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Divide-and-conquer paradigm

Divide-and-conquer.

@ Divide up problem into several subproblems.

@ Solve each subproblem recursively.

@ Combine solutions to subproblems into overall solution.
Most common usage.

e Divide problem of size n into two subproblems of size n/2 in
linear time.

@ Solve two subproblems recursively.

@ Combine two solutions into overall solution in linear time.
Consequence.

o Other method: ©(n?).

e Divide-and-conquer: ©(n log n).
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Divide-and-conquer: an example

Is a given number a power of 27
Input: a non-negative integer n
Output: YES, if there is k such that n = 2k.
NO, otherwise.
Examples: 32 = YES, as 32 =2° 15 — NO, as 15 =2* + 7.

Divide-and-conquer Solution:

test(m)
O IF m=1THEN
2] test < YES
(3] ELSE IF (m mod 2) =0 THEN
(%) test < test(m/2)
(5 ELSE test + NO
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test(m)
Q@ IF m=1THEN

(2] test + YES

o ELSE IF (m mod 2) = 0 THEN

Q test <+ test(m/2)

Q ELSE test + NO

Times assign to each line:
Ql—qg
Q1l—o
Q1l—qg
Q1—-c+T(m/2)
Q1l—-o

RECURRENCE RELATION

a+ o m=1
T(m) =% 2a+ao m > 1 and mis odd
2c1+ o+ T(m/2) mis even



[x] is the smallest integer > x,
eg. [1.5] =2, [3.1] =4, [3.0] =3,
Note that: 2/ Ml > m ag [x] > x and
m=2K < logm = k.
If [log m] = k then 2/leml = m.
For m = 6 we have:
logd =2and log8 =3 — 3 <logb<3 = Jlogh| =3
— 2llogb] » 6,
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Some upper bound of T(n)

a4+ o m=1
T(m)=4¢ 2a+ao m > 1 and mis odd
2ci + o+ T(m/2) mis even

We define T'(m) for real numbers as:

, c m>1
T(’”):{ ¢+ T/ (m/2) m>1

where ¢ = 2¢1 + ©.
Note that for all m > 0, we have:

T(m) < T'(m),

i.e. T'(m) is an upper bound of T(m).
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Proof that T'(m) is O(log m)

, c m>1
T(m):{ c+T'(m/2) m>1

T'(m)=c+ T'(m/2)=c+c+ T'(m/22) = 2c+ T'(m/2?)
=3c+ T'(m/23)

= kc+ T’(m/2k)
= [log m|c + T’ (zﬂogmw )

{ Note T'(5mgm7) is a constant, i.e. co = T'(5egat) -}

2 ﬂog m]

= C - ([logm] + 1) = O(logm), where C = max(c, ¢).
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Master method

@ Goal. Recipe for solving common divide-and-conquer
recurrences: N
T(n) = aT(E) + f(n)

@ Terms.
e a > 1is the number of subproblems.
e b > 0 is the factor by which the subproblem size decreases.
o f(n) = work to divide/merge subproblems.
@ Recursion tree.
o k =log, n levels.
o a' = number of subproblems at level /.
o n/b’ = size of subproblem at level i.
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Recursion Tree: total cost is dominated by cost of leaves

Ex 1. If T(n) satisfies T'(n)=3 T'(n/2)+ n, with T(1) =1, then T(n) = O(n'¢3).

/ b \ |
T(n/2) T(n/2) T(n/2) 3(n/2)
T(n/4) T(n/4) Tm/4) Tm/4) Tm/4) Tm/4) Tn/4) T(n/4) Tn/4) 32(n/2?)
logzn 3i(n /27
T(&) Ttl) T(i) T(i) T(‘I) T(‘]) T(‘l) T(l) T(i) T(l) 000 T(‘]) T(‘l) T(‘l) 310821y / glogzm)

glogan _ log, 3

p . 1+log2n_1 .
r=3/2>1 Tn)=A+r+r2+r3 4. +rlen)y = T71’n = 3ploe23 _9p
r— .
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Recursion Tree: cost is evenly distributed among levels

Ex 2. If T(n) satisfies T(n)=2 T(n/2)+ n, with T(1) =1, then T(n) = O(n log n)

T(n)

n
T(n/2) T(n/2) 2(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) 22(n/2%
/\ /\ /\ /\ logan
T(n/8) T(n/8) T(n/8) T(n/8) T(m/8) Tm/8) T(n/8) T(n/8) 23(n/23)
T r ) rA) () ) (1) 7Q) 7(Q) T() -+ T(1) T(1) T(D) n(1)
210g2n:n
r=1 Tn)=(1+r+r>+r3+.. +r°™"n = p(logan+1)
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Recursion Tree: cost is dominated by cost of root

Ex 3. If T(n) satisfies T(n)=3 T(n/4) + n®, with T(1) =1, then T(n) = ©O(»n°).

