NP-Completeness and Intractability CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Acknowledgments: Material partially based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 8)

イロト イヨト イヨト イヨト

Typical O(...):

- $O(\log n)$
- O(n)
- O(n log n)
- $O(n^2)$ $O(n^k)$
- O(2ⁿ) O(kⁿ)

Classification:

 $\begin{array}{c}
O(\log n) \\
O(n) \\
O(n \log n)
\end{array} desired \\
O(n^{k}) : acceptable \\
O(2^{n}) : UNACCEPTABLE
\end{array}$

(notation $log n = log_2 n$) O(log(log(n))...

Fact

For every $k \ge 0$ and every $\alpha > 1$, there exists n_0 such that for every $n > n_0$:

 $n^k < \alpha^n$

Another classification:

 $O(n^k)$: polynomial, i.e. **GOOD** $O(\alpha^n)$: non-polynomial, i.e. **BAD**

・日・ ・ ヨ・ ・ ヨ・

≣ ∽ 3/67

Definition

The class **P** (from *Polynomial*) consists of those problems that are solvable in polynomial time. More specifically, they are problems that can be solved in $O(n^k)$ for some constant k. where n is the size of the input to the problem.

All problems except *independent set* and *competitive facility location* that were briefly mentioned at the end of Lecture Notes 1, considered so far in previous classes are in **P**

The class **P**: Why important and 'good'?

- While time ⊖(n¹⁰⁰) can reasonable be considered as intractable, there are few practical problems that require time of such degree polynomial.
- The polynomial time computable problems encountered in practice typically require much less time.
- Experience has shown that once a polynomial time algorithm for a problem is algorithm is discovered, more efficient algorithms often follow.
- Relationship between Turing Machines (abstract model of computations) and Random Access Machines (abstract model of executable programs) is polynomial.
- Relationship between Random Access Machines and programs in high level programming languages as Java, Haskell, etc. is linear.
- Relationships between all known models of computations (Turing Machines, Post Systems, Recursive Functions, etc.) are polynomial.

• A **Hamiltonian path** in a directed graph *G* is a path that goes through each node once.

- **Problem:** Does a directed graph contains a Hamiltonian path connecting two specified nodes?
- Exponential algorithm is easy, check all cases.
- Polynomial algorithm is not found.
- However, for a given path we can *verify* (in O(n) time) if it is Hamiltonian!

• 3 >

- "Does *G* have a Hamiltonian path from *s* to *t*?" is polynomially verifiable.
- "Does *G* have not a Hamiltonian path from *s* to *t*?" is not polynomially verifiable.

Definition

A **verifier** is an algorithm that can verify if a given instance is a solution or not.

- 4 回 2 - 4 □ 2 - 4 □

Angelic vs Demonic Semantics

• Consider the following automaton:

• Which is true? $ab \in L(M)$ or $ab \notin L(M)$?

< 67 ▶

æ

Angelic vs Demonic Semantics

• Consider the following automaton:

Which is true? ab ∈ L(M) or ab ∉ L(M)?
 Usually it is assumed that ab ∈ L(M). It is called angelic semantics.

Angelic vs Demonic Semantics

• Consider the following automaton:

Which is true? ab ∈ L(M) or ab ∉ L(M)?
 Usually it is assumed that ab ∈ L(M). It is called angelic semantics.

- **Angelic**: At each state an *angel* will tell you where to go, so if there is a good choice you will make it. The only bad case is when all choices are bad.
- **Demonic**: At each state a *demon* will tell you where to go, so if there is a bad choice you will make it. The only good case is when all choices are good.
- The 'angelic' approach is the classical one, used in classical complexity theory. The 'demonic' approach is about 25 years old, used often in fault tolerant systems.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Definition (with verifiers)

The class **NP** (from *Nondeterministic Polynomial*) consists of those problems that are **verifiable** in polynomial time. More specifically, they are problems that can be *verified* in $O(n^k)$ for some constant k. where n is the size of the input to the problem.

Hamiltonian Path from page 5 is such a problem!

Definition (with *nondeterministic* algorithms)

The class **NP** (from *Nondeterministic Polynomial*) consists of those problems that are *solvable* in polynomial time by *nondeterministic* algorithms. More specifically, they are problems that can be solved in $O(n^k)$ for some constant k. where n is the size of the input to the problem, by *nondeterministic* algorithms.

