Greedy Algorithms CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 4)

- ∢ ≣ ▶

• • • • • • • • • • •

- A greedy algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- Greedy algorithms do not always yield optimal solution, but for many problems they do, and if they do, they are usually the most efficient.
- Popular Dijkstra's Shortest Paths algorithm is greedy.

Coin Changes

 Given currency denominations, say : 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins. For example: 34 = 25 + 5 + 4 × 1.

Algorithm (Cashier's algorithm)

At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
CASHIERS-ALGORITHM (x, c_1, c_2, ..., c_n)
SORT n coin denominations so that c_1 < c_2 < ... < c_n
S \leftarrow \phi \quad \longleftarrow set of coins selected
WHILE x > 0
k \leftarrow largest coin denomination c_k such that c_k \le x
IF no such k, RETURN "no solution"
ELSE
x \leftarrow x - c_k
S \leftarrow S \cup \{k\}
RETURN S
```

Analysis of cashier's algorithm

Proposition

Cashier's algorithm is optimal for coins: 1, 5, 10, 25, 100.

Proof.

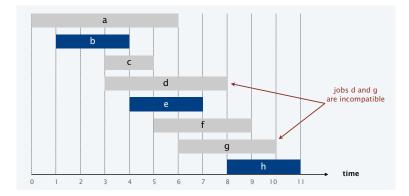
By analysis cases: $1 \le n \le 4$, $5 \le n \le 9$, $10 \le n \le 24$, $25 \le n \le 99$, and $100 \le n$.

- Cashier's algorithm does not always work!
- Consider a denomination 1, 4, 5, 10, and n = 8. Cashier's algorithm produces: 8=5+1+1+1, while the optimal solution is 8 = 4 + 4.
- Cashier's algorithm may not even lead to a feasible solution if $c_1 > 1!$ Consider a denomination: 7,8,9 and n = 15. The optimal solution is 15 = 7 + 8, but the algorithm gives 15 = 9 + ??.

・日・ ・ ヨ・ ・ ヨ・

Interval scheduling

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.

- Earliest start time. Consider jobs in ascending order of s_j.
- Earliest finish time. Consider jobs in ascending order of f_j.
- Shortest interval. Consider jobs in ascending order of $f_j s_j$.
- Fewest conflicts. For each job j, count the number of conflicting jobs cj. Schedule in ascending order of cj.

Usually only some templates work!

Templates that do not work for interval scheduling

Ryszard Janicki Greedy Algorithms	7/39
counterexample for fewest conflicts	<個> (ミ) (ミ) ミ の
counterexample for shortest interval	
counterexample for earliest start time	
counterevample for earliest start time	

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT jobs by finish time so that $f_1 \leq f_2 \leq \dots \leq f_n$

 $A \leftarrow \phi \quad \longleftarrow \quad \text{set of jobs selected}$

FOR j = 1 TO n

IF job *j* is compatible with *A*

 $A \leftarrow A \cup \{j\}$

RETURN A

Claim

Time complexity of the part from 'FOR' to 'RETURN' is O(n).

Proof.

- Keep track of job *j*^{*} that was added last to A (*constant time*).
- Job j is compatible with A iff $s_j \ge f_j^*$ (constant time).

However time complexity of the Earliest-finish-time-first algorithm is $O(n \log n)!$ WHY?

Time complexity of earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT jobs by finish time so that $f_1 \leq f_2 \leq \dots \leq f_n$

 $A \leftarrow \phi \quad \longleftarrow \quad \text{set of jobs selected}$

FOR j = 1 TO n

IF job j is compatible with A

 $A \leftarrow A \cup \{j\}$

RETURN A

Proposition

We can implement earliest-finish-time first (EFTF) in $O(n \log n)$ time.

Proof.

$$O(\mathsf{EFTF}) = O(\mathsf{SORT}) + O(A \leftarrow \emptyset) + O(\mathsf{FOR}...\mathsf{RETURN} \ A)$$

$$O(\mathsf{SORT}) = O(n \log n)$$

