with prefix
property.

Huffman algorithm: it finds Huffman code c(ai ) for each ai .

Huffman algorithm is greedy (see ‘lowest frequencies’ below).

HUFFMAN({a1, a2, . . . , an})
——————————————
Find ai and aj such that f (ai ) and f (aj) are the lowest
frequencies among f (a1), . . . , f (an)
Define a new character a′ and set
f (a′)← f (ai ) + f (aj).
A′ ← ({a1, a2, . . . , an} \ {ai , aj}) ∪ {a′}

HUFFMAN(A’)
c(ai )← c(a′)0
c(aj)← c(a′)1
END HUFFMAN
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Huffman Algorithm

Example

A = {a, b, c}, f (a) = 0.5, f (b) = 0.3, f (c) = 0.2.

HUFFMAN({a, b, c}) =⇒ we assume a′ = [bc]

f ([bc]) = f (b) + f (c) = 0.4 and next HUFFMAN({a, [bc]}) =⇒
c(a) = 0, c(bc]) = 1 =⇒ c(b) = 10, c(c) = 11.

Hence we have c(a) = 0, c(b) = 10, c(c) = 11.

The procedure is better understood if presented in bottom up
version with trees.
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Huffman Algorithm: An Example

a b c d e f g h
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Huffman Algorithm: An Example
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Huffman Algorithm: An Example

(4)
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Huffman Algorithm: An Example
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Huffman Algorithm: Properties

Solutions are not unique but the value of

n∑
i=1

g(ai )length(c(ai ))

is always the same and it is the minimal value for all binary
prefix codes.

TIME COMPLEXITY

k − 1 iterations, each consists of finding two minimal values
and merging, can easily be done in O(k)¡ so totally O(k2).
if priority queues implemented as heaps (see CS/SE 2C03
course last year) are used, then finding two minimal elements
is O(log k), merging is O(1), so totally O(k log k).

Ideas can be extended, see pages 175-177 in the textbook.
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Optimal offline caching

Caching.

・Cache with capacity to store k items.

・Sequence of m item requests d1, d2, …, dm.

・Cache hit:  item already in cache when requested.

・Cache miss:  item not already in cache when requested:  must bring 

requested item into cache, and evict some existing item, if full.

Goal.  Eviction schedule that minimizes number of evictions.

Ex.  k = 2, initial cache = ab, requests:  a, b, c, b, c, a, a.

Optimal eviction schedule.  2 evictions.

34

Optimal offline caching

a

b

c

b

c

a

b

a b

a b

c b

c b

c b

a b

a b

requests cache

cache miss
(eviction)

30

How to find closest pair with one point in each side?

Def.  Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim.  If | i – j |  ≥  12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥  2 (½ δ).   ▪

Fact.  Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26
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δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮
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Optimal offline caching: Greedy algorithms

35

Optimal offline caching:  greedy algorithms

LIFO / FIFO.  Evict element brought in most (east) recently.

LRU.  Evict element whose most recent access was earliest.

LFU.  Evict element that was least frequently requested.

cache miss
(which item to eject?) 

⋮

a

d

a

b

c

e

g

b

e

d

⋮

a w x y z

a w x d z

a w x d z

a b x d z

a b c d z

a b c d ecurrent cache

future queries

previous queries

LIFO: eject e

LRU: eject d

FIFO: eject a
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Optimal offline caching: farthest-in-future (clairvoyant
algorithm)

36

Optimal offline caching:  farthest-in-future (clairvoyant algorithm)

Farthest-in-future.  Evict item in the cache that is not requested until

farthest in the future.

Theorem.  [Bélády 1966]  FF is optimal eviction schedule.

Pf.  Algorithm and theorem are intuitive; proof is subtle.

cache miss
(which item to eject?) 

a

f

a

b

c

e

g

b

e

d

⋮

a b c d ecurrent cache

future
queries

FF: eject d
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Optimal offline caching: farthest-in-future (clairvoyant
algorithm)

Theorem

Farthest-in-future is optimal eviction schedule.

Proof.

Algorithm and theorem are intuitive; proof is subtle, uses the
concept of Reduced Eviction Schedules see details on pages
135-136 in the textbook.
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Reduced eviction schedules

Definition

A reduced schedule is a schedule that only inserts an item into the
cache in a step in which that item is requested.

Def.  A reduced schedule is a schedule that only inserts an item into the 

cache in a step in which that item is requested.

37

Reduced eviction schedules

a
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a
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a d c
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a c b
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a reduced schedule

a
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a

a b c

a x c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

an unreduced schedule

item inserted
when not requested
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Farthest-in-future: analysis (sketch)
Lemma

Given any unreduced schedule S, can transform it into a reduced
schedule S with no more evictions.

Proof.

By induction on number of unreduced items.

Lemma (Invariant Property)

There exists an optimal reduced schedule S that makes the same
eviction schedule as SFF through the first j requests.

Proof.

By induction j .

Theorem

Farthest-in-future is optimal eviction algorithm.

Proof.

Follows directly from Invariant Property.



Caching perspective

Online vs. offline algorithms.

Offline: full sequence of requests is known a priori.

Online (reality): requests are not known in advance.

Caching is among most fundamental online problems in
Computer Science.

LIFO. Evict page brought in most recently.
LRU - Least-Recently-Used. Evict page whose most recent access
was earliest (i.e. Farthest-in-Future with direction of time
reversed!).
Farthest-in-Future is optimal offline eviction algorithm.

Provides basis for understanding and analyzing online
algorithms.

Randomized version of LRU is efficient (k-competitive)

LIFO is arbitrarily bad.
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