Greedy Algorithms

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Eva Tardos (Chapter 4)

Ryszard Janicki Greedy Algorithms 1/39

Informal Definition

o A greedy algorithm always makes the choice that looks best
at the moment. That is, it makes a locally optimal choice in
the hope that this choice will lead to a globally optimal
solution.

@ Greedy algorithms do not always yield optimal solution, but
for many problems they do, and if they do, they are usually
the most efficient.

@ Popular Dijkstra’s Shortest Paths algorithm is greedy.

Ryszard Janicki Greedy Algorithms 2/39

Coin Changes

@ Given currency denominations, say : 1, 5, 10, 25, 100, devise
a method to pay amount to customer using fewest number of
coins. For example: 34 =25+ 5+ 4 x 1.

Algorithm (Cashier’s algorithm)

At each iteration, add coin of the largest value that does not take
us past the amount to be paid.

CASHIERS-ALGORITHM (X, c1, €2, ..., Cn)

SORT 7 coin denominations so that c1 < c2 < ... < ¢n
S — ¢ «—— setof coins selected
WHILE x > 0
k « largest coin denomination c¢x such that ¢x < x
IF no such k, RETURN "no solution"
ELSE
X «— X — Ck
S —SU{k}
RETURN S

Ryszard Janicki Greedy Algorithms 3/39

Analysis of cashier’s algorithm

Proposition

Cashier’s algorithm is optimal for coins: 1, 5, 10, 25, 100.

By analysis cases: 1 <n<4,5<n<09, 10 < n <24,
25 < n <99, and 100 < n. O

@ Cashier's algorithm does not always work!

o Consider a denomination 1,4,5,10, and n = 8. Cashier’s
algorithm produces: 8=5+4+1+1+1, while the optimal solution
is8=4+4.

@ Cashier’s algorithm may not even lead to a feasible solution if
c1 > 1! Consider a denomination: 7,8,9 and n = 15. The
optimal solution is 15 = 7 4 8, but the algorithm gives
15 = 9477

Ryszard Janicki Greedy Algorithms 4/39

Interval scheduling

@ Job j starts at s; and finishes at f;.

@ Two jobs compatible if they don't overlap.

@ Goal: find maximum subset of mutually compatible jobs.

D

Ryszard Janicki

Greedy Algorithms

o —JCR-
© .
S .

jobsdandg
are incompatible

time

5/39

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order. Take each
job provided it's compatible with the ones already taken.

Earliest start time. Consider jobs in ascending order of s;.
Earliest finish time. Consider jobs in ascending order of f;.

Shortest interval. Consider jobs in ascending order of f; — s;.

Fewest conflicts. For each job j, count the number of
conflicting jobs ¢;. Schedule in ascending order of ¢;.

Usually only some templates work!

Ryszard Janicki Greedy Algorithms 6/39

Templates that do not work for interval scheduling

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Ryszard Janicki Greedy Algorithms 7/39

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (%, s1, 82, ..., Sn, f1, f2, .., fn)

SORT jobs by finish time so that fi < o < ... < fi
A «— ¢ <«— setof jobs selected
ForR j=1 TO n
IF job j is compatible with 4
A4 —AU{j}
RETURN 4

Time complexity of the part from ‘FOR’ to ‘RETURN’ is O(n).

o Keep track of job j* that was added last to A (constant time).

o Job j is compatible with A iff s; > £* (constant time) . 0

However time complexity of the Earliest-finish-time-first algorithm
is O(n logn)! WHY?

Ryszard Janicki Greedy Algorithms 8/39

Time complexity of earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (1, 51, 82, ..., Su, f1, f2, e, f2)

SORT jobs by finish time so that fi < o < ... < fi
A «— ¢ <«— setof jobs selected
ForR j=1 TO n
IF job j is compatible with 4
A =AU}

RETURN 4

Proposition

We can implement earliest-finish-time first (EFTF) in O(n log n) time.

O(EFTF) = O(SORT) + O(A «) + O(FOR...RETURN A)
O(SORT) = O(n logn)

O(A +0) = 0(1)

O(FOR...RETURN A) = O(n)

Hence O(EFTF) = O(n log n) + O(1) + O(n) = O(n log n). O

Ryszard Janicki Greedy Algorithms 9/39

Analysis of of earliest-finish-time-first algorithm (1)

The earliest-finish-time-first algorithm is optimal.