• The idea of *Nondeterministic Algorithms* is a simple consequence of *angelic* semantics.

Verifiers vs Nondeterministic Algorithms

- Nondeterministic algorithm (or nondeterministic Turing machine), if a solution exists, chooses the proper path to follow. Angelic semantics allows it.
- Every nondeterministic algorithm can be simulated by deterministic one (deterministic Turing machine), we just have to simulate all choices in an appropriate manner. If a solution exists, we will find it, but it may take at least exponential number of steps (all cases).

Proposition

Polynomial verifier \iff Polynomial Nondeterministic Algorithm.

Proof.

 (\Rightarrow) Assume we have a polynomial verifier. If a solution does exist, we chose a proper choice and the apply verifier. (\Leftarrow) A part of the algorithm that has been used after proper choice is a verifier.

P vs NP and NP-completeness

- Clearly P ⊆ NP, since every (deterministic) algorithm is also nondeterministic algorithm.
- The problem if **P** = **NP** or not, is an open million US dollars question (one of *millennium problems*).
- Informally, a problem is NP-complete, if it is in NP and it is "hard" as any problem in NP. If P ≠ NP, NP-complete problems do not have polynomial solutions.
- For every problem in **NP** we have a (deterministic) algorithm, just apply verifier to all cases, but its complexity is at least exponential.
- We will show that if any NP-complete problem has a polynomial solution, then P = NP (Cook-Levin Theorem)
- In practice, for **NP**-complete problems we are looking for approximate or good on average algorithms.

3

・ロン ・回 と ・ 回 と ・ 回 と

Polynomial-time reductions

Desiderata. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Definition (Reduction)

Let X and Y be two problems and assume that we already have a polynomial time solution to Y. Suppose that we have a procedure that transforms any instance α of X into some instance of β with the following characteristics:

- The transformation takes polynomial time.
- 2 The answers are the same. that is, the answer for α is "yes" if and only if the answer to β is also "yes".

We call such a procedure a **polynomial-time reduction** algorithm.

- Notation. $X \leq_P Y$ (X is reduced to Y).
- Note. We pay time for transformation.
- Caveat. Don't mistake $X \leq_p Y$ with $Y \leq_P X$.

14/67

Polynomial-time reductions

Design algorithms. If $X \le_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \le_P Y$ and $Y \le_P X$, we use notation $X =_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

ヨン くヨン

Polynomial-time reductions: examples

- We have already used reduction in this course:
 - Problem 4 (*CluNet*) from Assignment 1 can be reduced to *Stable marriage*, i.e. *CluNet* ≤_P *Stable marriage*
 - Bipartite Matching has been reduced to Max Flow, i.e. Bipartite Matching ≤_P Max Flow
 - "Toy" Airline Scheduling has been reduced to Max Flow, i.e. "Toy" Airline Scheduling \leq_P Max Flow

In all cases above transformation (cost of reduction) was linear.

- We will consider the following well known problems:
 - Independent set
 - Vertex cover
 - Set cover
 - 3-satisfiability
- We will show that:

3-satisfiability \leq_P Independent set \equiv_P Vertex cover \leq_P Set cover

Polynomial-time reductions and intractability

- **NP**-completeness is about showing how hard a problem is rather than how easy it is.
- We will use polynomial time reductions in the opposite way to show that a problem is **NP**-complete.
- If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.
- For **NP**-completeness, we cannot assume that there is absolutely no polynomial time algorithm for problem *X*.
- The proof methodology is similar however, in that we prove that problem Y is **NP**-complete on the assumption that problem X is also **NP**-complete.
- Hence, we will analyze some non trivial polynomial-time reductions in details.

▲□→ ▲ □→ ▲ □→

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

A ■

< ∃⇒

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4 ?

Ex. Is there a vertex cover of size ≤ 3 ?

- 17

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

20/67

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

⇒

- Let *S* be any independent set of size *k*.
- V-S is of size n-k.
- Consider an arbitrary edge (*u*, *v*).
- *S* independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)

 \Rightarrow either $u \in V - S$ or $v \in V - S$ (or both).

• Thus, V - S covers (u, v).

```
Theorem. VERTEX-COVER \equiv_P INDEPENDENT-SET.
```

Pf. We show S is an independent set of size k iff V - S is a vertex cover of size n - k.

