
Dynamic Programming
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 6)

Ryszard Janicki Dynamic Programming 1/43

Algorithms paradigms

Greedy. Build up a solution incrementally, myopically
optimizing some local criterion.

Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, and combine solution to
subproblems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping subproblems, and build up solutions to larger and
larger subproblems.

Dynamic programming is a fancy name for caching away
intermediate results in a table for later reuse.

Ryszard Janicki Dynamic Programming 2/43

Weighted interval scheduling

Weighted interval scheduling problem.

Job j starts at sj , finishes at fj , and has weight or value vj .

Two jobs compatible if they don’t overlap.

Goal: find maximum weight subset of mutually compatible
jobs.

Weighted interval scheduling

Weighted interval scheduling problem.

・Job j starts at sj, finishes at fj, and has weight or value vj.

・Two jobs compatible if they don't overlap.

・Goal: find maximum weight subset of mutually compatible jobs.

6

time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11

v1 = 3, v2 = 1, v3 = 8, v4 = 2, v5 = 7, v6 = 123, v7 = 5, v8 = 12

Ryszard Janicki Dynamic Programming 3/43

Earliest-finish-time first algorithm (Greedy)

Earliest finish-time first.

Consider jobs in ascending order of finish time.

Add job to subset if it is compatible with previously chosen
jobs.

Recall. Greedy algorithm is correct if all weights are 1.
Observation. Greedy algorithm fails spectacularly for weighted
version.

Earliest-finish-time first algorithm

Earliest finish-time first.

・Consider jobs in ascending order of finish time.

・Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

7

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

Ryszard Janicki Dynamic Programming 4/43

Notation. Label jobs by finishing time; f1 ≤ f2 ≤ . . . ≤ fn. (sorting
required!).

Definition

p(j) =largest index i < j such that job i is compatible with j .

Note that p(j) = 0 if no request i < j is disjoint from j .
Example. For the case below: p(1) = p(2) = p(3) = 0, p(4) = 1,
p(5) = 0, p(6) = 2, p(7) = 3, p(8) = 5.

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Ryszard Janicki Dynamic Programming 5/43

Dynamic programming: binary choice

Suppose we have an optimal solution O, and consider a job n.

Case 1. n ∈ O
Case 1. n /∈ O

Note that one of the above two case always happens!

Case1 n ∈ O =⇒ no interval p(n) < i < n belongs to O.
Moreover O must include an optimal solution to the problem
of requests {1, . . . , p(n)}

Case 2 n /∈ O =⇒ O is optimal solution to the problem of requests
{1, . . . , n − 1}

———————————————————————————–
Notation.

OPT (j) = value of optimal solution to the problem consisting
of job requests 1, 2, . . . , j .

Oj = optimal solution to {1, . . . , j}.
———————————————————————————–
We are looking for On and OPT (n).

Ryszard Janicki Dynamic Programming 6/43

Case1 n ∈ O =⇒ no interval p(n) < i < n belongs to O.
Moreover O must include an optimal solution to the problem
of requests {1, . . . , p(n)}

Case 2 n /∈ O =⇒ O is optimal solution to the problem of requests
{1, . . . , n − 1}

———————————————————————————–

OPT (j) =

{
vj + OPT (p(j)) j ∈ Oj

OPT (j − 1) j ∈ Oj

which implies

OPT (j) =

{
0 j ∈ if j = 0
max(vj + OPT (p(j)),OPT (j − 1)) otherwise

Fact

j ∈ Oj ⇐⇒ vj + OPT (p(j)) ≥ OPT (j − 1)

Ryszard Janicki Dynamic Programming 7/43

Weighted interval scheduling: brute force

Weighted interval scheduling: brute force

10

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2] ≤ … ≤ f[n].
Compute p[1], p[2], …, p[n].

Compute-Opt(j)

if j = 0

 return 0.

else

 return max(v[j] + Compute-Opt(p[j]), Compute-Opt(j–1)).

Ryszard Janicki Dynamic Programming 8/43

Observation. Recursive algorithm fails spectacularly because of
redundant subproblems =⇒ exponential algorithms.
Example. Number of recursive calls for family of ”layered”
instances grows exponentially.

