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Algorithms paradigms

@ Greedy. Build up a solution incrementally, myopically
optimizing some local criterion.

@ Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, and combine solution to
subproblems to form solution to original problem.

@ Dynamic programming. Break up a problem into a series of
overlapping subproblems, and build up solutions to larger and
larger subproblems.

@ Dynamic programming is a fancy name for caching away
intermediate results in a table for later reuse.
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Weighted interval scheduling

Weighted interval scheduling problem.
@ Job j starts at s;, finishes at f;, and has weight or value v;.
@ Two jobs compatible if they don't overlap.

@ Goal: find maximum weight subset of mutually compatible
jobs.

time
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Earliest-finish-time first algorithm (Greedy)

Earliest finish-time first.
@ Consider jobs in ascending order of finish time.
@ Add job to subset if it is compatible with previously chosen
jobs.

Recall. Greedy algorithm is correct if all weights are 1.
Observation. Greedy algorithm fails spectacularly for weighted

version.
weight = 999 ——> b
weight =1 —— a
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Notation. Label jobs by finishing time; i < f, < ... < f,. (sorting
required!).

Definition

p(j) =largest index i < j such that job i is compatible with ;.

Note that p(j) = 0 if no request i < j is disjoint from j.
Example. For the case below: p(1) = p(2) = p(3) =0, p(4) =1,

1

time
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Dynamic programming: binary choice

Suppose we have an optimal solution O, and consider a job n.
@ Case 1. n€ O
@ Casel. n¢ O
Note that one of the above two case always happens!
Casel n€ O = no interval p(n) < i < n belongs to O.
Moreover O must include an optimal solution to the problem
of requests {1,...,p(n)}
Case 2 n¢ O = O is optimal solution to the problem of requests
{1,...,n—1}

Notation.
@ OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2,...,;.
e O; = optimal solution to {1,...,,}.

We are looking for O, and OPT (n).
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Casel n€ O = no interval p(n) < i < n belongs to O.
Moreover O must include an optimal solution to the problem
of requests {1,...,p(n)}

Case 2 n¢ O = O is optimal solution to the problem of requests
{1,....,n—1}

OPT(j) = { gI;LT?,'P—T 5;)9(1‘)) j i gj

which implies

L [0 jeifj=0
OPT(j) = { max(vj + OPT(p(j)), OPT(j — 1)) otherwise

j€0; < v;+ OPT(p(j)) > OPT(j — 1)
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Weighted interval scheduling: brute force

Input: n, s[l..n], f[1l..n], v[1..n]
Sort jobs by finish time so that f[1] =< f[2] =< .. = f[n].
Compute p[1], p[2], .., p[n].

Compute-Opt(j)

if j=0
return 0.
else

return max(v[j] + Compute-Opt(p[jl), Compute-Opt(j-1)).
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Observation. Recursive algorithm fails spectacularly because of
redundant subproblems = exponential algorithms.

Example. Number of recursive calls for family of " layered”
instances grows exponentially.

®
] @ ®
@ @ @ o
oNoNCNONONO
p(1) = 0, p() = j-2 @ @

recursion tree
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Proof of exponential complexity

Time complexity of brute force algorithm if Q(2") for the worst
case.

Consider the case from example above, i.e. p(j) =/ — 2 for j > 2.
Then we have T(1) = ¢ and

T(n)=T(n—-1)+T(n—-2)+c.

T(n)>2T(n—2)+c>22T(n—2)+¢c)=22T(n—4) +2c >
22(2T(n—6)+¢c)+2c=23T(n—2-3) + (22 + 2)c >

P =2- 22 e . 2R e 2. 27

Hence T(n) = Q(2"). O
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Memoization

Idea. Do not solve anything twice, store and use the first solution!
Memoization. Cache results of each subproblem; lookup as needed.

@ We need some memory for storage subsolutions.
@ Dynamic Programming always use some arrays.

@ In this case: M[0..n], M[j] is initially “empty”, but later
contains Compute-Opt(j).
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Solution with memoization

Input: n, s[l..n], f[1l..n], v[1..n]
Sort jobs by finish time so that f[1] =< f[2] =< .. = f[n].
Compute p[1], p[2], .., p[n].

for j =1to n
M[j] « empty.

M[0] « O.

M-Compute-Opt(j)

if M[j] is empty
M[j]1 < max(v[j] + M-Compute-Opt(p[j]l), M-Compute-Opt(j - 1)).
return M[j].
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Proposition

If the input interval are sorted by their finish time, the running
time of M-Compute-Opt(n) is O(n).

