Network Flow

CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Eva Tardos (Chapter 7)

Ryszard Janicki Network Flow 1/45

Flow network

* Abstraction for material flowing through the edges.
» Digraph G = (¥, E) with source s€V and sink t€ V.

* Nonnegative integer capacity c(e) for each e € E. i el il

no edge enters s
no edge leaves t

capacity

Ryszard Janicki Network Flow 2/45

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A andrE B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(4,B) = 3 cle)

e out of 4

capacity:10+5+15:

Ryszard Janicki Network Flow 3/45

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A4,B) = (3]

eoutof 4

\ don't count edges

from B to A

capacity=10+8+16= ._]6_)

Ryszard Janicki Network Flow 4/45

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A andrE B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(4,B) = 3 cle)

e out of 4

Min-cut problem. Find a cut of minimum capacity.

/!

10

v
>

8 t
\Vm/
capacity:10+8+10: .

Ryszard Janicki Network Flow 5/45

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 =< f(e) = c(e) [capacity]
* ForeachveVv-{s,1}: >fle) = 3 f(e) [flow conservation]
eintov eoutof v
flow capacity

inflowatv = 5+5+0 =10

5/9 outflowatv = 10+ 0 =10
Q \5 5
N 0/15 —
\Q\ s ‘o

\¢
5/5 —5/8—)?—10/10—)
N

7,
@ 0/15

. |

10/16

K

Ryszard Janicki Network Flow 6/45

Maximum flow problem

Def. An st+-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < f(e) = c(e) [capacity]
* Foreachvev-{s,it: Xfle) = Y f(e) [flow conservation]
eintov eoutof v

Def. The value of a flow f is: val(f)= > f(e) .

eoutof s

5/9
XN S S
7 7,
\g\ s (2
e 5 / 5 5/8 10/10 @
‘0 \\‘5
% K
value = 5+10+10 =(29) \
10/16

Ryszard Janicki Network Flow 7/45

Maximum flow problem

Def. An st+-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < f(e) = c(e) [capacity]
* Foreachvev-{s,it: Xfle) = Y f(e) [flow conservation]
eintov eoutof v

Def. The value of a flow f is: val(f)= > f(e) .

eoutof s

Max-flow problem. Find a flow of maximum value.

8/9
7 7,
\g\ s (2
i 8/8 10/10 @
e Q
> N
& \
s “6 ®
value = 8+10+10 = (28) \
13/16

Ryszard Janicki Network Flow 8/45

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge ¢ € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.

flow capacity

N/
network G O 0/4 O
o

N 0/2 % 0/6 Z,
@ value of flow

/
@ 0/10 O 0/9 O 0/10 @ 0

Ryszard Janicki Network Flow 9/45

Towards a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for all edge e € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

network G 0/4 Q

®/0/10 O 0/9\<>_§/10_)® 0+8=8

Ryszard Janicki Network Flow 10/45

Towards a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for all edge e € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

network G 0/4 Q

®/0/10 O 42}/9)Q i/lO_)@ 8+2=10

Ryszard Janicki Network Flow 11/45

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge ¢ € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.

network G O 0/4
AN\

Q
N 2/2 & 60/6 g
| "\

®_g/m_)© ;/9)O 10/10 @ 10+6=16

\Q\

Ryszard Janicki Network Flow 12/45

Towards a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

ending flow value = 16

network G O 0/4 O

@ 6/10 O 8/9 O 10/ 10 @ 16

Ryszard Janicki Network Flow 13/45

GREEDY DOES NOT WORK!

Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~t path P where each edge has f(e) < c(e).
* Augment flow along path P.
» Repeat until you get stuck.

but max-flow value = 19

network G O 3/4 O

@ 9/10 O 9/9 O 10/ 10 @ 19

Ryszard Janicki Network Flow 14/45

Residual graph

Original edge: e=(u,v) € E. original graph G

* Flow f(e). @ A5 ‘®

* Capacity c(e). / \

flow capacity

Residual edge.
« "Undo" flow sent.

0 pe R—
e= () and ef =, u). residual graph Gr residual

* Residual capacity: 4 capacity

(u) = »(V)
o {c(e)—f(e) if e€E ~_ .
)=

f(e) if efEE

Residual graph: G;=(V,E).
» Residual edges with positive residual capacity. where flow on a reverse edge

negates flow on a forward edge
o Ef: {e:f(e)< cle)} U {eR:f(e) > 0}. /
* Key property: f'is a flow in G;iff f+f'is a flow in G.