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Ryszard Janicki Dynamic Programming 9/43

Proof of exponential complexity

Proposition

Time complexity of brute force algorithm if Ω(2n) for the worst
case.

Proof.

Consider the case from example above, i.e. p(j) = j − 2 for j ≥ 2.
Then we have T (1) = c and

T (n) = T (n − 1) + T (n − 2) + c .

T (n) ≥ 2T (n − 2) + c ≥ 2(2T (n − 2) + c) = 22T (n − 4) + 2c ≥
22(2T (n − 6) + c) + 2c = 23T (n − 2 · 3) + (22 + 2)c >
23T (n − 2 · 3) + 23−1c > . . . > 2n/2 · c + 2 · 2n/2
Hence T (n) = Ω(2n).

Ryszard Janicki Dynamic Programming 10/43

Memoization

Idea. Do not solve anything twice, store and use the first solution!
Memoization. Cache results of each subproblem; lookup as needed.

We need some memory for storage subsolutions.

Dynamic Programming always use some arrays.

In this case: M[0..n], M[j] is initially “empty”, but later
contains Compute-Opt(j).

Ryszard Janicki Dynamic Programming 11/43

Solution with memoizationMemoization. Cache results of each subproblem; lookup as needed.

global array

Weighted interval scheduling: memoization

12

Input: n, s[1..n], f[1..n], v[1..n]

Sort jobs by finish time so that f[1] ≤ f[2] ≤ … ≤ f[n].
Compute p[1], p[2], …, p[n].

for j = 1 to n

 M[j] ← empty.

M[0] ← 0.

M-Compute-Opt(j)

if M[j] is empty

 M[j] ← max(v[j] + M-Compute-Opt(p[j]), M-Compute-Opt(j – 1)).

return M[j].

Ryszard Janicki Dynamic Programming 12/43

Running time

Proposition

If the input interval are sorted by their finish time, the running
time of M-Compute-Opt(n) is O(n).

Proof.

Let NotEmpty is the number of M[j] ̸= ∅. Initially NotEmpty = 0,
but in each iteration NotEmpty ← NotEmpty + 1. But M has only
n + 1 elements, so O(n).

Ryszard Janicki Dynamic Programming 13/43

Weighted interval scheduling: finding a solution

Question. Dynamic Programming algorithm computes optimal
value. How to find solution itself?
Answer. Make a second pass.

Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find solution itself?

A. Make a second pass.

Analysis. # of recursive calls ≤ n ⇒ O(n).

14

Find-Solution(j)

if j = 0

 return ∅.

else if (v[j] + M[p[j]] > M[j–1])

 return { j } ∪ Find-Solution(p[j]).
else

 return Find-Solution(j–1).

Running time: T (n) = T (f (n)) + c , where f (n) is either p(n) or
n − 1 and p(n) ≤ n − 1. Hence
T (n) ≤ T (n−1)+c ≤ T (n−2)+2c ≤ . . . ≤ n ·c+T (0) = O(n).

Ryszard Janicki Dynamic Programming 14/43

Instability of recurrences

T (n) = T (n − 1) + c = O(n)
T (n) = 2T (n − 1) + c = O(2n)
T (n) = 2T (n − 2) + c = O(2n)
T (n) = 2T (n − k) + c = O(2n) for any value of k , for instance:
T (n) = 2T (n − 1010

10
) + c = O(2n), etc.

Ryszard Janicki Dynamic Programming 15/43

Weighted interval scheduling: bottom-up

Bottom-up dynamic programming. Unwind recursion.

Weighted interval scheduling: bottom-up

Bottom-up dynamic programming. Unwind recursion.

15

BOTTOM-UP (n, s1, …, sn , f1, …, fn , v1, …, vn)

Sort jobs by finish time so that f1 ≤ f2 ≤ … ≤ fn.
Compute p(1), p(2), …, p(n).
M [0] ← 0.
FOR j = 1 TO n

M [j] ← max { vj + M [p(j)], M [j – 1] }.

Ryszard Janicki Dynamic Programming 16/43

Weighted interval scheduling: Total running time

Total running time is O(n log n) because of initial sorting!

Ryszard Janicki Dynamic Programming 17/43

Least Squares

Least squares. Foundational problem in statistics.

Given n points in the plane: (x1, y1), (x2, y2), . . . , (xn, yn).