⇐

- Let V S be any vertex cover of size n k.
- S is of size k.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since V S is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. •

Set cover

SET-COVER. Given a set *U* of elements, a collection $S_1, S_2, ..., S_m$ of subsets of *U*, and an integer *k*, does there exist a collection of $\leq k$ of these sets whose union is equal to *U*?

Sample application.

- *m* available pieces of software.
- Set *U* of *n* capabilities that we would like our system to have.
- The *i*th piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all *n* capabilities using fewest pieces of software.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_1 = \{ 3, 7 \}$$

$$S_2 = \{ 3, 4, 5, 6 \}$$

$$S_5 = \{ 5 \}$$

$$S_3 = \{ 1 \}$$

$$k = 2$$

$$S_4 = \{ 2, 4 \}$$

$$S_5 = \{ 5 \}$$

$$S_6 = \{ 1, 2, 6, 7 \}$$

a set cover instance

Vertex cover reduces to set cover

Theorem. VERTEX-COVER \leq_{p} SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe U = E.
- Include one set for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

• Then $Y = \{S_v : v \in X\}$ is a set cover of size k.

Ryszard Janicki NP-Completeness and Intractability

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S).

• Then $X = \{v : S_v \in Y\}$ is a vertex cover of size k in G.

Ryszard Janicki NP-Completeness and Intractability

Satisfiability

Literal. A boolean variable or its negation. Clause. A disjunction of literals. Conjunctive normal form. A propositional formula Φ that is the conjunction of clauses. x_i or $\overline{x_i}$ $C_j = x_1 \lor \overline{x_2} \lor x_3$ $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = \left(\begin{array}{ccc} \overline{x_1} & \vee & x_2 & \vee & x_3 \end{array} \right) \land \left(\begin{array}{ccc} x_1 & \vee & \overline{x_2} & \vee & x_3 \end{array} \right) \land \left(\begin{array}{ccc} \overline{x_1} & \vee & x_2 & \vee & x_4 \end{array} \right)$$

yes instance: $x_1 = true, x_2 = true, x_3 = false, x_4 = false$

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

3-satisfiability reduces to independent set

Lemma. *G* contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let *S* be independent set of size *k*.

- *S* must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

 $Pf \leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. •$

 \mathbf{G} $\mathbf{k} = \mathbf{3}$ $\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET = *p* VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_p SET-COVER.
- Encoding with gadgets: $3-SAT \leq_{P} INDEPENDENT-SET$.

Transitivity. If $X \le_P Y$ and $Y \le_P Z$, then $X \le_P Z$. Pf idea. Compose the two algorithms.

EX. 3-SAT \leq_{P} INDEPENDENT-SET \leq_{P} VERTEX-COVER \leq_{P} SET-COVER.

A 3 1 A 3 1

P, NP, and EXP

- P. Decision problems for which there is a poly-time algorithm.
- NP. Decision problems for which there is a poly-time certifier (nondeterministic poly-time algorithm).
- **EXP**. Decision problems for which there is an exponential-time algorithm.

Claim

 $\mathsf{P}\subseteq\mathsf{NP}\subsetneq\mathsf{EXP}$

Proof.

Clearly $\mathbf{P} \subseteq \mathbf{NP}$, since every (deterministic) algorithm is also nondeterministic algorithm. Since by considering all possible choices we can simulate every nondeterministic algorithm by deterministic one, but the complexity is exponential so $\mathbf{NP} \subseteq \mathbf{EXP}$. The property $\mathbf{NP} \neq \mathbf{EXP}$ follows from the observation that not every problem from \mathbf{EXP} has a polynomial verifier. For example "Does *G* have not a Hamiltonian path from *s* to *t*?" clearly is in \mathbf{EXP} , but it does not have a polynomial verifier.

P vs NP again

Does $\mathbf{P} = \mathbf{NP}$?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

32/67

NP-completeness

Definition

A problem Y is **NP**-complete if it satisfies the following two conditions:

- $\mathbf{O} \ Y \in \mathbf{NP}$
- **2** every $X \in \mathbf{NP}$ is polynomially reducible to Y, i.e. $X \leq_P Y$.

Let NPC denote the class of all NP-complete problems.