Let NotEmpty is the number of M[j] # 0. Initially NotEmpty = 0,
but in each iteration NotEmpty < NotEmpty + 1. But M has only
n+ 1 elements, so O(n). O
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Weighted interval scheduling: finding a solution

Question. Dynamic Programming algorithm computes optimal
value. How to find solution itself?
Answer. Make a second pass.

Find-Solution(j)

if j=0
return J.

else if (v[j] + M[p[jl] > M[j-1D)
return {j } U Find-Solution(p[j]).

else

return Find-Solution(j-1).

Running time: T(n) = T(f(n)) + ¢, where f(n) is either p(n) or
n—1and p(n) < n—1. Hence
T(n)<T(n—=1)+c<T(n-2)+2c<...<n-c+T(0)=O(n).
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Instability of recurrences

T(n)=T(n—1)+c= 0(n)

T(n)=2T(n—1)4+c= 0(2")
T(n)=2T(n—2)+c=0(2")

T(n)=2T(n— k) + c = 0O(2") for any value of k, for instance
T(n) =2T(n—10%") + c = O(2"), etc
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Weighted interval scheduling: bottom-up

Bottom-up dynamic programming. Unwind recursion.
BOTTOM-UP (n, s1, ..., Su, fl, «oes fr, V1, eory Vi)

Sort jobs by finish time so that fi < f5 < ... <fp.

Compute p(1), p(2), ..., p(n).
M[0] < 0.
FORj=1TOn
M[j] max {v; + M[p()], M[j—1]}.
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Weighted interval scheduling: Total running time

@ Total running time is O(nlog n) because of initial sorting!
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Least Squares

Least squares. Foundational problem in statistics.

e Given n points in the plane: (x1,y1), (x2,¥2),- -, (Xn, ¥n)-
@ Find a line y = ax + b that minimizes the sum of the squared

error: SSE = Z(y,- — ax; — b)?

i=1

Solution:
_ ”27:1 XiYi — (27:1 Xi)(z7:1 yi) b— 27:1 Yi— 327:1 Xi

Ny Xt -nyila)? n
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Segmented Least Squares

Segmented least squares.
@ Points lie roughly on a sequence of several line segments.

e Given n points in the plane: (x1,y1), (x2,¥2),- .., (Xn, ¥n) with
x1 < xp < ...< X, find a sequence of lines that minimizes
f(x).

Question.What is a reasonable choice for f(x) to balance accuracy
(goodness of fit) and parsimony (number of lines)?

y
G
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Segmented Least Squares

Given n points in the plane: (x1,y1), (x2,¥2),- -, (Xn, yn) with
x1 < xp < ...< x, and a constant ¢ > 0, find a sequence of lines
that minimizes f(x) = E + cL:
@ E = the sum of the sums of the squared errors in each
segment.

@ [ = the number of lines.
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Dynamic programming: multiway choice

Notation.

e OPT(j) = minimum cost for points py, pa, ..., p;.

@ e(i,j) = minimum sum of squares for points p;, pi+1, .- ., pj.
To compute OPT (j):

@ Last segment uses points p;, piy1, ..., p; for somei.

o Cost = e(i,j) + c+ OPT(i-1).
which leads to:

. 0 jeifj=0
OPT() { mini<j<j(e(i,j) + c+ OPT(i — 1) otherwise

N n
OPT(i - 1) L oo

[e]

o

[e]

o}




Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES (1, p1, ..., Pn, €)

FOR j=1TO n
FOR i=1TO j

Compute the least squares e(i, j) for the segment pi, pi+1, ..., pj.
M[0] < 0.
FOR j=1TO n

M[jl— mini<i<; {ej tc+M[i-1]}.

RETURN M[n].
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Segmented least squares analysis

The dynamic programming algorithm solves the segmented least
squares problem in O(n3) time and O(n?) space.

o Bottleneck = computing e(i, ) for O(n?) pairs.
e O(n) per pair using formula:
_ ny iy xiyi — (i %) 2t vi) b— Do Yi— Ayl X

a
n Z?:l Xi2 —n Z?:l x;i)? ’ n

Ol

v

Remark. It can be improved to O(n?) time and O(n) space by
precomputing various statistics. See Footnote 1 on page 266 of

textbook.
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Finding Segments

Find-Segments (j)

If j=0 then
Output nothing
Else
Find an i that minimizes ei,}--}-C—l—M[i—l]
Qutput the segment {p;, ... . i} and the result of

Find-Segments (i — 1)
Endif
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Knapsack problem

* Given n objects and a "knapsack."