Find a line y = ax + b that minimizes the sum of the squared

error: SSE =
n∑

i=1

(yi − axi − b)2

Least squares

Least squares. Foundational problem in statistics.

・Given n points in the plane: (x1, y1), (x2, y2) , …, (xn, yn).

・Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ⇒ min error is achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

17

Solution:

a =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − n

∑n
i=1 xi)

2
, b =

∑n
i=1 yi − a

∑n
i=1 xi

n

Ryszard Janicki Dynamic Programming 18/43

Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane: (x1, y1), (x2, y2), . . . , (xn, yn) with
x1 < x2 < . . . < xn, find a sequence of lines that minimizes
f (x).

Question.What is a reasonable choice for f (x) to balance accuracy
(goodness of fit) and parsimony (number of lines)?

Segmented least squares

Segmented least squares.

・Points lie roughly on a sequence of several line segments.

・Given n points in the plane: (x1, y1), (x2, y2) , …, (xn, yn) with

x1 < x2 < ... < xn, find a sequence of lines that minimizes f (x).

Q. What is a reasonable choice for f (x) to balance accuracy and parsimony?

x

y

18

goodness of fit number of lines

Ryszard Janicki Dynamic Programming 19/43

Segmented Least Squares

Given n points in the plane: (x1, y1), (x2, y2), . . . , (xn, yn) with
x1 < x2 < . . . < xn and a constant c > 0, find a sequence of lines
that minimizes f (x) = E + cL:

E = the sum of the sums of the squared errors in each
segment.

L = the number of lines.

Segmented least squares

Segmented least squares.

・Points lie roughly on a sequence of several line segments.

・Given n points in the plane: (x1, y1), (x2, y2) , …, (xn, yn) with

x1 < x2 < ... < xn, find a sequence of lines that minimizes f (x).

Q. What is a reasonable choice for f (x) to balance accuracy and parsimony?

x

y

18

goodness of fit number of lines

Ryszard Janicki Dynamic Programming 20/43

Dynamic programming: multiway choice
Notation.

OPT (j) = minimum cost for points p1, p2, . . . , pj .
e(i , j) = minimum sum of squares for points pi , pi+1, . . . , pj .

To compute OPT (j):

Last segment uses points pi , pi+1, . . . , pj for somei .
Cost = e(i , j) + c + OPT (i–1).

which leads to:

OPT (j) =

{
0 j ∈ if j = 0
min1≤i≤j(e(i , j) + c + OPT (i − 1) otherwise

264 Chapter 6 Dynamic Programming

with the input, and by tuning C, we can penalize the use of additional lines

to a greater or lesser extent.)
There are exponentially many possible partitions of P, and initially it is not

clear that we should be able to find the optimal one efficiently. We now show
how to use dynamic programming to find a partition of minimum penalty in
time polynomial in n.

~ Designing the Algorithm
To begin with, we should recall the ingredients we need for a dynamic program-
ming algorithm, as outlined at the end of Section 6.2.We want a polynomial
number of subproblems, the solutions of which should yield a Solution to the
original problem; and we should be able to build up solutions to these subprob-
1eros using a recurrence. As with the Weighted Interval Scheduling Problem,
it helps to think about some simple properties of the optimal sohition. Note,
however, that there is not really a direct analogy to weighted interval sched-
uling: there we were looking for a subset of n obiects, whereas here we are
seeking to partition n obiects.

For segmented least squares, the following observation is very usefi.d:
The last point Pn belongs to a single segment in the optimal partition, and
that segment begins at some earlier point Pi- This is the type of observation
that can suggest the right set of subproblems: if we knew the identity of the

Pn (see Figure 6.9), then we could remove those points
from consideration and recursively solve the problem on the remaining points

Pi-l"

OPT(i- 1) i
I(% .o._0-o-o-°-

0

0

0

0

0

00000 O0

Pn, and then
Pi-1.

6.3 Segmented Least Squares: Multi-way Choices

Suppose we let OPT(i) denote the optimum solution for the points
Pi, and we let ei,j denote the minimum error of any line with re-

pj. (We will write OPT(0) = 0 as a boundary case.) Then
our observation above says the following.

