Network Flow CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Acknowledgments: Material based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 7)

Flow network

- · Abstraction for material flowing through the edges.
- Digraph G = (V, E) with source $s \in V$ and sink $t \in V$.
- Nonnegative integer capacity c(e) for each $e \in E$.

no parallel edges no edge enters s no edge leaves t

2/45

Minimum cut problem

Def. A *st*-cut (cut) is a partition (A, B) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Minimum cut problem

Def. A *st*-cut (cut) is a partition (A, B) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$

Min-cut problem. Find a cut of minimum capacity.

Maximum flow problem

Def. An st-flow (flow) f is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \in V} f(e) = \sum_{e \in V} f(e)$ [flow conservation]

Maximum flow problem

Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow f is: $val(f) = \sum_{e \text{ out of } s} f(e)$.

Maximum flow problem

Def. An *st*-flow (flow) *f* is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow f is: $val(f) = \sum_{e \text{ out of } s} f(e)$.

Max-flow problem. Find a flow of maximum value.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

ending flow value = 16

GREEDY DOES NOT WORK!

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has f(e) < c(e).
- Augment flow along path P.
- · Repeat until you get stuck.

but max-flow value = 19

Residual graph

Original edge: $e = (u, v) \in E$.

- Flow f(e).
- Capacity c(e).

Residual edge.

- · "Undo" flow sent.
- e = (u, v) and $e^R = (v, u)$.
- · Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

original graph G

Residual graph: $G_f = (V, E_f)$.

• Residual edges with positive residual capacity.

where flow on a reverse edge negates flow on a forward edge

- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$
- Key property: f' is a flow in G_f iff f + f' is a flow in G.

Augmenting path

Def. An augmenting path is a simple $s \rightarrow t$ path P in the residual graph G_f .

Def. The bottleneck capacity of an augmenting P is the minimum residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G_f . Then f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

AUGMENT (f, c, P)

 $b \leftarrow \text{bottleneck capacity of path } P.$

FOREACH edge $e \in P$

IF
$$(e \in E)$$
 $f(e) \leftarrow f(e) + b$.

ELSE
$$f(e^R) \leftarrow f(e^R) - b$$
.

RETURN f.

Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an augmenting path P in the residual graph G_f .
- Augment flow along path P.
- · Repeat until you get stuck.

```
FORD-FULKERSON (G, s, t, c)
FOREACH edge e \in E : f(e) \leftarrow 0.
   G_f \leftarrow \text{residual graph}.
   WHILE (there exists an augmenting path P in G_f)
     f \leftarrow AUGMENT(f, c, P).
      Update G_f.
   RETURN f.
```


 $\downarrow \downarrow$

$$bottleneck = 2$$

network G

$$bottleneck=6$$

Ford-Fulkerson algorithm demo: Maximum Flow = 19

Residual graph G_f does not have any augmenting path!

Ford-Fulkerson algorithm demo: Maximum Flow vs Minimum Cut

Lemma (Flow value)

Let f be any flow and let (A, B) be any cut. Then, the net flow across (A, B) equals the value of f:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Lemma (Flow value)

Let f be any flow and let (A, B) be any cut. Then, the net flow across (A, B) equals the value of f:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Proof.

$$\begin{split} &v(f) = \sum_{\substack{e \text{ out of } A}} f(e) = \\ &\{ \text{ by flow conservation, all terms except } v = s \text{ are } 0, \text{ so} \} \\ &= \sum_{v \in A} (\sum_{\substack{e \text{ out of } v}} f(e) - \sum_{\substack{e \text{ in to } v}} f(e)) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A}} f(e). \end{split}$$

Ryszard Janicki

Network Flow

Fact (Weak duality)

Let f be any flow and (A, B) be any cut. Then, $v(f) \leq cap(A, B)$.

Proof.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \le \sum_{e \text{ out of } A} f(e) \le \sum_{e \text{ out o$$

e out of A

Max-flow min-cut theorem

Theorem (Max-flow min-cut theorem)

- A flow f is a max-flow iff no augmenting paths.
- Value of the max-flow = capacity of min-cut.

Proof.

The following three conditions are equivalent for any flow f:

- There exists a cut (A, B) such that cap(A, B) = val(f).
- \bigcirc f is a max-flow.
- **3** There is no augmenting path with respect to f.
- $(1) \implies (2)$
 - Suppose that (A, B) is a cut such that cap(A, B) = val(f).
 - Then, for any flow f', $val(f') \le cap(A, B) = val(f)$.
 - Thus, f is a max-flow.

weak duality by assumption

Max-flow min-cut theorem

Theorem (Max-flow min-cut theorem)

- A flow f is a max-flow iff no augmenting paths.
- Value of the max-flow = capacity of min-cut.