Theorem

Suppose Y is NP-complete. Then $Y \in P \iff P = NP$.

Proof.

- (\Leftarrow) If $\mathbf{P} = \mathbf{NP}$, then $Y \in \mathbf{P}$ because $Y \in \mathbf{NP}$.
- (\Rightarrow) Suppose $Y \in \mathbf{P}$.
 - Consider any problem $X \in \mathbf{NP}$. Since $X \leq_P Y$, we have $X \in \mathbf{P}$.
 - This implies $\mathbf{NP} \subseteq \mathbf{P}$.
 - We already know $\mathbf{P} \subseteq \mathbf{NP}$. Thus $\mathbf{P} = \mathbf{NP}$.

Theorem

If X is NP-complete, $X \in NP$, and $X \leq_P Y$, then Y is NP-complete.

Proof.

Let A be any problem from NP, i.e. $A \in NP$. Since X is NP-complete, then $A \leq_P X$. Hence we have $A \leq_P X \leq_P Y$. This is true for any $A \in NP$, so by (2) of the definition of NP-completeness, Y is also NP-complete.

Fundamental question. Do there exist "natural" **NP**-complete problems? If not, **NPC** is empty!

- 4 回 ト - 4 回 ト - 4 回 ト

- If $P \cap (NP$ -complete) = \emptyset then P = NP.
- Does such 'red element' exist?

・ロン ・回と ・ヨン・

æ

SAT Problem: Idea

• An example of a Boolean formula:

$$\Phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z}),$$

where \overline{x} means $\neg x$, so $x = 0 \iff \overline{x} = 1$ and $x = 1 \iff \overline{x} = 0$.

Definition

A Boolean formula Φ is **satisfiable** if so some assignment of 0's and 1's to the variables makes the formula to eveluate to 1.

- $(\overline{x} \land y) \lor (x \land \overline{z}) = 1$ if x = 0, y = 1, z = 0. This formula is satisfiable.
- $(\overline{x} \land y) \land (x \land \overline{z})$ is never 1, always 0. This formula is not satisfiable.

・ 同 ト ・ ヨ ト ・ ヨ ト …

SAT Problem and Cook-Levin Theorem

Definition

The **satisfiability problem** (SAT) is to test whether Boolean formula is satisfiable.

Theorem (Cook-Levin)

SAT is NP-complete.

æ

< 3 b

Cook-Levin Theorem: how to prove it?

Theorem (Cook-Levin)

SAT is **NP**-complete.

- How such theorem can be proven? Especially how to prove that any problem in **NP** is polynomial time reducible to *SAT*. There is infinite number of problems and most of them has not even be formulated yet. How should we think?
- • Every finite entity can be described as a string.
 - Every book is a string.
 - Jorge Luis Borges, *Babel Library*, **1941**Each book consists of 409 pages; each page 40 lines; each line about 80 letters of black colour..."
 "There is no two identical books in the library"
 "Library is total... It describes everything and in all languages.

Everything: detailed history of the past ... "

- Every book in Borges library is a string.
 Let L = all books in Borges library, the language L is finite! Is our knowledge finite?
- Maybe encoding is a solution? Each program is a rewriting system, it eats sequences of bits (characters) and produces sequences of bits (characters).

590

Informal Description of Turing Machines

- Turing Machine (TM) can both write on the tape and read from it.
- The read-write head can move both to the left and to the right.
- The special states for rejecting and accepting take effect immediately.
- There are many slightly different definitions of Turing Machines.

Turing Machines:

- recognize languages, i.e. they can tell if x ∈ L, for some language L.
- decide languages, i.e. they can tell if $x \in L$ or $x \notin L$, for some language L
- *loop*, i.e. there is x such that a Turing machine will run forever trying to analyze x.
- Turing Machine *halts* is it does not loop.
- In this course our Turing machines *decide* languages.

(4回) (4回) (4回)

Time Complexity of Turing Machines

• Let *M* be a *deterministic* Turing machine that *halts on all inputs*, i.e. does not loop.

Definition

The **running time** or **time complexity** of *M* is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the *maximum* number of steps that *M* uses on any input of length *n*, and $\mathbb{N} = \{1, 2, ...\}$.

Important.

• Turing machines are very inefficient but their relationship with RAM programs (i.e. normal algorithms) is polynomial.