(By contradiction)

@ Assume greedy is not optimal, and let's see what happens.

@ Let i1, fp,..., ik denote set of jobs selected by greedy.

@ Let ji,/o,...,Jjm denote set of jobs in an optimal solution with

h=J,=),..

Greedy:

., Ir = j, for the largest possible value of r.
job i,., exists and finishes before j,,,
|
iy i i i IEEE i
OPT: J J2 Jr ot 1
1
why not replace job j.,
with job i, ?

Ryszard Janicki

Greedy Algorithms 10/39

Analysis of of earliest-finish-time-first algorithm (2)

The earliest-finish-time-first algorithm is optimal.

(By contradiction)

@ Assume greedy is not optimal, and let's see what happens.

@ Let i1, hp,...,Ix denote set of jobs selected by greedy.

@ Let ji,/o,...,Jjm denote set of jobs in an optimal solution with
i =f1,l2 = jo,...,Ir = j, for the largest possible value of r.

job i, exists and finishes before j,,,

Greedy: i

|

i1

OPT: Ji J

.

t

solution still feasible and optimal
(but contradicts maximality of r)

Ryszard Janicki

Greedy Algorithms

11/39

Interval partitioning

@ Lecture j starts at s; and finishes at ;.

@ Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Example. This schedule uses 4 classrooms to schedule 10 lectures.

4 @ j
J c d g
2 b h
1 a f i
9 930 10 10:30 11 11:30 12 12:30 1 1:30 2 230 3 3:30 4 4:30 time

Example. This schedule uses 3 classrooms to schedule 10 lectures.

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

Ryszard Janicki Greedy Algorithms 12/39

Interval partitioning: greedy algorithms

Greedy template. Consider jobs in some natural order. Assign
each lecture to an available classroom (which one?); allocate a
new classroom if none are available.

@ Earliest start time. Consider jobs in ascending order of s;.
Earliest finish time. Consider jobs in ascending order of f;.

Shortest interval. Consider jobs in ascending order of f; — s;.

Fewest conflicts. For each job j, count the number of
conflicting jobs ¢;. Schedule in ascending order of ¢;.

Usually only some templates work!

Ryszard Janicki Greedy Algorithms 13/39

Templates that do not work for interval partitioning

counterexample for earliest finish time

3
2
1

counterexample for shortest interval

counterexample for fewest conflicts

Ryszard Janicki Greedy Algorithms 14/39

Interval partitioning: earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST (7, s1, 82, ..., Sn, f1, f2, --) f2)

SORT lectures by start time so thats1 < 52 < ... < s5.
d «— (0 <«— number of allocated classrooms
FOrR j=1TO n
IF lecture j is compatible with some classroom
Schedule lecture j in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d—d +1

RETURN schedule.

Ryszard Janicki Greedy Algorithms 15/39

Time complexity of earliest-start-time-first algorithm

Proposition

The earliest-start-time-first algorithm can be implemented in
O(n log n) time.

Store classrooms in a priority queue (key = finish time of its last
lecture).

@ To determine whether lecture j is compatible with some
classroom, compare s; to key of min classroom k in priority
queue.

@ To add lecture j to classroom k, increase key of classroom k
to f;.
e Total number of priority queue operations is O(n).

@ Sorting by start time takes O(n log n) time.

Ryszard Janicki Greedy Algorithms 16/39

Interval partitioning: lower bound on optimal solution

Definition
The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed > depth.

Question. Does number of classrooms needed always equal depth?
Answer. Yes! Moreover, earliest-start-time-first algorithm finds one.

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

Ryszard Janicki Greedy Algorithms 17/39

Analysis of earliest-start-time-first algorithm

Key Observation. The earliest-start-time first algorithm never
schedules two incompatible lectures in the same classroom.

Earliest-start-time-first algorithm is optimal.

Proof.
@ Let d = number of classrooms that the algorithm allocates.

o Classroom d is opened because we needed to schedule a
lecture, say j, that is incompatible with all d — 1 other
classrooms.

These d lectures each end after s;.

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s;.

Thus, we have d lectures overlapping at time s; + €.

Key observation = all schedules use > d classrooms.