(6.6) If the last segment of the optimal partition is PiPn, then the value
of the optimal solution is OPT(n) = ei,n + C + OPT(i -- 1).

Using the same observation for the subproblem consisting of the points
p], we see that to get OPT(]) we should find the best way to produce a

p]--paying the error plus an additive C for this segment--
together with an optimal solution OPT(i -- 1) for the remaining points. In other
words, we have iustified the following recurrence.

p~,

OPT(]) = min(ei ~ + C + OPT(i -- 1)),

p1 is used in an optimum solution for the subproblem
if and only if the minimum is obtained using index i.

The hard part in designing the algorithm is now behind us. From here, we
simply build up the solutions OPT(i) in order of increasing i.

Segmented-Least-Squares (n)
Array M[O... n]
Set M[0]---- 0
For all pairs i<j

P]
End/or

n
Use the recurrence (6.7) to compute P/!~]

End/or
Return M[n]

By analogy with the arguments for weighted interval scheduling, the
correctness of this algorithm can be proved directly by induction, with (6.7)
providing the induction step.

And as in our algorithm for weighted interval scheduling, we can trace
back through the array M to compute an optimum partition.

265

Ryszard Janicki Dynamic Programming 21/43

Segmented least squares algorithm

Segmented least squares algorithm

21

SEGMENTED-LEAST-SQUARES (n, p1, …, pn , c)
__

FOR j = 1 TO n
FOR i = 1 TO j

Compute the least squares e(i, j) for the segment pi, pi+1, …, pj.

M [0] ← 0.
FOR j = 1 TO n

M [j] ← min 1 ≤ i ≤ j { eij + c + M [i – 1] }.

RETURN M[n].
__

Ryszard Janicki Dynamic Programming 22/43

Segmented least squares analysis

Theorem

The dynamic programming algorithm solves the segmented least
squares problem in O(n3) time and O(n2) space.

Proof.

Bottleneck = computing e(i , j) for O(n2) pairs.

O(n) per pair using formula:

a =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − n

∑n
i=1 xi)

2
, b =

∑n
i=1 yi − a

∑n
i=1 xi

n

Remark. It can be improved to O(n2) time and O(n) space by
precomputing various statistics. See Footnote 1 on page 266 of
textbook.

Ryszard Janicki Dynamic Programming 23/43

Finding Segments
266 Chapter 6 Dynamic Programming

Find-Segment s

If j = 0 then

Output nothing

Else

Find an i that minimizes eij+C+M[i-1]

Output the segment {Pi p]} and the result of

Find-Segments (i - I)

Endif

~ Analyzing the Algorithm
Final!y, we consider the running time of Segmented-Least-Squares. First
we need to compute the values of all the least-squares errors ei,j. To perform
a simple accounting of the running time for this, we note that there are O(nz)

pairs (f,]) for which this computation is needed; and for each pair (f,]); we
can use the formula given at the beginning of this section to compute ei,j in
O(n) time. Thus the total running time to compute all e~,j values is O(n3). ’

Following this, the algorithm has n iterations, for values] --- I n. For

each value of], we have to determine the minimum in the recurrence (6.7) to
fill in the array entry M[j]; this takes time O(n) for each], for a total Of O(nZ).
Thus the running time is O(n~) once all the el,~ values have been determinedJ

6.4 Subset Sums and Knapsacks: Adding a Variable
We’re seeing more and more that issues in scheduling provide a rich source of
practically motivated algorithmic problems. So far we’ve considered problems
in which requests are specified by a given interval of time on a resource, as
well as problems in which requests have a duration and a deadline ,but do not
mandate a particular interval during which they need to be done.

In this section, we consider a version of t_he second type of problem,
with durations and deadlines, which is difficult to solve directly using the
techniques we’ve seen so far. We will use dynamic programming to solve the
problem, but with a twist: the "obvious" set of subproblems wi~ turn out not
to be enough, and so we end up creating a richer collection of subproblems. As

I In this analysis, the running time is dominated by the O(n3) needed to compute all ei,] values. But,

in fact, it is possible to compute all these values in O(n2) time, which brings the running time of the
ful! algorithm down to O(n2). The idea, whose details we will leave as an exercise for the reader, is to
first compute eid for all pairs (1,13 where ~ - i = 1, then for all pairs where j - i = 2, then j - i = 3, and
so forth. This way, when we get to a particular eij value, we can use the ingredients of the calculation

for ei.i-~ to determine ei.i in constant time.