Ryszard Janicki Network Flow 15/45

Augmenting path

Def. An augmenting path is a simple s~ path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G,.
Thenf'is a flow and val(f') = val(f) + bottleneck(Gy, P).

AUGMENT (f; ¢, P)

b « bottleneck capacity of path P.
FOREACH edge e € P
[F(eEE) f(e) « f(e) + b.
ELSE f(e®) « f(e®) — b.
RETURN f.

Ryszard Janicki Network Flow 16/45

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an augmenting path P in the residual graph G;.
* Augment flow along path P.
» Repeat until you get stuck.

FORD-FULKERSON (G, s, ¢, ¢)

FOREACH edge e E E : f(e) < 0.
Gy « residual graph.
WHILE (there exists an augmenting path P in Gy)
f < AUGMENT (f, c, P).
Update Gr.
RETURN f.

Ryszard Janicki Network Flow 17/45

Ford-Fulkerson algorithm demo

network G flow capacity
N
O’ —@
o

Q
N 0/2 %, 0/6 “
value of flow

/
@ 0/10 O 0/9 O 0/10 @ 0

residual graph G¢

residual capacity

9. ‘)
/

2 & 6 ‘0

@O 0@

Ryszard Janicki Network Flow 18/45

Ford-Fulkerson algorithm demo

residual graph Gt

AN
e N

O O—v—p®

bottleneck = 8 U
network G
& o1+ —— @
¢ o
%Z\\Q 0/2 S 0/6 “l

@ 0/10 O 0/9 O ©/10 @ 0+8=

Ryszard Janicki Network Flow 19/45

Ford-Fulkerson algorithm demo

network G
@ 014 ——Q)

@ 0/10 O 0/9 O /10 @ 0+8=

residual graph G

o
®/wé) e (o 2 e ()

Ryszard Janicki Network Flow 20/45

Ford-Fulkerson algorithm demo

residual graph G

‘ Q

bottleneck = 2

network G
\0\@ 26/2
OSTENG

Ryszard Janicki

@
o

5., 0/6 5

2 2

©/9 O 8/10 @ 8+2=10

Network Flow

Ford-Fulkerson algorithm demo

network G
@. 2 Q
o O 26/2 8 0/6 o
N \ /d’ /0

@ 0/10 O /9 O 8/10 @ 8 +2=10

residual graph Gr

N

—1—>O0— —>0——0

Ryszard Janicki Network Flow 22/45

Ford-Fulkerson algorithm demo

residual graph Gt
S
6

O

bottleneck = 6 U

network G

Qv —Q

Q
S 2/2 & 60/6

\Q\

@ ©/10 O 2/9 O 10/10 @ 10+6=16

Ryszard Janicki Network Flow 23/45

Ford-Fulkerson algorithm demo

network G

2/2 3 6 9/6 -
/ e / 2o

6 8
@ 6/ 10 O 2/9 O 10/10 @ 10+6=16

residual graph Gf
O : >

C—— | O—r—=0

Ryszard Janicki Network Flow 24/45

Ford-Fulkerson algorithm demo

residual graph Gt
O —

? 6

2 & 6 &

o—— 0 —@®

6 8

bottleneck = 2 U

network G

Q——@

Q
K
02/2 & 6/6 -
o 4 7 4

@ €/10 O 8/9 O 10/10 @ 16+2=18

Ryszard Janicki Network Flow 25/45

Ford-Fulkerson algorithm demo

network G
2

O »—Q

4
\J ®
N 0-2/2 &/& 6/6 —,

o

@ ©/10 O 8/9 O 10/10 @ 16+2=18

residual graph Gf

C— () 1\>O 1°\®

8 8
Ryszard Janicki Network Flow 26/45

Ford-Fulkerson algorithm demo

2

RN
\ .\

ot 1 —p()0 (1)

8 8

bottleneck = 1 U

residual graph Gt

network G

0/2 ® 6/6
S / . /

@ 8/10 Q /9 Q 10/10 @ 18+1=19

Ryszard Janicki Network Flow 27/45

Ford-Fulkerson algorithm demo:

network G
3

Q——@

o ®
S 0/2 &/& 6/6 =,

Glero—() 219 () 1010 (®) 184119
¢

Residual graph G does not have any augmenting path!
3

residual graph G
Q ! Q

nodes reachable from s 2 > 6

Ryszard Janicki Network Flow 28/45

Ford-Fulkerson algorithm demo: Maximum Flow vs

Minimum Cut

network G

O —Q

Q
S 0/2)/8 6/6 - max flow

min cut NN

/
\® 9/10 Q 9/9 O 10/10 @ 19

Ryszard Janicki Network Flow 29/45

Relationship between flows and cuts

Lemma (Flow value)