* Item i weighs w; >0 and has value v; >0.

* Knapsack has capacity of w.

» Goal: fill knapsack so as to maximize total value.

Vi Wi

1 1 1

Ex. {1,2,5} has value 35. 2 6 2
Ex. {3,4} has value 40. 3 18 5
Ex. {3,5} has value 46 (but exceeds weight limit). 4 2 6
5 28 7

knapsack instance
(weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v;.
Greedy by weight. Repeatedly add item with minimum w;.
Greedy by ratio. Repeatedly add item with maximum ratio v;/ w;.

Observation. None of greedy algorithms is optimal.
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Dynamic programming: false start

Def. OPT(i) = max profit subset of items 1, ...,i.

Case 1. OPT does not select item i.
* OPT selects best of {1,2,...,i—1}.

\ optimal substructure property
(proof via exchange argument)

Case 2. OPT selects item i.
* Selecting item i does not immediately imply that we will have to reject

other items.
* Without knowing what other items were selected before i,

we don't even know if we have enough room for i.

Conclusion. Need more subproblems!
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Dynamic programming: adding a new variable

Def. OPT(i,w)= max profit subset of items 1, ...,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects best of { 1,2, ...,i—1} using weight limit w.
. \ optimal substructure property
Case 2. OPT selects item i. / (proof via exchange argument)
* New weight limit =w —w;.
* OPT selects best of { 1,2, ...,i—1} using this new weight limit.

0 if i=0
OPT(i,w)={0PT(i-1,w) if w,>w
max{ OPT(i-1,w), v,+ OPT(i-1,w-w,)} otherwise
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Knapsack problem: bottom-up

KNAPSACK (1, W, wi, ..., W, V1, ..., Vn )

FOR w=0TO W
M[0, w] < 0.

FOrR i=1TOn
FOR w=1TO W
IF wi>w) M[i,w] « M[i—1,w].

ELSE M[i,w] « max {M[i—1,w], vi +t M[i—1,w—wi] }.

RETURN M[n, W].
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Knapsack problem: bottom-up demo

1 Vi Wi

L ! : 0 if i=0

2 6 2 OPT(i,w)={OPT(i-1,w) if w>w
3 18 5 max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise
4 22 6

5 28 7

weight limit w
I N A R ) 2 G Y R
0 0 0 0 0 0 0 0 0 0 0

0
4
0 1 1 1 1 1 1 1 1 1 1 1
4
0

subset 6 7 7 7 7 7 7 7 7 7
of items
1,..,i0 0 1 6 7 7 18 9 24 25 25 25 25

0 1 6 7 7 18 22 24 28 29 2 40

OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.
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The two-dimensional table of OPT values.

n|o
0
0
0
i|0 A
i-1]0 - '
0
0
0
210
110
o|jojojojojo|jojofofojofojoj0|l0O]|O
0 1 2 w-w; w w

@ The leftmost column and bottom row is always 0.

@ The entry for OPT (i, w) is computed from the two other entries
OPT(i—1,w) and OPT(i —1,w — w;), as indicated by the arrows.
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Knapsack size W = 6, items w; = 2, w, = 2, w3 = 3

3 3

2 2
1 Mlofo|2]2]2]2]2
0 0j0(0|0]0 0j0j0j0f0f0|0O]|O0
01 2 3 4 56 01 2 3 4 56
Initial values Filling in values fori = 1
3 BG)lo|o|2]3]4]|5]5
@0 0122|444 210|0(2]2|4|4]|4
110]0(2(2|2]2]|2 110]0(2(2|2]2]|2
o(ofojojojofof|o o(ofojojojofof|o
01 2 3 456 01 2 3 456
Filling in values fori = 2 Filling in values fori = 3
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Knapsack problem: running time

Theorem. There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in ©(z W) time and ©(n W) space.
Pf. \ weights are integers
* Takes O(1) time per table entry. between 1 and W
* There are ©(n W) table entries.
« After computing optimal values, can trace back to find solution:
take item i in OPT(i,w) iff M[i,w] > M[i—1,w]. =

Remarks.
* Not polynomial in input size! <«— "pseudo-polynomial’
» Decision version of knapsack problem is NP-COMPLETE. [ CHAPTER 8 ]
* There exists a poly-time algorithm that produces a feasible solution that
has value within 1% of optimum. [ SECTION 11.8]
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RNA secondary structure

RNA. String B = bib, ... b, over alphabet {A, C, G, U}.
Secondary structure. RNA is single-stranded so it tends to loop

back and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

C—A
/ AN
A A
AN /
As=== U G—=C
| / 0\
C---- G— U—A—A ©
/ . |
U c A U U A
| | ~
U
i G
A
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RNA secondary structure

Secondary structure. A set of pairs S = {(b;, bj)} that satisfy:
e [Watson-Crick] S is a matching and each pairin S is a
Watson-Crick complement: A— U,U—-A,C— G, or G — C.
@ [No sharp turns] The ends of each pair are separated by at
least 4 intervening bases. If (b;, bj) € S, then i < j — 4.
@ [Non-crossing] If (b;, bj) and (b, by) are two pairs in S, then
we cannot have i < k < j < .