• For Turing machines we are always interested in if time complexity is polynomial or not, not in efficient practical complexity.

・ 回 ト ・ ヨ ト ・ ヨ ト

Codes

- All Turing machines may be *coded* as strings.
- All configurations of a given Turing machines can be coded as strings. We just need to code the current state, current state position, perhaps current tape number, etc.
- All algorithms can be coded as strings.
- All instances can be coded as strings.
- All problems can be coded as strings.
- Sets of codes are *formal languages* so theory of Turing Machines can be use with full power.
- Algorithm does not exist if its code does not exists!

- For any concept C (i.e. graph, algorithm, instance of a solution, Turing machine, etc.), (C) denotes a code of C.
- Details of coding are not important, but we assume its existence, and one coding technique for a given concept.
- $\langle C \rangle$ is a string of symbols, i.e. $\langle C \rangle \in \Sigma^*$ for some finite Σ . $A = \{\langle G \rangle \mid G \text{ is a connected undirected graph }$ $B = \{\langle G_{Ham}, (s, t) \rangle \mid G_{Ham} \text{ has a Hamiltonian path from } s \text{ to } t\}$
- Both A and B are **languages**, i.e. $A \subseteq \Sigma_A^*$, $B \subseteq \Sigma_B^*$, where Σ_A, Σ_B are alphabets of codings.

(ロ) (同) (E) (E) (E)

Claim

$\mathcal{N} \subset \mathbf{I} \longrightarrow \mathcal{N} / \mathcal{L} \mathbf{I}$	Χ	$\in \mathbf{P}$	\leftrightarrow	$\langle X \rangle$	$\in \mathbf{P}$
---	---	------------------	-------------------	---------------------	------------------

Proof.

It requires more knowledge about Turing Machines, it is beyond the scope of this course.

• The above result allows using Turing Machines to prove the Cook-Levin Theorem.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-complete.

Proof. (idea).

Recall that a problem Y is **NP**-complete if it satisfies the following two conditions:

- $\bigcirc Y \in \mathsf{NP}$
- **2** every $X \in \mathbf{NP}$ is polynomially reducible to Y, i.e. $X \leq_P Y$.

The proof consists of two parts.

- SAT ∈ NP. A nondeterministic polynomial time algorithm (angelic semantics) can guess an assignment to agiven formula Φ and accept if the assignment satisfies Φ.
- **2** The hard part of the proof is showing that any problem in **NP** is polynomial time reducible to *SAT*.

Proof. (continuation).

We construct a polynomial time reduction for each language L in **NP** to *SAT*. The reduction for L takes a string w and produces a Boolean formula Φ that simulates the nondeterministic polynomial (NP) Turing machine for L on input w. If the machine accepts, ϕ has a satisfying assignment that correspond to the accepting computation. If the machine doesn't accept, no assignment satisfies Φ . Therefore, $w \in L$ if and only if Φ is satisfiable. The proof idea explores the fact that formula is a *propositional calculus formula*, so it can express $w \in L$ for any L! A slightly different proof, in details, is given in the textbook.

向下 イヨト イヨト

- For most of the problems, it is usually easy to show that $B \in \mathbf{NP}$.
- In many cases we cannot find any polynomial solution, but we are unable to prove that $B \notin \mathbf{P}$ either.
- Proving that B is NP-complete is in most cases easier (or just possible) than B ∉ P.
- If *B* is **NP**-complete, it is practically considered as *non-polynomial*.
- Efficient solution must take particular properties into account.

| 4 回 2 4 U = 2 4 U =

Other NP-complete Problems

- SAT problem is the only problem that has been proven from the definition.
- All other problems have been proven **NP**-complete by using **polynomial reduction**.

Fact

If X is **NP**-complete and $X \leq_P Y$, i.e. X is polynomially reducible to Y, then Y is **NP**-complete.

 Since so far we only have SAT, the second problem X₂ must be a reduction of SAT, i.e SAT ≤_P X₂.

(4月) イヨト イヨト

Conjunctive Normal Form (CNF)

• Conjunctive Normal Form (CNF): $(x \lor y) \land (y \lor \overline{x} \lor z) \land (\overline{z} \lor x) \in CNF.$ $((x \lor y) \land z) \lor \overline{x} \notin CNF$

Theorem

Every Boolean formula Ψ can be polynomially transformed into Φ in CNF such that $\Psi \equiv \Phi$.