6.4 Subset Sums and Knapsacks: Adding a Variable ,

we wil! see, this is done by adding a new variable to the recurrence underlying
the dynamic program.

~ The Problem
In the scheduling problem we consider here, we have a single machine that
can process iobs, and we have a set of requests {1, 2 n}. We are only
able to use this resource for the period between time 0 and time W, for some
number W. Each iequest corresponds to a iob that requires time w~ to process.
If our goal is to process jobs so as to keep the machine as busy as possible up
to the "cut-off" W, which iobs should we choose?

More formally, we are given n items {1 n}, and each has a given
nonnegative weight wi (for i = 1 n). We are also given a bound W. We
would like to select a subset S of the items so that ~i~s wi _< W and, subject
to this restriction, ~i~s voi is as large as possible. We will call this the Subset
Sum Problem.

This problem is a natural special case of a more general problem called the
Knapsack Problem, where each request i has both a value vg and a weight w~.
The goal in this more general problem is to select a subset of maximum total
value, subiect to the restriction that its total weight not exceed W. Knapsack
problems often show up as subproblems in other, more complex problems. The
name knapsack refers to the problem of filling a knapsack of capacity W as
fl~ as possible (or packing in as much value as possible), using a subset of the
items {1n}. We will use weight or time when referring to the quantities
tv~ and W.

Since this resembles other scheduling problems we’ve seen before, it’s
natural to ask whether a greedy algorithm can find the optimal solution. It
appears that the answer is no--at least, no efficient greedy role is known that
always constructs an optimal solution. One natura! greedy approach to try
would be to sort the items by decreasing weight--or at least to do this for al!
items of weight at most W--and then start selecting items in this order as !ong
as the total weight remains below W. But if W is a multiple of 2, and we have
three items with weights {W/2 + 1, W/2, W/2}, then we see that this greedy
algorithm will not produce the optimal solution. Alternately, we could sort by
increasing weight and then do the same thing; but this fails on inputs like
{1, W/2, W/21.

The goa! of this section is to show how to use dynamic programming to
solve this problem. Recall the main principles of dynamic programming: We
have to come up with a small number of subproblems so that each subproblem
can be solved easily from "smaller" subproblems, and the solution to the
original problem can be obtained easily once we know the solutions to all

267

Ryszard Janicki Dynamic Programming 24/43

Knapsack problem

・Given n objects and a "knapsack."

・Item i weighs wi > 0 and has value vi > 0.

・Knapsack has capacity of W.

・Goal: fill knapsack so as to maximize total value.

Ex. { 1, 2, 5 } has value 35.

Ex. { 3, 4 } has value 40.

Ex. { 3, 5 } has value 46 (but exceeds weight limit).

Greedy by value. Repeatedly add item with maximum vi.

Greedy by weight. Repeatedly add item with minimum wi.

Greedy by ratio. Repeatedly add item with maximum ratio vi / wi.

Observation. None of greedy algorithms is optimal.
24

i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

knapsack instance
(weight limit W = 11)

Ryszard Janicki Dynamic Programming 25/43

Dynamic programming: false start

Def. OPT(i) = max profit subset of items 1, …, i.

Case 1. OPT does not select item i.

・OPT selects best of { 1, 2, …, i – 1 }.

Case 2. OPT selects item i.

・Selecting item i does not immediately imply that we will have to reject

other items.

・Without knowing what other items were selected before i,
we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

25

optimal substructure property
(proof via exchange argument)

Ryszard Janicki Dynamic Programming 26/43

Dynamic programming: adding a new variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

Case 1. OPT does not select item i.

・OPT selects best of { 1, 2, …, i – 1 } using weight limit w.

Case 2. OPT selects item i.

・New weight limit = w – wi.

・OPT selects best of { 1, 2, …, i – 1 } using this new weight limit.

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

⎧

⎨
⎪

⎩
⎪

26

optimal substructure property
(proof via exchange argument)

Ryszard Janicki Dynamic Programming 27/43

Knapsack problem: bottom-up

27

KNAPSACK (n, W, w1, …, wn, v1, …, vn)
__

FOR w = 0 TO W
M [0, w] ← 0.

