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Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.

・Data mining.

・Open-pit mining.

・Bipartite matching.

・Network reliability.

・Baseball elimination.

・Image segmentation.

・Network connectivity.

・Distributed computing.

・Security of statistical data.

・Egalitarian stable matching.

・Network intrusion detection.

・Multi-camera scene reconstruction.

・Sensor placement for homeland security.

・Many, many, more.

Max-flow and min-cut applications
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liver and hepatic vascularization segmentation
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Bipartite matching

Def.  A graph G is bipartite if the nodes can be partitioned into two subsets 

L and R such that every edge connects a node in L to one in R.

Bipartite matching.  Given a bipartite graph G = (L ∪ R, E), find a max 

cardinality matching.
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Bipartite matching
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Bipartite matching: max flow formulation
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・Create digraph G' = (L ∪ R ∪ {s, t},  E' ).

・Direct all edges from L to R, and assign infinite (or unit) capacity.

・Add source s, and unit capacity edges from s to each node in L.

・Add sink t, and unit capacity edges from each node in R to t.

Bipartite matching: max flow formulation
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Max flow formulation: proof of correctness
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Theorem.  Max cardinality of a matching in G = value of max flow in G'.
Pf.  ≤

・Given a max matching M of cardinality k.

・Consider flow f that sends 1 unit along each of k paths.

・f is a flow, and has value k.   ▪

Max flow formulation: proof of correctness
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Max flow formulation: proof of correctness
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Theorem.  Max cardinality of a matching in G = value of max flow in G'.
Pf.  ≥

・Let f be a max flow in G' of value k.

・Integrality theorem  ⇒  k is integral and can assume f is 0-1.

・Consider M = set of edges from L to R with f (e) = 1.

- each node in L and R participates in at most one edge in M
- | M | = k:  consider cut (L ∪ s, R ∪ t)   ▪

Max flow formulation: proof of correctness
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Perfect matching in a bipartite graph
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Def. Given a graph G = (V, E) a subset of edges M ⊆ E is a perfect matching

if each node appears in exactly one edge in M.

Q.  When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings. 

・Clearly we must have | L | = | R |.

・What other conditions are necessary?

・What conditions are sufficient?

Perfect matching in a bipartite graph
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Perfect matching in a bipartite graph

Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes 

adjacent to nodes in S.

Observation.  If a bipartite graph G = (L ∪ R, E) has a perfect matching,

then | N(S) |  ≥  | S | for all subsets S ⊆ L.

Pf.  Each node in S has to be matched to a different node in N(S).  ▪
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Hall’s Theorem
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Theorem.  Let G = (L ∪ R, E) be a bipartite graph with | L | = | R |.
G has a perfect matching iff | N(S) |  ≥  | S | for all subsets S ⊆ L.

Pf.  ⇒  This was the previous observation.

Hall's theorem
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Proof of Hall’s theorem

Pf.  ⇐  Suppose G does not have a perfect matching.

・Formulate as a max flow problem and let (A, B) be min cut in G'.

・By max-flow min-cut theorem, cap(A, B) < | L |.

・Define LA = L ∩ A,  LB = L ∩ B ,  RA = R ∩ A.

・cap(A, B)  =  | LB | + | RA |.

・Since min cut can't use ∞ edges:  N(LA)  ⊆  RA.

・| N(LA) |  ≤  | RA |  =  cap(A, B)  –  | LB |   <   | L |  –  | LB |  =  | LA |.

・Choose S = LA .  ▪
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Proof of Hall's theorem
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Bipartite matching running time

Theorem

The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(mn) time, where n is the number of nodes and m is
the number of edges.
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Airline scheduling

45

Airline scheduling

Airline scheduling.

・Complex computational problem faced by nation's airline carriers.

・Produces schedules that are efficient in terms of:

- equipment usage, crew allocation, customer satisfaction

- in presence of unpredictable issues like weather, breakdowns

・One of largest consumers of high-powered algorithmic techniques.

"Toy problem."

・Manage flight crews by reusing them over multiple flights.

・Input:  set of k flights for a given day.

・Flight i leaves origin oi at time si and arrives at destination di destination 

at time fi.

・Minimize number of flight crews.
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Airline scheduling

Circulation formulation.  [to see if c crews suffice]

・For each flight i, include two nodes ui and vi.

・Add source s with demand -c, and edges (s, ui) with capacity 1.

・Add sink t with demand c, and edges (vi, t) with capacity 1.

・For each i, add edge (ui, vi) with lower bound and capacity 1.

・if flight j reachable from i, add edge (vi, uj) with capacity 1.
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Airline scheduling
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Airline scheduling: running time
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Airline scheduling:  running time

Theorem.  The airline scheduling problem can be solved in O(k3 log k) time.

Pf.

・k = number of flights.

・c = number of crews (unknown).

・O(k) nodes, O(k2) edges.

・At most k crews needed. 

       ⇒  solve lg k circulation  problems.

・Value of the flow is between 0 and k.
       ⇒  at most k augmentations per circulation problem.

・Overall time = O(k3 log k).

Remark.  Can solve in O(k3) time by formulating as minimum flow problem.

binary search for optimal value c*
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Airline scheduling: postmortem
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Airline scheduling:  postmortem

Remark.  We solved a toy problem.

Real-world problem models countless other factors:

・Union regulations:  e.g., flight crews can only fly certain number of 

hours in given interval.

・Need optimal schedule over planning horizon, not just one day.

・Deadheading has a cost.

・Flights don't always leave or arrive on schedule.

・Simultaneously optimize both flight schedule and fare structure.

Message.

・Our solution is a generally useful technique for efficient reuse of limited 

resources but trivializes real airline scheduling problem.

・Flow techniques useful for solving airline scheduling problems

(and are widely used in practice).

・Running an airline efficiently is a very difficult problem.

Ryszard Janicki Applications of Network Flow 16/16


