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Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.
* Data mining.
* Open-pit mining.
 Bipartite matching.
« Network reliability.
» Baseball elimination.
* Image segmentation.
* Network connectivity. : i
« Distributed computing. liver and hepatic vascularization segmentation
« Security of statistical data.
 Egalitarian stable matching.

» Network intrusion detection.

* Multi-camera scene reconstruction.

» Sensor placement for homeland security.
¢ Many, many, more.
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Bipartite matching

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L U R, E), find a max
cardinality matching.

matching: 1-2',3-1', 4-5'
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Bipartite matching

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G=(L U R, E), find a max
cardinality matching.

matching: 1-1', 2-2', 3-4', 4-5'
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Bipartite matching: max flow formulation

* Create digraph G'=(LURU {s,t}, E").

* Direct all edges from L to R, and assign infinite (or unit) capacity.
* Add source s, and unit capacity edges from s to each node in L.

* Add sink ¢, and unit capacity edges from each node in R to .
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Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'.
Pf. <

* Given a max matching M of cardinality k.

* Consider flow fthat sends 1 unit along each of k paths.

* fis a flow, and has value k. =
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Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'.
Pf. =

* Let fbe a max flow in G' of value k.
* Integrality theorem = k is integral and can assume fis 0-1.
* Consider M = set of edges from L to R with f(e) = 1.

- each node in L and R participates in at most one edge in M
- IMI=k: consider cut (LUs,RU?) =
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Perfect matching in a bipartite graph

Def. Given a graph G =(V, E) a subset of edges M CE is a perfect matching
if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?
Structure of bipartite graphs with perfect matchings.
* Clearly we must have ILI=IRI.

» What other conditions are necessary?
» What conditions are sufficient?
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Perfect matching in a bipartite graph

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L UR, E) has a perfect matching,
then IN(S)| = ISI for all subsets SCL.
Pf. Each node in S has to be matched to a different node in N(S). =

@

$={2,4,5}
N(S) = {2, 5"}

Ryszard Janicki Applications of Network Flow 9/16



Hall's Theorem

Theorem. Let G=(LUR,E) be a bipartite graph with ILI=IRI.
G has a perfect matching iff IN(S)I = IS| for all subsets SCL.

Pf. = This was the previous observation.

@
2

$={2,4,5}
N(S) = {2, 5"}

no perfect matching
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Proof of Hall's theorem

Pf. —< Suppose G does not have a perfect matching.

Formulate as a max flow problem and let (A, B) be min cut in G'.

By max-flow min-cut theorem, cap(A,B) <ILI.

Define Ly=LNA, Lg=LNB, Ry=RNA.

cap(A,B) = ILgl+IRy,|.

Since min cut can't use « edges: N(Ly) C Ry.

IN(LY! < IR,| = cap(A,B) — | Lgl < ILI — |Lgl = I L,L.
Choose S=L,. =

@ La  =1{2,4,5}
Le  ={1,3}
1 Ra ={2',5%
@ N(La) = {2, 5}
@
@
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Bipartite matching running time

The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(mn) time, where n is the number of nodes and m is
the number of edges.
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Airline scheduling

Airline scheduling.
» Complex computational problem faced by nation's airline carriers.
* Produces schedules that are efficient in terms of:
- equipment usage, crew allocation, customer satisfaction
- in presence of unpredictable issues like weather, breakdowns
* One of largest consumers of high-powered algorithmic techniques.

"Toy problem."
* Manage flight crews by reusing them over multiple flights.
* Input: set of k flights for a given day.
* Flight i leaves origin o; at time s; and arrives at destination d; destination
at time f.
* Minimize number of flight crews.
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Airline scheduling

Circulation formulation. [to see if ¢ crews suffice]
* For each flight i, include two nodes u; and v..
* Add source s with demand -c, and edges (s, u;)) with capacity 1.
* Add sink ¢ with demand ¢, and edges (v;, t) with capacity 1.
* For each i, add edge (u;, vi) with lower bound and capacity 1.
* if flight j reachable from i, add edge (v, u)) with capacity 1.

crew can end day
with any flight

crew can begin day
with any flight @ @ /

10 @ @ ®
e
use c crews ®@— .

[0, 1]

\

flight 2 is performed .
same crew can do flights 2 and 4
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Airline scheduling: running time

Theorem. The airline scheduling problem can be solved in O3 log k) time.
Pf.
* k= number of flights.
* ¢ =number of crews (unknown).
* O(k) nodes, O(k?) edges.
* At most k crews needed.
= solve Igk circulation problems. «<— binary search for optimal value c*
* Value of the flow is between 0 and k.
= at most k augmentations per circulation problem.
* Overall time = O(k3 log k).

Remark. Can solve in O(k% time by formulating as minimum flow problem.
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Airline scheduling: postmortem

Remark. We solved a toy problem.

Real-world problem models countless other factors:
» Union regulations: e.g., flight crews can only fly certain number of
hours in given interval.
» Need optimal schedule over planning horizon, not just one day.
» Deadheading has a cost.
* Flights don't always leave or arrive on schedule.
+ Simultaneously optimize both flight schedule and fare structure.

Message.
» Our solution is a generally useful technique for efficient reuse of limited
resources but trivializes real airline scheduling problem.
* Flow techniques useful for solving airline scheduling problems
(and are widely used in practice).
* Running an airline efficiently is a very difficult problem.

Ryszard Janicki Applications of Network Flow 16/16