Let f be any flow and let (A, B) be any cut. Then, the net flow
across (A, B) equals the value of f:

Yo fle)— D fle)=v(f).

e out of A einto A

net flow across cut = 5+ 10 + 10 = 25

’ 5/9 \

N S 3

// //
: S N
s] 5/5) 5/8 @— 0/ 10=p(t) valueofflow = 25
‘o \\°
s N

@ /

Ryszard Janicki Network Flow 30/45

Relationship between flows and cuts

net flow across cut = 10 + 5 + 10 = 25

5/9
\B\\Q S//f ‘f/’a
5/5—) 5/8 10/10 t) value of flow = 25
/o// Q\\Q
$ A
N\
10/16

net flow across cut = (10 +10 +5+10+0+0)-(5+5+0+0) = 25

e 5/ 9 |

/ I \ edges from B to A
s

0/4 /

5/5 T 5/8 T—]o/]o_}t value of flow = 25
\ .

0 N
0/15 \
. °

N N

10/16

Ryszard Janicki Network Flow 31/45

Relationship between flows and cuts

Let f be any flow and let (A, B) be any cut. Then, the net flow
across (A, B) equals the value of f:

Yo fle)— D fle)=v(f).

e out of A e into A
vif)= Y. fle)=
e out of A

{ by flow conservation, all terms except v = s are 0, so}

=30 > fle= X flen= X fle- > fle).

VEA e out of v eintov e out of A einto A

Ol

Ryszard Janicki Network Flow 32/45

Relationship between flows and cuts

Fact (Weak duality)
Let f be any flow and (A, B) be any cut. Then, v(f) < cap(A, B).

v(if)=) fle)— Y fleg< D fle)<

e out of A einto A e out of A

Z c(e) = cap(A, B). O

e out of A

, . /
2 s 7

10
s 5/5 7/8 9/10 t <5 — t
)
15

value of flow = 27 < capacity of cut = 30

12/16

Ryszard Janicki Network Flow 33/45

Max-flow min-cut theorem

Theorem (Max-flow min-cut theorem)

o A flow fis a max-flow iff no augmenting paths.

@ Value of the max-flow = capacity of min-cut.

Proof.
The following three conditions are equivalent for any flow f :
@ There exists a cut (A, B) such that cap(A, B) = val(f).

@ f is a max-flow.

© There is no augmenting path with respect to f.

1) = (@)
@ Suppose that (A, B) is a cut such that cap(A, B) = val(f).
@ Then, for any flow ', val(f") < cap(A, B) = val(f).

@ Thus, f is a max-flow. T T

weak duality by assumption L]

Ryszard Janicki Network Flow 34/45

Max-flow min-cut theorem

Theorem (Max-flow min-cut theorem)

o A flow fis a max-flow iff no augmenting paths.

@ Value of the max-flow = capacity of min-cut.

Proof.

The following three conditions are equivalent for any flow f :
@ There exists a cut (A, B) such that cap(A, B) = val(f).
@ f is a max-flow.

© There is no augmenting path with respect to f.

(2) = (3) We prove contrapositive: =(3) = —(2).
@ Suppose that there is an augmenting path with respect to f.
@ Can improve flow f by sending flow along this path.

@ Thus, f is not a max-flow.

Ryszard Janicki Network Flow 35/45

Max-flow min-cut theorem

The following three conditions are equivalent for any flow f :
@ There exists a cut (A, B) such that cap(A, B) = val(f).
@ f is a max-flow.
© There is no augmenting path with respect to f.
3) = (1)
@ Let f be a flow with no augmenting paths.
@ Let A be set of nodes reachable from s in residual graph Gr.
@ By definition of cut A, s € A.
@ By definition of flow f, t ¢ A.
v(if)= Y. fle)— > fle)= > c(e)=cap(A B).

e out of A einto A e out of A

Ol

Ryszard Janicki Network Flow 36/45

3) = (1)

@ Let f be a flow with no augmenting paths.