Theorem

The satisfiability problem for Boolean expressions in CNF is **NP**-complete.

Proof.

From Theorem above!

A (1) < A (2)</p>

3-Conjunctive Normal Form (or 3-satisfiability)

• 3-Conjunctive Normal Form (3-CNF): $(\overline{t} \lor x \lor y) \land *y \lor \overline{x} \lor z) \in 3$ -CNF. $(x \lor y) \land (y \lor \overline{x} \lor z \lor t) \notin 3$ -CNF.

Theorem

SAT for 3-CNF is NP-complete.

Proof.

We will polynomially reduce SAT for CNF to SAT for 3-CNF. Let $k \ge 0$. Replace in CNF each $(x_1 \lor \ldots \lor x_k)$ by $(x_1 \lor x_2 \lor y_1) \land (x_3 \lor \overline{y}_1 \lor y_2) \land (x_4 \lor \overline{y}_2 \lor y_3) \land \ldots$ $\land (x_{k-2} \lor \overline{y}_{k-4} \lor y_{k-3}) \land (x_{k-1} \lor x_k \lor \overline{y}_{k-3}),$ where y_1, \ldots, y_{k-3} are new Boolean variables. For example: $x_1 \lor x_2 \lor x_3 \lor x_4 \rightarrow (x_1 \lor x_2 \lor y_1) \land (x_3 \lor x_4 \lor \overline{y}_4).$ • Transformation is polynomial.

•
$$x_1 \vee \ldots \vee x_k = 1 \iff \exists x_i . x_i = 1$$

• If $x_i = 1$ then $y_1 = y_2 = \ldots = y_{i-2} = 1$, $y_{i-1} = y_i = \ldots = y_{k-3} = 0$ guarantees that the replacement has the value 1.

Hence SAT for CNF is reduced to SAT for 3-CNF.

Since:

3-satisfiability \leq_P Independent set \equiv_P Vertex cover \leq_P Set cover

and 3-satisfiability is NP-complete, then

- Independent set,
- Vertex cover and
- Set cover

are **NP**-complete as well!

Theorem (Clique Problem)

Clique problem is NP-complete.

Proof. (idea).

We will polynomially reduce SAT for 3-CNF to clique problem.

Idea of transformation:

$$\Phi = \overbrace{(x_1 \lor x_1 \lor x_2)}^{\Phi_1} \land \overbrace{(\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2)}^{\Phi_2} \land \overbrace{(\overline{x}_1 \lor x_2 \lor x_2)}^{\Phi_3}$$

 $\Phi = 1$ for $x_1 = 0, x_2 = 1$, and $\Phi = \Phi_1 \wedge \Phi_2 \wedge \Phi_3$.

- No edge between nodes of Φ_i
- No edge between x and \overline{x}
- Transformation is polynomial.
- $\Phi = \Phi_1 \land \ldots \land \Phi_k$ is satisfiable \iff the graph contains *k*-clique.

Decision problems vs search problems

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$.

- **Ex.** To find a vertex cover of size $\leq k$:
 - Determine if there exists a vertex cover of size $\leq k$.
 - Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k 1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
 - Include v in the vertex cover.
 - Recursively find a vertex cover of size $\leq k 1$ in $G \{v\}$.

delete v and all incident edges

Bottom line. VERTEX-COVER = $_{P}$ FIND-VERTEX-COVER.

Decision problems, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$. Optimization problem. Find a vertex cover of minimum size.

- Ex. To find vertex cover of minimum size:
 - (Binary) search for size *k** of min vertex cover.
 - Solve corresponding search problem.

Bottom line. VERTEX-COVER = $_p$ FIND-VERTEX-COVER = $_p$ OPTIMAL-VERTEX-COVER.

NP-complete problems: Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V?

NP-complete problems: directed Hamilton cycle

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed cycle Γ that contains every node in V?

Theorem. DIR-HAM-CYCLE \leq_{p} HAM-CYCLE.

Pf. Given a digraph G = (V, E), construct a graph G' with 3n nodes.

NP-complete problems: directed Hamilton cycle

Lemma. *G* has a directed Hamilton cycle iff *G*' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ .
- Then G' has an undirected Hamilton cycle (same order).