Proof.

The following three conditions are equivalent for any flow f:

- **1** There exists a cut (A, B) such that cap(A, B) = val(f).
- \bigcirc f is a max-flow.
- **1** There is no augmenting path with respect to f.
- (2) \Longrightarrow (3) We prove contrapositive: \neg (3) \Longrightarrow \neg (2).
 - Suppose that there is an augmenting path with respect to f.
 - Can improve flow f by sending flow along this path.
 - Thus, f is not a max-flow.

Max-flow min-cut theorem

Proof.

The following three conditions are equivalent for any flow f:

- There exists a cut (A, B) such that cap(A, B) = val(f).
- f is a max-flow.
- \odot There is no augmenting path with respect to f.
- $(3) \implies (1)$
 - Let f be a flow with no augmenting paths.
 - Let A be set of nodes reachable from s in residual graph G_f .
 - By definition of cut A, $s \in A$.
 - By definition of flow f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \sum_{e \text{ out of } A} c(e) = cap(A, B).$$

Proof.

- $(3) \implies (1)$
 - Let f be a flow with no augmenting paths.
 - Let A be set of nodes reachable from s in residual graph G_f .
 - By definition of cut A, $s \in A$.
 - By definition of flow f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \sum_{e \text{ out of } A} c(e) = cap(A, B).$$

must have f(e) = c(e)

Ford-Fulkerson algorithm: another demo

Ford-Fulkerson algorithm: another demo

Running time of Ford-Fulkerson algorithm

```
FORD-FULKERSON (G, s, t, c)

FOREACH edge e \in E: f(e) \leftarrow 0.

G_f \leftarrow residual graph.

WHILE (there exists an augmenting path P in G_f)

f \leftarrow AUGMENT (f, c, P).

Update G_f.

RETURN f.
```

Assumption. Capacities are positive integers.

Integrality invariant. Throughout the algorithm, the flow values f(e) and the residual capacities $c_f(e)$ are integers.

Lemma (Maximal number of iterations)

The algorithm terminates in at most $val(f^*)$ iterations of the WHILE loop (f^*) is the maximal flow.

Proof.

Each augmentation increases the value by at least 1.

Running time of Ford-Fulkerson algorithm

```
FORD-FULKERSON (G, s, t, c)

FOREACH edge e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual graph.

WHILE (there exists an augmenting path P in G_f)

f \leftarrow AUGMENT (f, c, P).

Update G_f.

RETURN f.
```

Assumption. Capacities are positive integers.

Integrality invariant. Throughout the algorithm, the flow values f(e) and the residual capacities $c_f(e)$ are integers.

Theorem (Integrality theorem)

There exists a max-flow f^* for which every flow value $f^*(e)$ is an integer.

Proof.

Since algorithm terminates, theorem follows from invariant.

Running time of Ford-Fulkerson algorithm

$\mathsf{Theorem}$

The total running time of Ford-Fulkerson algorithm is $O(m \ val(f^*))$, where m is the number of nodes.

Proof.

- By Lemma about maximal number of iterations, it suffice to show that what is inside of WHILE loop is O(m).
- Update of G_f is clearly O(m) as we just have to update each edge.
- The time to find a path in residual network is O(m) is we use either depth-first search or breadth-first search (see Lecture Notes or other material for the second year algorithm course CS/SE 2C03).
- Hence what is inside of WHILE loop is O(m), so the total time is $O(m \ val(f^*)$

Bad case of Ford-Fulkerson algorithm

An example of a flow network for which standard Ford-Fulkerson can take $\Theta(m \ val(f^*))$ time, where m is the number of edges and f^* is a maximum flow, which in this case is 2,000,000.

Choosing good augmenting paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate! (see demo)

Goal. Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with:

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges: Edmonds-Karp Algorithm $O(nm^2)$, where n-number of vertices and m-number of edges.

Edmonds-Karp Algorithm

• When the augmenting path is always a **shortest** path from s to t in the residual graph G_f (assuming each edge has unit distance), and breadth-first search is used to find such a path, the algorithm is called *Edmonds-Karp Algorithm*, or *Shortest Augmenting Path Algorithm*.

```
SHORTEST-AUGMENTING-PATH(G, s, t, c)

FOREACH e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual graph.

WHILE (there exists an augmenting path in G_f)

P \leftarrow BREADTH-FIRST-SEARCH (G_f, s, t).

f \leftarrow AUGMENT (f, c, P).

Update G_f.

RETURN f.
```

- Time complexity of Edmonds-Karp Algorithm is $O(m^2n)$.
- There are algorithms with complexities $O(n^2m)$ and $O(n^3)$.