T(n) .
/ \
T(n/4) T(n/4) T(n/4) 3(n /4y
N IN N
T('j/w...m) T(’jr:/u..lé) T(t,’:/\:w) T(’j/y.._m) T(n/16) T(tz’i/x:lé) T(’f"/ax.m T(?i/xil6) T(Z/\:l6) 32 (n /42y
- N login — 3i(n /4y
r(}) Tgl) r(}) T(il) T&) T(iw T@) r(}) T(iw T&) r(H) T@) r(iw 310847 (1, /4108 )5

glogan _ plog, 3

r=3/4<1 nmw=<Tmn <+r+r2+r3+..)n <

1—-r
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Master Theorem

Suppose that T(n) is a function on the nonnegative integers that
satisfies the recurrence

T(n) = aT(3)+ f(n)

where n/b means either |n/b| or [n/b]. Let k = log, a. Then,

Case 1. If f(n) = O(n*=*¢) for some constant ¢ > 0, then
T(n) = ©(n*).

T(n)=3T(n/2) + n.
@ a=3,b=2,f(n)=n,k =log,3.
o T(n) = ©(n'e3).

Ryszard Janicki Divide and Conquer 12/36



Master Theorem

Suppose that T(n) is a function on the nonnegative integers that
satisfies the recurrence

n

T(n) =aT(3

)+ f(n)

where n/b means either |n/b| or [n/b]. Let k = log, a. Then,
Case 2. If f(n) = ©(n*), then T(n) = ©(nk log n).
T(n) =2T(n/2) + ©(n).
@ a=2,b=2f(n)=17n (f(n) = 175n, etc.), k = log,2 = 1.
o T(n)=0©(nlogn).
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Master Theorem

Suppose that T(n) is a function on the nonnegative integers that
satisfies the recurrence

n
b
where n/b means either |n/b| or [n/b]. Let k = log, a. Then,

T(n)=aT(-)+ f(n)

Case 3. If f(n) = Q(n**¢) for some constant ¢ > 0, and if
af(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently large
n, then T(n) = ©(f(n)).

Note. The condition af(n/b) < cf(n) holds if f(n) = ©(nk*).

T(n)=3T(n/4) + n°.
@ a=3,b=4,f(n)=n k=log,3.
o T(n)=0O(n).
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Theorem (Master Theorem)

Suppose that T(n) is a function on the nonnegative integers that
satisfies the recurrence
n

T(n) = aT(b

)+ £(n)

where n/b means either |n/b] or [n/b]. Let k = logy a. Then,

Case 1. If f(n) = O(n*=%) for some constant & > 0, then

T(n) = ©(n%).

Case 2. If f(n) = ©(nX), then T(n) = ©(n* log n).

Case 3. If f(n) = Q(n**¢) for some constant ¢ > 0, and if
af(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently large
n, then T(n) = ©(f(n)).

\,

Proof. ( Sketch).

@ Use recursion tree to sum up terms (assuming n is a power of b).

@ Three cases for geometric series.

@ Deal with floors and ceilings. O
o




Analysis of Master Theorem

In each case we compare f(n) with n'°8s2.

The solution is determined by the larger of these two
functions.

Case 1. n'°8s2 is larger, hence T(n) = ©(n'°8»?).
Case 3. f(n) is larger, hence T(n) = ©(f(n)).
Case 2. f(n) and n'°8»? are of the same size, so
T(n) = ©(n'°&>2log n).

More subtle analysis.

e Case 1. f(n) is not only smaller but polynomially smaller, i.e.
by a factor n®, € > 0.

e Case 2. f(n) is not only larger but polynomially smaller, i.e.
by a factor n®, € > 0.