L]

Ryszard Janicki Greedy Algorithms 18/39

Greedy analysis strategies

@ Greedy algorithm stays ahead. Show that after each step of
the greedy algorithm, its solution is at least as good as any
other algorithm’s.

@ Structural. Discover a simple "structural” bound asserting
that every possible solution must have a certain value. Then
show that your algorithm always achieves this bound.

@ Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its quality.

@ Other greedy algorithms. Dijkstra (shortest paths),Kruskal,
Prim (spanning trees), Huffman (compression), Optimal
Offline Caching, etc.

@ Dijkstra (shortest paths),Kruskal and Prim (spanning trees)
were discussed in CS 2C03, Huffman (compression) and
Optimal Offline Caching will be now be discussed.

Ryszard Janicki Greedy Algorithms 19/39

Huffman codes and data compression

@ We have a set of characters A = {a1, ..., ax}.
@ A string or message: x1x2 ...X, Where x; € A.
@ For each a; € A, f(a;) is the frequency (or probability) of
appearance a; in the message.
We assume Z f(aj) = 1.
a,-eA
Encoding: assign a binary code c(a;) for each aj, and extend
c to strings by c(xix2...x,) = c(x1)c(x2) ... c(xn).

@ Decoding: Given a code b1 bs ... b, find the unique message
X1X2 ... Xp such that c(xix2...x,) = biby ... by.

Encoding Length or Average Code Length:

> f(ai)length(c(a;)).

a;€A

Ryszard Janicki Greedy Algorithms 20/39

Prefix Property

Character | Frequency | Code 1 | Code2 | Code 3

a 0.3 000 01 00
b 0.1 001 0010 01
c 0.1 010 0011 10
d 0.1 011 000 000
e 0.4 100 1 1

average 3.0 2.1 1.7

code length

Prefix Property: c(a;) is not a prefix of c(a;) for any c # j.
No prefix property = no decoding!
Codel and Code 2 have prefix property.

Code 3 does not have prefix property.

Ryszard Janicki Greedy Algorithms 21/39

Binary Tree Representation of codes

@ Codes with prefix properties: all letters as leaves.

code 1 code 2
c(a) = 000, c(b) = 001, c(a) =000, c(b) =11,
c(c) =010, ¢(d) =011, c(c) =01, ¢(d) =001,
c(e) =100 c(e) =10

Ryszard Janicki Greedy Algorithms 22/39

Binary Tree Representation of codes

@ Codes with out prefix properties: some letters as interior
nodes.

code 3
0, c(b) =01,
0, ¢(d) =000,

i~
—~~
o
N—r
Il
== O

Ryszard Janicki Greedy Algorithms 23/39

Huffman Algorithm

e Huffman code: an optimal (minimal length) code with prefix
property.
e Huffman algorithm: it finds Huffman code c(a;) for each a;.

e Huffman algorithm is greedy (see ‘lowest frequencies' below).

HUFFMAN({a1, a2, ...,an})

Find a; and a; such that f(a;) and f(aj) are the lowest
frequencies among f(a1), ..., f(an)
Define a new character a’ and set
f(a/) < f(a,-) + f(aj).
A+ ({a1,a2,...,a,} \{ai,a}) U{a'}
HUFFMAN(A")
c(a;) « c(a')0
c(aj) « c(a)1
END HUFFMAN

Ryszard Janicki Greedy Algorithms 24/39

Huffman Algorithm

Example

A={a,b,c}, f(a)=0.5, f(b) =0.3, f(c) =0.2.
HUFFMAN({a, b,c}) = we assume a’ = [bc]

f([bc]) = f(b) + f(c) = 0.4 and next HUFFMAN({a, [bc]}) =
c(a) =0,c(bc]) =1 = ¢(b) =10, c(c) =11.

Hence we have c(a) =0, ¢(b) = 10, c(¢) = 11.

@ The procedure is better understood if presented in bottom up
version with trees.

