
NP-Completeness and Intractability
CS 3AC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

Acknowledgments: Material partially based on Algorithm Design by Jon Kleinberg and Éva Tardos (Chapter 8)

Ryszard Janicki NP-Completeness and Intractability 1/67

Classifying big O classes

Typical O(. . .): (notation log n = log2n)

O(log n) O(log(log(n)) . . .

O(n)

O(n log n)

O(n2) O(nk)

O(2n) O(kn)

Classification:

O(log n)
O(n)
O(n log n)

 desired

O(nk) : acceptable

O(2n) : UNACCEPTABLE

Ryszard Janicki NP-Completeness and Intractability 2/67

Classifying big O classes

Fact

For every k ≥ 0 and every α > 1, there exists n0 such that for
every n > n0:

nk < αn

Another classification:

O(nk) : polynomial, i.e. GOOD

O(αn) : non-polynomial, i.e. BAD

Ryszard Janicki NP-Completeness and Intractability 3/67

The class P

Definition

The class P (from Polynomial) consists of those problems that are
solvable in polynomial time. More specifically, they are problems
that can be solved in O(nk) for some constant k . where n is the
size of the input to the problem.

All problems except independent set and competitive facility
location that were briefly mentioned at the end of Lecture Notes 1,
considered so far in previous classes are in P

Ryszard Janicki NP-Completeness and Intractability 4/67

The class P: Why important and ‘good’?

While time Θ(n100) can reasonable be considered as
intractable, there are few practical problems that require time
of such degree polynomial.
The polynomial time computable problems encountered in
practice typically require much less time.
Experience has shown that once a polynomial time algorithm
for a problem is algorithm is discovered, more efficient
algorithms often follow.
Relationship between Turing Machines (abstract model of
computations) and Random Access Machines (abstract model
of executable programs) is polynomial.
Relationship between Random Access Machines and programs
in high level programming languages as Java, Haskell, etc. is
linear.
Relationships between all known models of computations
(Turing Machines, Post Systems, Recursive Functions, etc.)
are polynomial.

Ryszard Janicki NP-Completeness and Intractability 5/67

Verifiers

A Hamiltonian path in a directed graph G is a path that
goes through each node once.

Problem: Does a directed graph contains a Hamiltonian path
connecting two specified nodes?

Exponential algorithm is easy, check all cases.

Polynomial algorithm is not found.

However, for a given path we can verify (in O(n) time) if it is
Hamiltonian!

Ryszard Janicki NP-Completeness and Intractability 6/67

Verifiers

“Does G have a Hamiltonian path from s to t?” - is
polynomially verifiable.

“Does G have not a Hamiltonian path from s to t?” - is not
polynomially verifiable.

Definition

A verifier is an algorithm that can verify if a given instance is a
solution or not.

Ryszard Janicki NP-Completeness and Intractability 7/67

Angelic vs Demonic Semantics

Consider the following automaton:

Which is true? ab ∈ L(M) or ab /∈ L(M)?

Usually it is assumed that ab ∈ L(M). It is called angelic
semantics.

Ryszard Janicki NP-Completeness and Intractability 8/67

Angelic vs Demonic Semantics

Consider the following automaton:

Which is true? ab ∈ L(M) or ab /∈ L(M)?

Usually it is assumed that ab ∈ L(M). It is called angelic
semantics.

Ryszard Janicki NP-Completeness and Intractability 8/67

Angelic vs Demonic Semantics

Consider the following automaton:

Which is true? ab ∈ L(M) or ab /∈ L(M)?

Usually it is assumed that ab ∈ L(M). It is called angelic
semantics.

Ryszard Janicki NP-Completeness and Intractability 8/67

Angelic vs Demonic Semantics

Angelic: At each state an angel will tell you where to go, so
if there is a good choice you will make it. The only bad case
is when all choices are bad.

Demonic: At each state a demon will tell you where to go, so
if there is a bad choice you will make it. The only good case
is when all choices are good.

The ‘angelic’ approach is the classical one, used in classical
complexity theory. The ‘demonic’ approach is about 25 years
old, used often in fault tolerant systems.

Ryszard Janicki NP-Completeness and Intractability 9/67

The class NP

Definition (with verifiers)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are verifiable in polynomial time. More
specifically, they are problems that can be verified in O(nk) for
some constant k . where n is the size of the input to the problem.

Hamiltonian Path from page 5 is such a problem!