$$O(A \leftarrow \emptyset) = O(1)$$

$$O(\mathsf{FOR}...\mathsf{RETURN} \ A) = O(n)$$

Hence $O(\mathsf{EFTF}) = O(n \log n) + O(1) + O(n) = O(n \log n).$

Analysis of of earliest-finish-time-first algorithm (1)

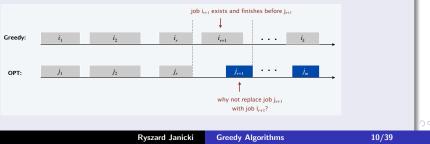
Theorem

The earliest-finish-time-first algorithm is optimal.

Proof.

(By contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
- Let j_1, j_2, \ldots, j_m denote set of jobs in an optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.



Analysis of of earliest-finish-time-first algorithm (2)

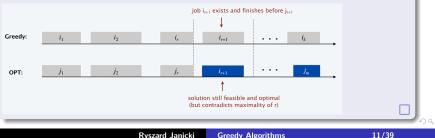
Theorem

The earliest-finish-time-first algorithm is optimal.

Proof.

(By contradiction)

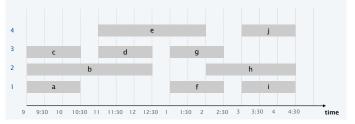
- Assume greedy is not optimal, and let's see what happens.
- Let i_1, i_2, \ldots, i_k denote set of jobs selected by greedy.
- Let j_1, j_2, \ldots, j_m denote set of jobs in an optimal solution with $i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r$ for the largest possible value of r.



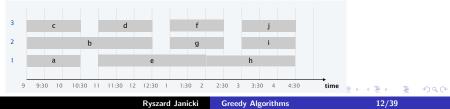
Interval partitioning

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.

Example. This schedule uses 4 classrooms to schedule 10 lectures.



Example. This schedule uses 3 classrooms to schedule 10 lectures.



Greedy template. Consider jobs in some natural order. Assign each lecture to an available classroom (which one?); allocate a new classroom if none are available.

- Earliest start time. Consider jobs in ascending order of *s_j*.
- Earliest finish time. Consider jobs in ascending order of f_j .
- Shortest interval. Consider jobs in ascending order of $f_j s_j$.
- Fewest conflicts. For each job j, count the number of conflicting jobs c_j. Schedule in ascending order of c_j.

Usually only some templates work!

Templates that do not work for interval partitioning

Interval partitioning: earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start time so that $s_1 \leq s_2 \leq ... \leq s_n$.

 $d \leftarrow 0 \quad \longleftarrow \quad \text{number of allocated classrooms}$

For j = 1 to n

IF lecture *j* is compatible with some classroom

Schedule lecture *j* in any such classroom *k*.

Else

Allocate a new classroom d + 1.

Schedule lecture *j* in classroom d + 1.

 $d \leftarrow d + 1$

RETURN schedule.

Time complexity of earliest-start-time-first algorithm

Proposition

The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Proof.

Store classrooms in a priority queue (key = finish time of its last lecture).

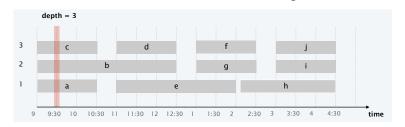
- To determine whether lecture *j* is compatible with some classroom, compare *s_j* to key of min classroom *k* in priority queue.
- To add lecture *j* to classroom *k*, increase key of classroom *k* to *f_j*.
- Total number of priority queue operations is O(n).
- Sorting by start time takes $O(n \log n)$ time.

Definition

The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.

Question. Does number of classrooms needed always equal depth? Answer. Yes! Moreover, earliest-start-time-first algorithm finds one.



Analysis of earliest-start-time-first algorithm

Key Observation. The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

Theorem

Earliest-start-time-first algorithm is optimal.

Proof.

- Let d = number of classrooms that the algorithm allocates.
- Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with all d 1 other classrooms.