Ryszard Janicki Greedy Algorithms 25/39

Huffman Algorithm: An Example

a b c d e f g h

f10.10 | 0.20 | 0.05 | 0.05 | 0.10 [0.30 | 0.10 | 0.10

We start with the forest:

0
a b c d e £ ? 4

2)

(&)

Ryszard Janicki Greedy Algorithms 26/39

Huffman AI gorithm: An Example

O .“

T
e ® @ &
B{h

Greedy Algorithms

Huffman Algorithm: An Example

D
@ o !
b L
0)) @
.F

Ryszard Janicki Greedy Algorithms

Huffman Algorithm: An Example
4

Greedy Algorithms

(@)

Ryszard Janicki Greedy Algorithms

@)

a [000

b [100

c [0010

d | 0011

e [010

f|ll

g | o1

h | 101

Ryszard Janicki Greedy Algorithms 31/39

Huffman Algorithm: Properties

@ Solutions are not unique but the value of

Z g(aj)length(c(a;))

i=1

is always the same and it is the minimal value for all binary
prefix codes.
e TIME COMPLEXITY
e k — 1 iterations, each consists of finding two minimal values
and merging, can easily be done in O(k)j so totally O(k?).
o if priority queues implemented as heaps (see CS/SE 2C03
course last year) are used, then finding two minimal elements
is O(log k), merging is O(1), so totally O(k log k).

@ ldeas can be extended, see pages 175-177 in the textbook.

Ryszard Janicki Greedy Algorithms 32/39

Optimal offline caching

Caching.
» Cache with capacity to store k items.
« Sequence of m item requests d, d,, ..., d,,.
* Cache hit: item already in cache when requested.
+ Cache miss: item not already in cache when requested: must bring
requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of evictions.

cache miss
(eviction)
-
Ex. k=2, initial cache = ab, requests: a, b, ¢, b, ¢, a, a. “ a b
Optimal eviction schedule. 2 evictions. <D
- R
:
-
o

requests cache

Ryszard Janicki Greedy Algorithms 33/39

Optimal offline caching: Greedy algorithms

LIFO / FIFO. Evict element brought in most (east) recently.
LRU. Evict element whose most recent access was earliest.
LFU. Evict element that was least frequently requested.

previous queries

a w X y z FIFO: eject a
a w x d z LRU: eject d
a w X d z
a b x d z
b c d z
current cache a b ¢ d e LIFO: eject e

cache miss E—
(which item to eject?)

j4

future queries

Ryszard Janicki Greedy Algorithms 34/39

Optimal offline caching: farthest-in-future (clairvoyant

algorithm)

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

¥
o
[a]
Qo
m

current cache

cache miss —
(which item to eject?)

FF: eject d

Ryszard Janicki Greedy Algorithms 35/39

Optimal offline caching: farthest-in-future (clairvoyant

algorithm)

Farthest-in-future is optimal eviction schedule.

Algorithm and theorem are intuitive; proof is subtle, uses the
concept of Reduced Eviction Schedules see details on pages
135-136 in the textbook. O

Ryszard Janicki Greedy Algorithms 36/39

Reduced eviction schedules

Definition

A reduced schedule is a schedule that only inserts an item into the
cache in a step in which that item is requested.

item inserted
when not requested

n a b ¢ n a b ¢
n a X C “ a b C
a n C a b ¢
n a d “ n a d c
“ a b n a d c
“ a b n a d b
a | c b a ¢ b
n a b c n a b ¢
n a b ¢ n a b ¢
an unreduced schedule a reduced schedule

Ryszard Janicki Greedy Algorithms 37/39

Farthest-in-future: analysis (sketch)

Given any unreduced schedule S, can transform it into a reduced
schedule S with no more evictions.

By induction on number of unreduced items.

Lemma (Invariant Property)

There exists an optimal reduced schedule S that makes the same
eviction schedule as Sgr through the first j requests.

By induction j.

Farthest-in-future is optimal eviction algorithm.

Follows directly from Invariant Property.

Caching perspective

Online vs. offline algorithms.
o Offline: full sequence of requests is known a priori.
@ Online (reality): requests are not known in advance.

@ Caching is among most fundamental online problems in
Computer Science.

LIFO. Evict page brought in most recently.

LRU - Least-Recently-Used. Evict page whose most recent access
was earliest (i.e. Farthest-in-Future with direction of time
reversed!).

Farthest-in-Future is optimal offline eviction algorithm.

@ Provides basis for understanding and analyzing online
algorithms.

e Randomized version of LRU is efficient (k-competitive)
@ LIFO is arbitrarily bad.

Ryszard Janicki Greedy Algorithms 39/39