@ There are cases between 1-2 and 2-3!
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Applications

e T(n)=9T(n/3)+n
Hence: a =9, b—3 f(n) = n, so
Iogba _ n|0g39 — n — @(
Since f(n) = O(n) = O(n'
Case 1, i.e.

o8 9- £), where £ = 1, we can apply

e T(n)=T(2n/3)+1
Here: a=1 b—3/2 f(n)=1, and
IOgba — n|°g3/2 — =1.

So it is Case 2 as f( ) = O(1) = O(n'°es?), i.e.

T(n) = ©(log n).
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Applications

e T(n)=3T(n/4)+ nlogn
Here: a=3,b=4,f(n) = nlogn, and
nlogpa — plogs3 — O(n0'793).

Since f(n) = nlog n = Q(n'°&3+¢), where ¢ ~ 0.2 (we need
logs 3+ ¢ > 1), we may try Case 3.
For sufficiently large n,

af(n/b) = 3(n/4)log(n/4) < (3/4)nlogn=c - f(n)

for c = 3/4.
Hence we can apply Case 3, i.e.

T(n) = ©(nlogn).
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Master Theorem may not work!

e T(n)=2T(n/2)+ nlogn
a=2,b=2f(n)=nlogn, n'?=np,

@ Unfortunately, Case 3 doe not work since even though
f(n) = nlog n is asymptotically larger that n'°82 = n, it is
not polynomially larger.

@ The ratio nfcfgl)a = Lﬁgn = log n is asymptotically less than n®
for any positive €.
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Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of
points with the smallest Euclidean distance (i.e.

\/(xl —x2)2 + (y1 — y2)?, for points (x1, y1) and (x2,y2)) between
them.

Fundamental geometric primitive.
@ Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
@ Special case of nearest neighbor, etc.
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Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of
points with the smallest Euclidean distance between them.

Brute force. Check all pairs with ©(n?) distance calculations.

Nondegeneracy assumption. No two points have the same
x-coordinate (this can always be achieved by small plane rotation!).
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Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively.

e Combine: find closest pair with one point in each side (seems
like ©(n?)?).

@ Return best of 3 solutions.

° L o . °
° ° °
° o O
°
° 8 s
A o /2]
® O °
°
12 .
" O ° ° o
° ° O o
O °
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that

distance 6.

@ Observation: only need to consider points within § of line L.

D
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How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that

distance 6.

@ Observation: only need to consider points within § of line L.

@ Sort points in 26-strip by their y-coordinate.

@ Only check distances of those within 11 positions in sorted

list! (whv 11?)

Ryszard Janicki
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O L O °
° [7) °
°
e ° o
¢ (5]
21
. o ./ )
° °
° d in(12,21)
= min(12,
12 o (3 . .
./. .
° ° 2] °
o .
«—> )
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How to find closest pair with one point in each side?

Let s; be the point in the 2)-strip, with . .
the ith smallest y-coordinate. Q!

Claim

If |i — j| > 12, then the distance between
si and s; is at least §. 2 rows osmamooo-- @ ”””

21

1)

}
®

Proof @ %o
@ No two points lie in same ~ ttteotofttooooooos
16-by-36 box. o

@ Two points at least 2 rows apart @
have distance > 2(16).
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Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR (p1, p2, ..., Pn)

Compute separation line L such that half the points <« O(nlog n)
are on each side of the line.

01 < CLOSEST-PAIR (points in left half).
8, < CLOSEST-PAIR (points in right half). 27w/
O < min {08;,02}.

Delete all points further than & from line L. <« 0O(n)

Sort remaining points by y-coordinate. «<—— O(nlog n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these — oW
distances is less than 0, update 0.

RETURN 6.
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Closest pair of points: analysis

The divide-and-conquer algorithm for finding the closest pair of
points in the plane can be implemented in O(n log? n) time.

(Poof .
_J o) ifn=1
Tin) = { T([n/2]) 4+ T(|n/2]) + O(nlogn) otherwise

or, just T(n) =2T(n/2) + O(nlogn).
Hence, by Master Theorem Case 2, T(n) = ©(nlog? n) time. [

v
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Improved closest pair algorithm
Question. How to improve to f(n) = O(nlogn) 7 Answer. Do not

sort points in strip from scratch each time.
@ Each recursive returns two lists: all points sorted by
x-coordinate, and all points sorted by y-coordinate.
@ Sort by merging two pre-sorted lists (merging is ©(n).

The divide-and-conquer algorithm for finding the closest pair of
points in the plane can be implemented in O(nlog n) time.