@ Let A be set of nodes reachable from s in residual graph Gr.
@ By definition of cut A, s € A.
@ By definition of flow f, t ¢ A.

v(if)= > fle)= > fle)= > c(e) = cap(A B).

e out of A einto A e out of A

edge e = (v, w) withve B, we A
must have f(e) = 0

original network G
A / B

/

edge e = (v, w) withve A, weB
must have f(e) = c(e)

Ford-Fulkerson algorithm: another demo

Gr G
(a) if f(e) =0 for all e the G = Gf

Ryszard Janicki Network Flow 38/45

Ford-Fulkerson algorithm: another demo

maximum flow val(f*) = 23

no path from s to t

Ryszard Janicki Network Flow 39/45

Running time of Ford-Fulkerson algorithm

FORD-FULKERSON (G, s, 1, ¢)
FOREACH edge e EE : f(e) < 0.
Gy « residual graph.
WHILE (there exists an augmenting path P in Gr)
[« AUGMENT (f; ¢, P).
Update Gr.
RETURN f.

Assumption. Capacities are positive integers.

Integrality invariant. Throughout the algorithm, the flow values
f(e) and the residual capacities cr(e) are integers.

Lemma (Maximal number of iterations)

The algorithm terminates in at most val(f*) iterations of the
WHILE loop (f* is the maximal flow).

Each augmentation increases the value by at least 1. [

Ryszard Janicki Network Flow 40/45

Running time of Ford-Fulkerson algorithm

FORD-FULKERSON (G, s, 1, ¢)
FOREACH edge e EE : f(e) < 0.
Gy « residual graph.
WHILE (there exists an augmenting path P in Gr)
[« AUGMENT (f; ¢, P).
Update Gr.
RETURN f.
Assumption. Capacities are positive integers.
Integrality invariant. Throughout the algorithm, the flow values
f(e) and the residual capacities cr(e) are integers.

Theorem (Integrality theorem)

There exists a max-flow * for which every flow value f*(e) is an
integer.

Since algorithm terminates, theorem follows from invariant. [

Ryszard Janicki Network Flow 41/45

Running time of Ford-Fulkerson algorithm

The total running time of Ford-Fulkerson algorithm is
O(m val(f*), where m is the number of nodes.

@ By Lemma about maximal number of iterations, it suffice to
show that what is inside of WHILE loop is O(m).

e Update of Gy is clearly O(m) as we just have to update each
edge.

@ The time to find a path in residual network is O(m) is we use
either depth-first search or breadth-first search (see Lecture
Notes or other material for the second year algorithm course

CS/SE 2C03).

@ Hence what is inside of WHILE loop is O(m), so the total
time is O(m val(f*)

Ryszard Janicki Network Flow 42/45

Bad case of Ford-Fulkerson algorithm

(a) (b) ()

An example of a flow network for which standard Ford-Fulkerson
can take ©(m val(f*)) time, where m is the number of edges and
f* is a maximum flow, which in this case is 2,000, 000.

Ryszard Janicki Network Flow 43/45

Choosing good augmenting paths

Use care when selecting augmenting paths.
@ Some choices lead to exponential algorithms.
@ Clever choices lead to polynomial algorithms.

o If capacities are irrational, algorithm not guaranteed to
terminate! (see demo)

Goal. Choose augmenting paths so that:
@ Can find augmenting paths efficiently.
@ Few iterations.

Choose augmenting paths with:
@ Max bottleneck capacity.
o Sufficiently large bottleneck capacity.

o Fewest number of edges: Edmonds-Karp Algorithm O(nm?),
where n-number of vertices and m-number of edges.

Ryszard Janicki Network Flow 44/45

Edmonds-Karp Algorithm

@ When the augmenting path is always a shortest path from s
to t in the residual graph G¢ (assuming each edge has unit
distance), and breadth-first search is used to find such a path,
the algorithm is called Edmonds-Karp Algorithm, or Shortest
Augmenting Path Algorithm.

SHORTEST-AUGMENTING-PATH(G, s, ¢, ¢)

FOREACH e E E : f(e) <« 0.
Gy « residual graph.
WHILE (there exists an augmenting path in Gy)
P < BREADTH-FIRST-SEARCH (Gy, s, ©).
f < AUGMENT (f, c, P).
Update Gr.
RETURN f.

e Time complexity of Edmonds-Karp Algorithm is O(m?n).
o There are algorithms with complexities O(n?m) and O(n?).

Ryszard Janicki Network Flow 45/45