Free energy. Usual hypothesis is that an RNA molecule will form
the secondary structure with the minimum total free energy (which
is approximated by number of base pairs).

Goal. Given an RNA molecule B = b1 b, ... by, find a secondary
structure S that maximizes the number of base pairs.
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RNA secondary structure

Examples.

G G ¢

/ N c/ \c

C© u

\ / ./
(o G (G G
| | | |
A--eee U A-eeeee U
| |
U--eees A [T A

base pair
AUGUGGCCAU AUGGGGCAU AGUUGGCCAU
—_

ok sharp turn crossing

(<4 intervening bases)
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RNA secondary structure: subproblems

First attempt. OPT(j) = maximum number of base pairs in a
secondary structure of the substring bi1b> ... b;.

match bt and bn

Choice. Match b, and b,.

1 t n

Difficulty. Results in two subproblems but one of wrong form.
e Find secondary structure in biby...bi—1. < OPT(t—1)

e Find secondary structure in by 1bsyo...by—1. < need more
subproblems
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Dynamic programming over intervals

Notation. OPT(i,j) = maximum number of base pairs in a
secondary structure of the substring b;b;1b;.
Case 1. If i > j — 4.
o OPT(i,j) = 0 by no-sharp turns condition.
Case 2. Base bj is not involved in a pair.
o OPT(i,j)= OPT(i,j—1).
Case 3. Base b; pairs with b; for some i <t < j — 4.

e Noncrossing constraint decouples resulting subproblems.
o OPT(i,j) =14 max;(OPT(i,t —1)+ OPT(t+1,j-—1)).
/]\
take max over t such that i <t <j — 4 and
b: and b; are Watson-Crick complements
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Bottom-up dynamic programming over intervals
Question. In which order to solve the subproblems?
Answer. Do shortest intervals first.

RNA(n, By, ..., by)
FOR k=5TOn—-1
FORi=1TO n—k
J—i+k
MIi.J) = max(MIi,j — 1], 1+ maxe(Mlj, t = 1] + M[¢ + 1,5 — 1])
take max oveth such that i <t <j—4 and

b: and b; are Watson-Crick complements
RETURN M[1, n].

\\\

order in which to solve subproblems



RNA sequence ACCGGUAGU

4 0 410|0(0]0 410|0|0|0
3 3/10(0]|1 3/]0(0(1(1
210 2|0(0 210(0]1
=1 i=1]1 t=1(1]1
j=6 7 8 9 ji=6 7 8 9 j=6 7 8 9
Initial values Filling in the values Filling in the values
fork = 5 fork =6
410(0(0]0 410|0(0]0
3/]0(0(11(1 3/]0(0)1]1
210(0|1]1 2100111
i=1(1]1]1 i=1|1|1|1]2
j=6 7 8 9 i=6 7 8 9
Filling in the values Filling in the values
fork =7 fork = 8
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k—1=4

k—1=5>4

A CCGGUAGWU

A CCGGUAGWU

k—1=6>4

A CCGGUAGWU

o0
£
£
£
&
S
80
o
<
=%
2
£
&
<
>
o
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k—1=6>4

A CCGGUAGWU

k—1=7>4

A CCGGUAGWU

k—1=8>4

A CCGGUAGWU
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Bottom-up dynamic programming over intervals

The dynamic programming algorithm solves the RNA secondary
substructure problem in O(n%) time and O(n?) space.
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Dynamic programming summary

Outline.

@ Polynomial number of subproblems.

@ Solution to original problem can be computed from
subproblems.

@ Natural ordering of subproblems from smallest to largest, with
an easyto- compute recurrence that allows one to determine
the solution to a subproblem from the solution to smaller
subproblems.

Techniques.

@ Binary choice: weighted interval scheduling.

@ Multiway choice: segmented least squares.

@ Adding a new variable: knapsack problem.

@ Dynamic programming over intervals: RNA secondary
structure.

Top-down vs. bottom-up. Different people have different

intuitions.
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