Definition (with nondeterministic algorithms)

The class NP (from Nondeterministic Polynomial) consists of
those problems that are solvable in polynomial time by
nondeterministic algorithms. More specifically, they are problems
that can be solved in O(nk) for some constant k . where n is the
size of the input to the problem, by nondeterministic algorithms.

The idea of Nondeterministic Algorithms is a simple
consequence of angelic semantics.

Ryszard Janicki NP-Completeness and Intractability 10/67

Verifiers vs Nondeterministic Algorithms

Nondeterministic algorithm (or nondeterministic Turing
machine), if a solution exists, chooses the proper path to
follow. Angelic semantics allows it.
Every nondeterministic algorithm can be simulated by
deterministic one (deterministic Turing machine), we just have
to simulate all choices in an appropriate manner. If a solution
exists, we will find it, but it may take at least exponential
number of steps (all cases).

Proposition

Polynomial verifier ⇐⇒ Polynomial Nondeterministic Algorithm.

Proof.

(⇒) Assume we have a polynomial verifier. If a solution does exist,
we chose a proper choice and the apply verifier.
(⇐) A part of the algorithm that has been used after proper choice
is a verifier.

Ryszard Janicki NP-Completeness and Intractability 11/67

P vs NP and NP-completeness

Clearly P ⊆ NP, since every (deterministic) algorithm is also
nondeterministic algorithm.

The problem if P = NP or not, is an open million US dollars
question (one of millennium problems).

Informally, a problem is NP-complete, if it is in NP and it is
“hard” as any problem in NP. If P 6= NP, NP-complete
problems do not have polynomial solutions.

For every problem in NP we have a (deterministic) algorithm,
just apply verifier to all cases, but its complexity is at least
exponential.

We will show that if any NP-complete problem has a
polynomial solution, then P = NP (Cook-Levin Theorem)

In practice, for NP-complete problems we are looking for
approximate or good on average algorithms.

Ryszard Janicki NP-Completeness and Intractability 12/67

Polynomial-time reductions
Desiderata. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Definition (Reduction)

Let X and Y be two problems and assume that we already have a
polynomial time solution to Y . Suppose that we have a procedure
that transforms any instance α of X into some instance of β with
the following characteristics:

1 The transformation takes polynomial time.

2 The answers are the same. that is, the answer for α is “yes” if
and only if the answer to β is also “yes”.

We call such a procedure a polynomial-time reduction algorithm.

7

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

instance I
(of X)

solution S to I
Algorithm

for Y

Algorithm for X
Ryszard Janicki NP-Completeness and Intractability 13/67

Polynomial-time reductions

Notation. X ≤P Y (X is reduced to Y).

Note. We pay time for transformation.

Caveat. Don’t mistake X ≤p Y with Y ≤P X .

Ryszard Janicki NP-Completeness and Intractability 14/67

Polynomial-time reductions

9

Polynomial-time reductions

Design algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time,

then Y cannot be solved in polynomial time.

Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Ryszard Janicki NP-Completeness and Intractability 15/67

Polynomial-time reductions: examples

We have already used reduction in this course:

Problem 4 (CluNet) from Assignment 1 can be reduced to
Stable marriage, i.e. CluNet ≤P Stable marriage
Bipartite Matching has been reduced to Max Flow, i.e.
Bipartite Matching ≤P Max Flow
“Toy” Airline Scheduling has been reduced to Max Flow, i.e.
“Toy” Airline Scheduling ≤P Max Flow

In all cases above transformation (cost of reduction) was
linear.

We will consider the following well known problems:

Independent set
Vertex cover
Set cover
3-satisfiability

We will show that:

3-satisfiability ≤P Independent set ≡P Vertex cover ≤P Set cover

Ryszard Janicki NP-Completeness and Intractability 16/67

Polynomial-time reductions and intractability

NP-completeness is about showing how hard a problem is
rather than how easy it is.

We will use polynomial time reductions in the opposite way to
show that a problem is NP-complete.

If X ≤P Y and X cannot be solved in polynomial time, then
Y cannot be solved in polynomial time.

For NP-completeness, we cannot assume that there is
absolutely no polynomial time algorithm for problem X .

The proof methodology is similar however, in that we prove
that problem Y is NP-complete on the assumption that
problem X is also NP-complete.

Hence, we will analyze some non trivial polynomial-time
reductions in details.

Ryszard Janicki NP-Completeness and Intractability 17/67

Independent set

11

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset

of vertices S ⊆ V such that | S | ≥ k, and for each edge at most one of its

endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

30

How to find closest pair with one point in each side?