- These *d* lectures each end after *s_j*.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
- Thus, we have d lectures overlapping at time $s_j + \epsilon$.
- Key observation \implies all schedules use $\ge d$ classrooms.

- Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
- Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- Other greedy algorithms. Dijkstra (shortest paths),Kruskal, Prim (spanning trees), Huffman (compression), Optimal Offline Caching, etc.
- Dijkstra (shortest paths),Kruskal and Prim (spanning trees) were discussed in CS 2C03, Huffman (compression) and Optimal Offline Caching will be now be discussed.

イロト イヨト イヨト イヨト

Huffman codes and data compression

- We have a set of characters $A = \{a_1, \ldots, a_k\}$.
- A string or message: $x_1x_2...x_n$ where $x_i \in A$.
- For each a_i ∈ A, f(a_i) is the frequency (or probability) of appearance a_i in the message.

• We assume
$$\sum_{a_i \in A} f(a_i) = 1.$$

- **Encoding**: assign a *binary code* $c(a_i)$ for each a_i , and extend c to strings by $c(x_1x_2...x_n) = c(x_1)c(x_2)...c(x_n)$.
- **Decoding**: Given a code $b_1 b_2 \dots b_m$ find the **unique** message $x_1 x_2 \dots x_n$ such that $c(x_1 x_2 \dots x_n) = b_1 b_2 \dots b_m$.
- Encoding Length or Average Code Length:

$$\sum_{a_i \in A} f(a_i) length(c(a_i)).$$

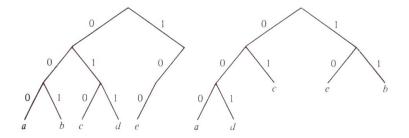
個 と く ヨ と く ヨ と …

Character	Frequency	Code 1	Code 2	Code 3
a b c d e	0.3 0.1 0.1 0.1 0.4	000 001 010 011 100	01 0010 0011 000 1	00 01 10 000 1
average code length		3.0	2.1	1.7

- Prefix Property: $c(a_i)$ is not a prefix of $c(a_j)$ for any $c \neq j$.
- No prefix property \implies no decoding!
- Code1 and Code 2 have prefix property.
- Code 3 does not have prefix property.

Binary Tree Representation of codes

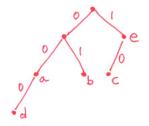
• Codes with prefix properties: all letters as leaves.



 $\begin{array}{ccc} {\rm code} \ 1 & {\rm code} \ 2 \\ c(a) = 000, \ c(b) = 001, & c(a) = 000, \ c(b) = 11, \\ c(c) = 010, \ c(d) = 011, & c(c) = 01, \ c(d) = 001, \\ c(e) = 100 & c(e) = 10 \end{array}$

Binary Tree Representation of codes

 Codes with out prefix properties: some letters as interior nodes.



code 3

$$c(a) = 00, c(b) = 01,$$

 $c(c) = 10, c(d) = 000,$
 $c(e) = 1$

Э

Huffman Algorithm

- Huffman code: an optimal (minimal length) code with prefix property.
- Huffman algorithm: it finds Huffman code $c(a_i)$ for each a_i .
- Huffman algorithm is greedy (see 'lowest frequencies' below).
 HUFFMAN({a₁, a₂, ..., a_n})

Find a_i and a_j such that $f(a_i)$ and $f(a_j)$ are the lowest frequencies among $f(a_1), \ldots, f(a_n)$ Define a new character a' and set $f(a') \leftarrow f(a_i) + f(a_j)$. $A' \leftarrow (\{a_1, a_2, \ldots, a_n\} \setminus \{a_i, a_j\}) \cup \{a'\}$ HUFFMAN(A') $c(a_i) \leftarrow c(a')0$ $c(a_j) \leftarrow c(a')1$ END HUFFMAN

Example

$$A = \{a, b, c\}, f(a) = 0.5, f(b) = 0.3, f(c) = 0.2.$$

HUFFMAN($\{a, b, c\}$) \implies we assume $a' = [bc]$
 $f([bc]) = f(b) + f(c) = 0.4$ and next HUFFMAN($\{a, [bc]\}$) \implies
 $c(a) = 0, c(bc]$) = 1 \implies $c(b) = 10, c(c) = 11.$
Hence we have $c(a) = 0, c(b) = 10, c(c) = 11.$

• The procedure is better understood if presented in *bottom up* version with trees.

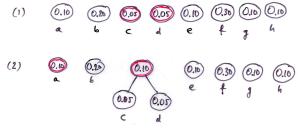
æ

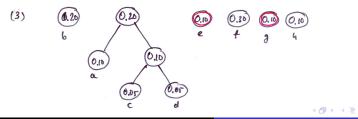
< ≣⇒

< 🗇 🕨

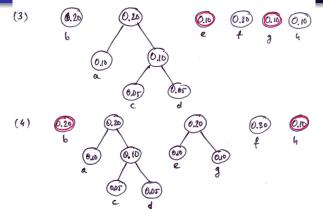
	а	b	с	d	e	f	g	h