Pf. ⇐

- Suppose G' has an undirected Hamilton cycle Γ' .
- Γ' must visit nodes in *G*' using one of following two orders: ..., *B*, *G*, *R*, *B*, *G*, *R*, *B*, *G*, *R*, *B*, ...

 $\ldots, B, R, G, B, R, G, B, R, G, B, \ldots$

Blue nodes in Γ' make up directed Hamilton cycle Γ in G, or reverse of one.

$$B = blue, G = green, R = red$$

・ 回 と ・ ヨ と ・ モ と …

Directed Hamilton Cycle and Hamilton Cycle are NP-Complete

Theorem

3-SAT \leq_P DIR-HAM-CYCLE.

Proof.

Idea: Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable. See Kleinberg-Tardos for details.

Corollary

 $3-SAT \leq_P DIR-HAM-CYCLE \leq_P HAM-CYCLE$

• Both directed Hamilton cycle and Hamilton cycle are NP-complete.

→ 同 → → 目 → → 目 →

LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple path consisting of at least k edges?

Theorem

HAM-CYCLE \leq_P LONGEST-PATH.

Corollary

3-SAT \leq_P DIR-HAM-CYCLE \leq_P HAM-CYCLE \leq_P LONGEST-PATH.

• LONGEST-PATH is NP-complete.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

NPC-problems: Traveling Salesperson Problem (TSP)

TSP. Given a set of *n* cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V ?

Theorem

HAM-CYCLE \leq_P TSP.

Proof.

• Given instance G = (V, E) of HAM-CYCLE, create *n* cities with distance function $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \end{cases}$

$$(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

• TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle. •

• Note that we have triangle inequality $d(u, w) \le d(u, v) + d(v, w)$.

NPC-problems: 3-colorability

3-COLOR. Given an undirected graph *G*, can the nodes be colored red, green and blue so that no adjacent nodes have the same color?

yes instance

Application of 3-colorability: register allocation

- Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.
- Interference graph. Nodes are program variables names; edge between u and v if there exists an operation where both u and v are "live" at the same time.
- Observation. Can solve register allocation problem iff interference graph is *k*-colorable.
- Fact. 3-COLOR ≤_P k-REGISTER-ALLOCATION for any constant k ≥ 3.

・ 回 と ・ ヨ と ・ モ と …

Theorem

 $3-SAT \leq_P 3-COLOR.$

Proof.

Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable. See Kleinberg-Tardos for details.

• 3-COLOR is NP-complete.

▲御▶ ▲ 臣▶

æ

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

Ex. { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, *W* = 3754. Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Theorem. 3-SAT \leq_{P} SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

• SUBSET-SUM is NP-complete.

NPC-problems: Partition

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers $v_1, ..., v_m$, can they be partitioned into two subsets that add up to the same value $\frac{1}{2} \sum_i v_i$?

Theorem. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let W, w_1 , ..., w_n be an instance of SUBSET-SUM.

• Create instance of PARTITION with m = n + 2 elements.

- $v_1 = w_1, v_2 = w_2, \dots, v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W$

• Lemma: there exists a subset that sums to *W* iff there exists a partition since elements v_{n+1} and v_{n+2} cannot be in the same partition.

$$v_{n+1} = 2 \sum_i w_i - W$$
Wsubset A $v_{n+2} = \sum_i w_i + W$ $\sum_i w_i - W$ subset BRyszard JanickiNP-Completeness and Intractability65/6

NPC-problems: Scheduling with release times

SCHEDULE. Given a set of *n* jobs with processing time t_j , release time r_j , and deadline d_j , is it possible to schedule all jobs on a single machine such that job *j* is processed with a contiguous slot of t_j time units in the interval $[r_j, d_j]$? Theorem. SUBSET-SUM \leq_P SCHEDULE.

Pf. Given SUBSET-SUM instance $w_1, ..., w_n$ and target W, construct an instance of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

- Create *n* jobs with processing time $t_j = w_j$, release time $r_j = 0$, and no deadline $(d_j = 1 + \sum_j w_j)$.
- Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W + 1$.
- Lemma: subset that sums to W iff there exists a feasible schedule.

NP-complete problems

Ryszard Janicki	NP-Completeness and Intractability	67/6
-----------------	------------------------------------	------