Def. Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim. If | i – j | ≥ 12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥ 2 (½ δ). ▪

Fact. Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮

Ryszard Janicki NP-Completeness and Intractability 18/67

Vertex cover

12

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of

vertices S ⊆ V such that | S | ≤ k, and for each edge, at least one of its

endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

vertex cover of size 4

independent set of size 6

30

How to find closest pair with one point in each side?

Def. Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim. If | i – j | ≥ 12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥ 2 (½ δ). ▪

Fact. Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮

Ryszard Janicki NP-Completeness and Intractability 19/67

Vertex cover and independent set reduce to one another

13

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

independent set of size 6

vertex cover of size 4

30

How to find closest pair with one point in each side?

Def. Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim. If | i – j | ≥ 12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥ 2 (½ δ). ▪

Fact. Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮

Ryszard Janicki NP-Completeness and Intractability 20/67

Vertex cover and independent set reduce to one another

14

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇒

・Let S be any independent set of size k.

・V − S is of size n – k.

・Consider an arbitrary edge (u, v).

・S independent ⇒ either u ∉ S or v ∉ S (or both)

 ⇒ either u ∈ V − S or v ∈ V − S (or both).

・Thus, V − S covers (u, v).

Ryszard Janicki NP-Completeness and Intractability 21/67

Vertex cover and independent set reduce to one another

15

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇐

・Let V − S be any vertex cover of size n – k.

・S is of size k.

・Consider two nodes u ∈ S and v ∈ S.

・Observe that (u, v) ∉ E since V − S is a vertex cover.

・Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪

Ryszard Janicki NP-Completeness and Intractability 22/67

Set cover

16

Set cover

SET-COVER. Given a set U of elements, a collection S1, S2, …, Sm of subsets of

U, and an integer k, does there exist a collection of ≤ k of these sets whose

union is equal to U ?

Sample application.

・m available pieces of software.

・Set U of n capabilities that we would like our system to have.

・The ith piece of software provides the set Si ⊆ U of capabilities.

・Goal: achieve all n capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }
S1 = { 3, 7 } 	
 	
 S4 = { 2, 4 }
S2 = { 3, 4, 5, 6 }	
 S5 = { 5 }
S3 = { 1 }	
	
 	
 S6 = { 1, 2, 6, 7 }
k = 2

a set cover instance

Ryszard Janicki NP-Completeness and Intractability 23/67

Vertex cover reduces to set cover

Theorem. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER

instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

・Universe U = E.

・Include one set for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

d

c

17

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a b

e

f

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	
 	
 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	
 Sd = { 5 }

Se = { 1 }	
 	
 	
 Sf = { 1, 2, 6, 7 }

Ryszard Janicki NP-Completeness and Intractability 24/67

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇒ Let X ⊆ V be a vertex cover of size k in G.

・Then Y = { Sv : v ∈ X } is a set cover of size k. ▪

18

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a

d

b

e

f c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	
 	
 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	
 Sd = { 5 }

Se = { 1 }	
 	
 	
 Sf = { 1, 2, 6, 7 }

cf

Ryszard Janicki NP-Completeness and Intractability 25/67

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇐ Let Y ⊆ S be a set cover of size k in (U, S).

・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G. ▪

19

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	
 	
 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	
 Sd = { 5 }

Se = { 1 }	
 	
 	
 Sf = { 1, 2, 6, 7 }

a

d

b

e

f ccf

Ryszard Janicki NP-Completeness and Intractability 26/67

Satisfiability

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional

formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Key application. Electronic design automation (EDA).

21

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Ryszard Janicki NP-Completeness and Intractability 27/67

3-satisfiability reduces to independent set

Theorem. 3-SAT ≤ P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

・G contains 3 nodes for each clause, one for each literal.

・Connect 3 literals in a clause in a triangle.

・Connect literal to each of its negations.

22

3-satisfiability reduces to independent set

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
k = 3

G

Ryszard Janicki NP-Completeness and Intractability 28/67

3-satisfiability reduces to independent set

23

3-satisfiability reduces to independent set

Lemma. G contains independent set of size k = | Φ | iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.

・S must contain exactly one node in each triangle.

・Set these literals to true (and remaining variables consistently).

・Truth assignment is consistent and all clauses are satisfied.

Pf ⇐ Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k. ▪

k = 3

G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
Ryszard Janicki NP-Completeness and Intractability 29/67

Review

24

Review

Basic reduction strategies.

・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf idea. Compose the two algorithms.

Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

Ryszard Janicki NP-Completeness and Intractability 30/67

P, NP, and EXP

P. Decision problems for which there is a poly-time algorithm.
NP. Decision problems for which there is a poly-time certifier
(nondeterministic poly-time algorithm).
EXP. Decision problems for which there is an
exponential-time algorithm.

Claim

P ⊆ NP EXP

Proof.

Clearly P ⊆ NP, since every (deterministic) algorithm is also
nondeterministic algorithm. Since by considering all possible choices we
can simulate every nondeterministic algorithm by deterministic one, but
the complexity is exponential so NP ⊆ EXP. The property NP 6= EXP
follows from the observation that not every problem from EXP has a
polynomial verifier. For example “Does G have not a Hamiltonian path
from s to t?” clearly is in EXP, but it does not have a polynomial
verifier.

Ryszard Janicki NP-Completeness and Intractability 31/67

P vs NP again

Does P = NP?

The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes. Efficient algorithms for 3-SAT, TSP, 3-COLOR, FACTOR, …

If no. No efficient algorithms possible for 3-SAT, TSP, 3-COLOR, …

Consensus opinion. Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP

P = NP

14

Ryszard Janicki NP-Completeness and Intractability 32/67

NP-completeness

Definition

A problem Y is NP-complete if it satisfies the following two
conditions:

1 Y ∈ NP

2 every X ∈ NP is polynomially reducible to Y , i.e. X ≤P Y .

Let NPC denote the class of all NP-complete problems.

Theorem

Suppose Y is NP-complete. Then Y ∈ P ⇐⇒ P = NP.

Proof.

(⇐) If P = NP, then Y ∈ P because Y ∈ NP.
(⇒) Suppose Y ∈ P.

Consider any problem X ∈ NP. Since X ≤P Y , we have X ∈ P.

This implies NP ⊆ P.

We already know P ⊆ NP. Thus P = NP.

Ryszard Janicki NP-Completeness and Intractability 33/67

NP-completeness: basic tool

Theorem

If X is NP-complete, X ∈ NP, and X ≤P Y , then Y is
NP-complete.

Proof.

Let A be any problem from NP, i.e. A ∈ NP. Since X is
NP-complete, then A ≤P X . Hence we have A ≤P X ≤P Y . This
is true for any A ∈ NP, so by (2) of the definition of
NP-completeness, Y is also NP-complete.

Fundamental question. Do there exist “natural” NP-complete
problems? If not, NPC is empty!

Ryszard Janicki NP-Completeness and Intractability 34/67

If P ∩ (NP-complete) = ∅ then P = NP.

Does such ‘red element’ exist?

Ryszard Janicki NP-Completeness and Intractability 35/67

SAT Problem: Idea

An example of a Boolean formula:

Φ = (x ∧ y) ∨ (x ∧ z),

where x means ¬x , so x = 0 ⇐⇒ x = 1 and
x = 1 ⇐⇒ x = 0.

Definition

A Boolean formula Φ is satisfiable if so some assignment of 0’s
and 1’s to the variables makes the formula to eveluate to 1.

(x ∧ y) ∨ (x ∧ z) = 1 if x = 0, y = 1, z = 0.
This formula is satisfiable.

(x ∧ y) ∧ (x ∧ z) is never 1, always 0.
This formula is not satisfiable.

Ryszard Janicki NP-Completeness and Intractability 36/67

SAT Problem and Cook-Levin Theorem
Definition

The satisfiability problem (SAT) is to test whether Boolean
formula is satisfiable.

Theorem (Cook-Levin)

SAT is NP-complete.

Ryszard Janicki NP-Completeness and Intractability 37/67

Cook-Levin Theorem: how to prove it?
Theorem (Cook-Levin)

SAT is NP-complete.

How such theorem can be proven? Especially how to prove that any
problem in NP is polynomial time reducible to SAT . There is
infinite number of problems and most of them has not even be
formulated yet. How should we think?

Every finite entity can be described as a string.
Every book is a string.
Jorge Luis Borges, Babel Library, 1941
Each book consists of 409 pages; each page 40 lines; each line
about 80 letters of black colour...”
“There is no two identical books in the library”
“Library is total... It describes everything and in all languages.
Everything: detailed history of the past...”
Every book in Borges library is a string.
Let L = all books in Borges library, the language L is finite! Is
our knowledge finite?
Maybe encoding is a solution? Each program is a rewriting
system, it eats sequences of bits (characters) and produces
sequences of bits (characters).