FOR i = 1 TO n
FOR w = 1 TO W
IF (wi > w) M [i, w] ← M [i – 1, w].
ELSE M [i, w] ← max { M [i – 1, w], vi + M [i – 1, w – wi] }.

RETURN M[n, W].
__

Ryszard Janicki Dynamic Programming 28/43

Knapsack problem: bottom-up demo

28

0 1 2 3 4 5 6 7 8 9 10 11

{ }

{ 1 }

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1, 2, 3, 4, 5 }

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1

0 1 6 7 7 7 7 7 7 7 7 7

0 1 6 7 7 18 19 24 25 25 25 25

0 1 6 7 7 18 22 24 28 29 29 40

0 1 6 7 7 18 22 28 29 34 35 40

i vi wi

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

weight limit w

subset
of items
1, …, i

OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

⎧

⎨
⎪

⎩
⎪

Ryszard Janicki Dynamic Programming 29/43

The two-dimensional table of OPT values.

270 Chapter 6 Dynamic Programming

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n

i

i – 1

2

1

0

0 1 2 w–wi w W

Figure 6.11 The two-dimensional table of OPT values. The leftmost column and bottom
row is always 0. The entry for OPT(i, w) is computed from the two other entries
OPT(i − 1, w) and OPT(i − 1, w − wi), as indicated by the arrows.

Using (6.8) one can immediately prove by induction that the returned
value M[n, W] is the optimum solution value for the requests 1, . . . , n and
available weight W.

Analyzing the Algorithm
Recall the tabular picture we considered in Figure 6.5, associated with
weighted interval scheduling, where we also showed the way in which the ar-
ray M for that algorithm was iteratively filled in. For the algorithm we’ve
just designed, we can use a similar representation, but we need a two-
dimensional table, reflecting the two-dimensional array of subproblems that
is being built up. Figure 6.11 shows the building up of subproblems in this
case: the value M[i, w] is computed from the two other values M[i− 1, w] and
M[i − 1, w − wi].

As an example of this algorithm executing, consider an instance with
weight limit W = 6, and n = 3 items of sizes w1=w2= 2 and w3= 3. We find
that the optimal value OPT(3, 6)= 5 (which we get by using the third item and
one of the first two items). Figure 6.12 illustrates the way the algorithm fills
in the two-dimensional table of OPT values row by row.

Next we will worry about the running time of this algorithm. As before in
the case of weighted interval scheduling, we are building up a table of solutions
M, and we compute each of the values M[i, w] in O(1) time using the previous
values. Thus the running time is proportional to the number of entries in the
table.

The leftmost column and bottom row is always 0.

The entry for OPT (i ,w) is computed from the two other entries
OPT (i − 1,w) and OPT (i − 1,w − wi), as indicated by the arrows.

Ryszard Janicki Dynamic Programming 30/43

6.4 Subset Sums and Knapsacks: Adding a Variable 271

00 0 0 0 0 0

0 1 2 3

Initial values

4 5 6

3

2

1

0 00 0 0 0 0 0

00 2 2 2 2 2

0 1 2 3

Filling in values for i = 1

4 5 6

3

2

1

0

00 0 0 0 0 0

00 2 2 2 2 2 00 2 2 2 2 2

00 2 3 4 5 5

00 2 2 4 4 4 00 2 2 4 4 4

0 1 2 3

Filling in values for i = 2

4 5 6

3

2

1

0 00 0 0 0 0 0

0 1 2 3

Filling in values for i = 3

4 5 6

3

2

1

0

Knapsack size W = 6, items w1 = 2, w2 = 2, w3 = 3

Figure 6.12 The iterations of the algorithm on a sample instance of the Subset Sum
Problem.

(6.9) The Subset-Sum(n, W) Algorithm correctly computes the optimal
value of the problem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for
the Weighted Interval Scheduling Problem. Indeed, its running time is not
a polynomial function of n; rather, it is a polynomial function of n and W,
the largest integer involved in defining the problem. We call such algorithms
pseudo-polynomial. Pseudo-polynomial algorithms can be reasonably efficient
when the numbers {wi} involved in the input are reasonably small; however,
they become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array
M by a procedure similar to those we developed in the previous sections.