_
. o(1) ifn=1
T(n) { T([n/2])+ T(|n/2]) + ©(n) otherwise

or, just T(n) =2T(n/2) + ©(n).
Hence, by Master Theorem Case 2, T(n) = ©(nlog n) time. O

Note. There is a randomized closest pair algorithm that run in
O(n) time.
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Integer addition

@ Addition. Given two n-bit integers a and b, compute a + b.
@ Subtraction. Given two n-bit integers a and b, compute a — b.

@ Grade-school algorithm. ©(n) bit operations.

@ Remark Grade-school addition and subtraction algorithms are

asymptotically optimal.
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Integer multiplication

@ Multiplication. Given two n-bit integers a and b, compute a x

b.
o Grade-school algorithm. ©(n?) bit operations.

101 01

X
o —

—|lel—|le| =@ =
- © — O O o
- 0 - o —=
— O O o
o

o oo o

—lo =
oo = =

— o o = =
oo —- o — —
oo o — o —

oo — © —- o — o
oo o —-— o —- o o —

@ Question. Is grade-school algorithm optimal?

e No.
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Divide-and-conquer multiplication

To multiply two n-bit integers x and y:

@ Divide x and y into low- and high-order bits.
Example. x = 10001101 y = 11100001
S~ o~

a b c d

m=[n/2]

a=|[x/2™| b=x mod2™

c=l|y/2™|] d=y mod?2"

Bit shifting can be used to compute a, b, ¢ and d.
@ Now we have: x =2"a+ band y =2"c +d.
o Multiply four %n—bit integers, recursively.
@ Add and shift to obtain result.

— (om m _ n2m m
xy =(2Ma+ b)(2"c+ d) =2 alc +2 (b2c + a3d)+ b4d
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Divide-and-conquer multiplication
MULTIPLY (x, y, 1)

IF (n=1)
RETURN X x V.
ELSE
me—/[n/2].
a<|x/2"|; b« xmod?2".
c«|y/2m]; d<ymod2m.
e < MULTIPLY(a, ¢, m).
f < MuLtIPLY (b, d, m).
g «— MULTIPLY(b, ¢, m).
h «— MULTIPLY(a, d, m).

RETURN 22" ¢ + 2™ (g + h) + f.
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Divide-and-conquer multiplication analysis

The divide-and-conquer multiplication algorithm requires ©(n?) bit
operations to multiply two n-bit integers.

v

Apply case 1 of the master theorem to the recurrence:

T(n)= 4T(n/2) + ©(n) = T(n)= @(nz)
— ——
recursive calls  add, shift

Not better than grade-school algorithm!
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Karatsuba trick

x = 10001101 y = 11100001
=~ =~

a b c d
m = [n/2]

a=|x/2™| b=x mod?2"
c=|y/2™| d=y mod?2™

middle term

= (2Ma+ b)(2Mc + d) = 2°™ 2m( b d bd
xy =(2"a+ b)(2"c + d) = ac +2™( c—I—a3 )+ ;
1 2

@ To compute middle term bc + ad, use identity:
bc + ad = ac + bd — (a — b)(c — d)
Now we have:

__A2m m _ _ _
xy =2 \af_/+2(ac +\b9’/ (a—b)(c—d))+ bd

—_—— ~~
1 1 2 3 2

Bottom line. Only three multiplications of %—bit integers!
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Karatsuba (divide-and-conquer) multiplication

KARATSUBA-MULTIPLY(x, y, 1)

IF (n=1)
RETURN X x ).
ELSE
m«—|[n/2].
a<—|x/2"]; b« xmod?2".
c|y/2m|; d< ymod2m.
e «— KARATSUBA-MULTIPLY(a, ¢, m).
[« KARATSUBA-MULTIPLY (b, d, m).
g «— KARATSUBA-MULTIPLY(a — b, ¢ — d, m).
RETURN 22" e + 2" (e + f—g) + .
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Karatsuba analysis

Proposition

Karatsuba's multiplication algorithm requires ©(n'->8%) bit
operations to multiply two n-bit integers.

Apply case 1 of the master theorem to the recurrence:

T(n)= 3T(n/2) + ©(n) = T(n)=O(n"823) = O(n*5)
~~—— ~—~—
recursive calls  add, shift

Practice. Faster than grade-school algorithm for about 320-640
bits.
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