f	0.10	0.20	0.05	0.05	0.10	0.30	0.10	0.10

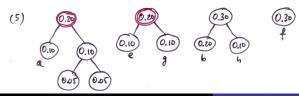
We start with the forest:





æ

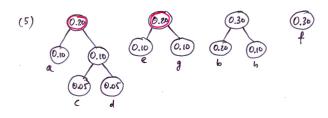


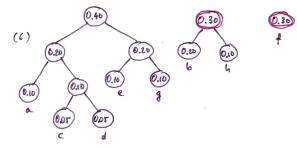


Ryszard Janicki Gre

Э

э



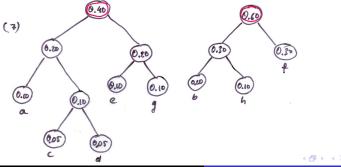


Э

Э

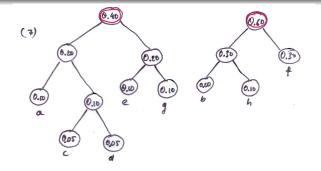
A ■

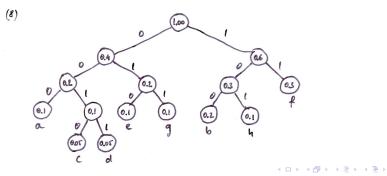




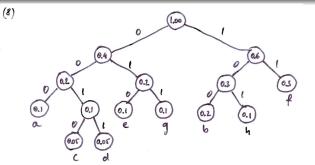
Э

Э.





æ



a	000
b	100
c	0010
d	0011
e	010
f	11
g	011
h	101

Ryszard Janicki

31/39

æ

・ロ・ ・ 日・ ・ 田・ ・ 田・

• Solutions are not unique but the value of

$$\sum_{i=1}^{n} g(a_i) length(c(a_i))$$

is always the same and it is the minimal value for all binary prefix codes.

- TIME COMPLEXITY
 - k 1 iterations, each consists of finding two minimal values and merging, can easily be done in O(k); so totally O(k²).
 - if priority queues implemented as heaps (see CS/SE 2C03 course last year) are used, then finding two minimal elements is $O(\log k)$, merging is O(1), so totally $O(k \log k)$.
- Ideas can be extended, see pages 175-177 in the textbook.

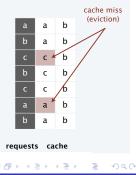
Optimal offline caching

Caching.

- Cache with capacity to store *k* items.
- Sequence of *m* item requests $d_1, d_2, ..., d_m$.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of evictions.

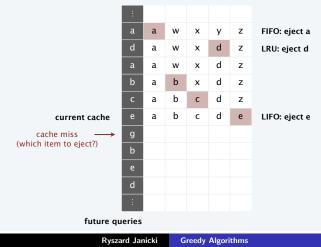
Ex. k = 2, initial cache = ab, requests: a, b, c, b, c, a, a. Optimal eviction schedule. 2 evictions.



Optimal offline caching: Greedy algorithms

LIFO / FIFO. Evict element brought in most (east) recently.

- LRU. Evict element whose most recent access was earliest.
- LFU. Evict element that was least frequently requested.



< ≣⇒

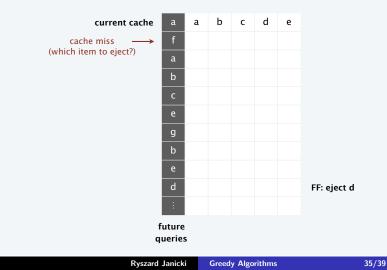
34/39

э

previous queries

Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.



Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Theorem

Farthest-in-future is optimal eviction schedule.

Proof.

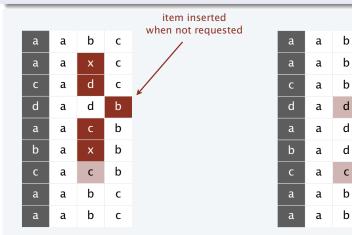
Algorithm and theorem are intuitive; proof is subtle, uses the concept of *Reduced Eviction Schedules* see details on pages 135-136 in the textbook.

< ≣ >

Reduced eviction schedules

Definition

A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.



an unreduced schedule

a reduced schedule

うえつ

С

С

С

с

c

b

b

С

C

Farthest-in-future: analysis (sketch)

Lemma

Given any unreduced schedule S, can transform it into a reduced schedule S with no more evictions.

Proof.

By induction on number of unreduced items.

Lemma (Invariant Property)

There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first j requests.

ロマス強マスがアス

Proof.

By induction *j*.

Theorem

Farthest-in-future is optimal eviction algorithm.

Proof.

Follows directly from Invariant Property.

Caching perspective

Online vs. offline algorithms.

- Offline: full sequence of requests is known a priori.
- Online (reality): requests are not known in advance.
- Caching is among most fundamental online problems in Computer Science.
- LIFO. Evict page brought in most recently.

LRU - Least-Recently-Used. Evict page whose most recent access was earliest (i.e. Farthest-in-Future with direction of time reversed!).

Farthest-in-Future is optimal offline eviction algorithm.

- Provides basis for understanding and analyzing online algorithms.
- Randomized version of LRU is efficient (k-competitive)
- LIFO is arbitrarily bad.

回 と く ヨ と く ヨ と