(6.10) Given a table M of the optimal values of the subproblems, the optimal
set S can be found in O(n) time.

Extension: The Knapsack Problem
The Knapsack Problem is a bit more complex than the scheduling problem we
discussed earlier. Consider a situation in which each item i has a nonnegative
weight wi as before, and also a distinct value vi. Our goal is now to find a

Ryszard Janicki Dynamic Programming 31/43

Knapsack problem: running time

Theorem. There exists an algorithm to solve the knapsack problem with n

items and maximum weight W in Θ(n W) time and Θ(n W) space.

Pf.

・Takes O(1) time per table entry.

・There are Θ(n W) table entries.

・After computing optimal values, can trace back to find solution:

take item i in OPT(i, w) iff M [i, w] > M [i – 1, w]. ▪

Remarks.

・Not polynomial in input size!

・Decision version of knapsack problem is NP-COMPLETE. [CHAPTER 8]

・There exists a poly-time algorithm that produces a feasible solution that

has value within 1% of optimum. [SECTION 11.8]

29

weights are integers
between 1 and W

"pseudo-polynomial"

Ryszard Janicki Dynamic Programming 32/43

RNA secondary structure

RNA. String B = b1b2 . . . bn over alphabet {A,C ,G ,U}.
Secondary structure. RNA is single-stranded so it tends to loop
back and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

RNA secondary structure

RNA. String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back and

form base pairs with itself. This structure is essential for understanding

behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
31

Ryszard Janicki Dynamic Programming 33/43

RNA secondary structure

Secondary structure. A set of pairs S = {(bi , bj)} that satisfy:
[Watson-Crick] S is a matching and each pair in S is a
Watson-Crick complement: A− U,U − A,C − G , or G − C .

[No sharp turns] The ends of each pair are separated by at
least 4 intervening bases. If (bi , bj) ∈ S , then i < j − 4.

[Non-crossing] If (bi , bj) and (bk , bl) are two pairs in S , then
we cannot have i < k < j < l .

Free energy. Usual hypothesis is that an RNA molecule will form
the secondary structure with the minimum total free energy (which
is approximated by number of base pairs).

Goal. Given an RNA molecule B = b1b2 . . . bn, find a secondary
structure S that maximizes the number of base pairs.

Ryszard Janicki Dynamic Programming 34/43

RNA secondary structureRNA secondary structure

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn
(≤4 intervening bases)

G

G

base pair

ok crossing

33

Ryszard Janicki Dynamic Programming 35/43

RNA secondary structure: subproblems

First attempt. OPT (j) = maximum number of base pairs in a
secondary structure of the substring b1b2 . . . bj .

RNA secondary structure: subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring b1b2 … bj.

Choice. Match bt and bn.

Difficulty. Results in two subproblems but one of wrong form.

・Find secondary structure in b1b2 … bt–1.

・Find secondary structure in bt+1bt+2 … bn–1.

1 t n

match bt and bn

OPT(t–1)

need more subproblems

34

Difficulty. Results in two subproblems but one of wrong form.

Find secondary structure in b1b2 . . . bt−1. ← OPT (t − 1)

Find secondary structure in bt+1bt+2 . . . bn−1. ← need more
subproblems

Ryszard Janicki Dynamic Programming 36/43

Dynamic programming over intervals

Notation. OPT (i , j) = maximum number of base pairs in a
secondary structure of the substring bibi+1bj .

Case 1. If i ≥ j − 4.

OPT (i , j) = 0 by no-sharp turns condition.

Case 2. Base bj is not involved in a pair.

OPT (i , j) = OPT (i , j − 1).

Case 3. Base bj pairs with bt for some i ≤ t < j − 4.

Noncrossing constraint decouples resulting subproblems.
OPT (i , j) = 1 + maxt(OPT (i , t − 1) + OPT (t + 1, j– − 1)).

↑
take max over t such that i ≤ t < j − 4 and

bt and bj are Watson-Crick complements

Ryszard Janicki Dynamic Programming 37/43

Bottom-up dynamic programming over intervals
Question. In which order to solve the subproblems?
Answer. Do shortest intervals first.

RNA(n,B1, . . . , bn)
FOR k = 5 TO n − 1

FOR i = 1 TO n − k
j ← i + k

M[i , j] = max(M[i , j − 1], 1 + maxt(M[i , t − 1] +M[t + 1, j − 1]))
↑

take max over t such that i ≤ t < j − 4 and
bt and bj are Watson-Crick complements

RETURN M[1, n].

Bottom-up dynamic programming over intervals

Q. In which order to solve the subproblems?

A. Do shortest intervals first.

Theorem. The dynamic programming algorithm solves the RNA secondary

substructure problem in O(n3) time and O(n2) space.

36

6 7 8 9 10

4

3

2

1

0 0 0

0 0

0
i

j

order in which to solve subproblems

RNA (n, b1, …, bn)
__

FOR k = 5 TO n – 1
FOR i = 1 TO n – k

j ← i + k.
Compute M[i, j] using formula.

RETURN M[1, n].
__

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 277

00 0

00

0

1

00 0 0

00 1

00

11

00 0 0

00 1 1

00 1

j = 6 7 8 9

Initial values

4

3

2

i = 1

j = 6 7 8 9

Filling in the values
for k = 5

4

3

2

i = 1

11 1

00 0 0

00 1 1

00 1 1

1 1 1 2

00 0 0

00 1

0 1

1

10

j = 6 7 8 9

Filling in the values
for k = 7

4

3

2

i = 1

j = 6 7 8 9

Filling in the values
for k = 8

4

3

2

i = 1

RNA sequence ACCGGUAGU

j = 6 7 8 9

Filling in the values
for k = 6

4

3

2

i = 1

Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary
Structure Prediction Problem.

for which k = j − i is smaller. Thus things will work without any trouble if we
build up the solutions in order of increasing interval length.

Initialize OPT(i, j)= 0 whenever i ≥ j − 4

For k = 5, 6, . . . , n − 1

For i = 1, 2, . . . n − k

Set j = i + k

Compute OPT(i, j) using the recurrence in (6.13)

Endfor

Endfor

Return OPT(1, n)

As an example of this algorithm executing, we consider the input
ACCGGUAGU, a subsequence of the sequence in Figure 6.14. As with the
Knapsack Problem, we need two dimensions to depict the array M: one for
the left endpoint of the interval being considered, and one for the right end-
point. In the figure, we only show entries corresponding to [i, j] pairs with
i < j − 4, since these are the only ones that can possibly be nonzero.

It is easy to bound the running time: there are O(n2) subproblems to solve,
and evaluating the recurrence in (6.13) takes time O(n) for each. Thus the
running time is O(n3).

Ryszard Janicki Dynamic Programming 39/43

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 4
•————————–•(6)

•————————–•(6)

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 5 > 4
•————————–•(6)

•————————–•(6)
•——————————-•(7)

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 6 > 4
•————————–•(6)

•————————–•(6)
•——————————-•(7)

Ryszard Janicki Dynamic Programming 40/43

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 6 > 4
•————————–•(6)

•————————–•(6)
•——————————-•(7)

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 7 > 4
•————————–•(6)

•————————–•(6)
•——————————-•(7)

i 1 2 3 4
j 1 2 3 4 5 6 7 8 9

A C C G G U A G U k − 1 = 8 > 4
•————————–•(6)

•————————–•(6)
•——————————-•(7)

•———————————————•(9)

Ryszard Janicki Dynamic Programming 41/43

Bottom-up dynamic programming over intervals

Theorem

The dynamic programming algorithm solves the RNA secondary
substructure problem in O(n3) time and O(n2) space.

Ryszard Janicki Dynamic Programming 42/43

Dynamic programming summary

Outline.

Polynomial number of subproblems.

Solution to original problem can be computed from
subproblems.

Natural ordering of subproblems from smallest to largest, with
an easyto- compute recurrence that allows one to determine
the solution to a subproblem from the solution to smaller
subproblems.

Techniques.

Binary choice: weighted interval scheduling.

Multiway choice: segmented least squares.

Adding a new variable: knapsack problem.

Dynamic programming over intervals: RNA secondary
structure.

Top-down vs. bottom-up. Different people have different
intuitions.

Ryszard Janicki Dynamic Programming 43/43