Informal Description of Turing Machines

a b b ba a

Two−way, read/write

Q

Turing Machine (TM) can both write on the tape and read
from it.
The read-write head can move both to the left and to the
right.
The special states for rejecting and accepting take effect
immediately.
There are many slightly different definitions of Turing
Machines.

Ryszard Janicki NP-Completeness and Intractability 39/67

Turing Machines

Turing Machines:

recognize languages, i.e. they can tell if x ∈ L, for some
language L.

decide languages, i.e. they can tell if x ∈ L or x /∈ L, for some
language L

loop, i.e. there is x such that a Turing machine will run
forever trying to analyze x .

Turing Machine halts is it does not loop.

In this course our Turing machines decide languages.

Ryszard Janicki NP-Completeness and Intractability 40/67

Time Complexity of Turing Machines

Let M be a deterministic Turing machine that halts on all
inputs, i.e. does not loop.

Definition

The running time or time complexity of M is the function
f : N→ N, where f (n) is the maximum number of steps that M
uses on any input of length n, and N = {1, 2, . . .}.

Important.
• Turing machines are very inefficient but their relationship with
RAM programs (i.e. normal algorithms) is polynomial.
• For Turing machines we are always interested in if time
complexity is polynomial or not, not in efficient practical
complexity.

Ryszard Janicki NP-Completeness and Intractability 41/67

Codes

All Turing machines may be coded as strings.

All configurations of a given Turing machines can be coded as
strings. We just need to code the current state, current state
position, perhaps current tape number, etc.

All algorithms can be coded as strings.

All instances can be coded as strings.

All problems can be coded as strings.

Sets of codes are formal languages so theory of Turing
Machines can be use with full power.

Algorithm does not exist if its code does not exists!

Ryszard Janicki NP-Completeness and Intractability 42/67

Languages Defined by Problems

For any concept C (i.e. graph, algorithm, instance of a
solution,Turing machine, etc.), 〈C 〉 denotes a code of C .

Details of coding are not important, but we assume its
existence, and one coding technique for a given concept.

〈C 〉 is a string of symbols, i.e. 〈C 〉 ∈ Σ∗ for some finite Σ.
A = {〈G 〉 | G is a connected undirected graph }
B = {〈GHam, (s, t)〉 | GHam has a Hamiltonian path from s to t}
Both A and B are languages, i.e. A ⊆ Σ∗

A, B ⊆ Σ∗
B , where

ΣA,ΣB are alphabets of codings.

Ryszard Janicki NP-Completeness and Intractability 43/67

Codes and Problems

Claim

X ∈ P ⇐⇒ 〈X 〉 ∈ P

Proof.

It requires more knowledge about Turing Machines, it is beyond
the scope of this course.

The above result allows using Turing Machines to prove the
Cook-Levin Theorem.

Ryszard Janicki NP-Completeness and Intractability 44/67

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-complete.

Proof. (idea).

Recall that a problem Y is NP-complete if it satisfies the following two
conditions:

1 Y ∈ NP

2 every X ∈ NP is polynomially reducible to Y , i.e. X ≤P Y .

The proof consists of two parts.

1 SAT ∈ NP. A nondeterministic polynomial time algorithm (angelic
semantics) can guess an assignment to agiven formula Φ and accept
if the assignment satisfies Φ.

2 The hard part of the proof is showing that any problem in NP is
polynomial time reducible to SAT .

Proof. (continuation).

We construct a polynomial time reduction for each language L in
NP to SAT . The reduction for L takes a string w and produces a
Boolean formula Φ that simulates the nondeterministic polynomial
(NP) Turing machine for L on input w . If the machine accepts, φ
has a satisfying assignment that correspond to the accepting
computation. If the machine doesn’t accept, no assignment
satisfies Φ. Therefore, w ∈ L if and only if Φ is satisfiable.
The proof idea explores the fact that formula is a propositional
calculus formula, so it can express w ∈ L for any L!
A slightly different proof, in details, is given in the textbook.

Ryszard Janicki NP-Completeness and Intractability 46/67

Why NP-completeness?

For most of the problems, it is usually easy to show that
B ∈ NP.

In many cases we cannot find any polynomial solution, but we
are unable to prove that B /∈ P either.

Proving that B is NP-complete is in most cases easier (or just
possible) than B /∈ P.

If B is NP-complete, it is practically considered as
non-polynomial.

Efficient solution must take particular properties into account.

Ryszard Janicki NP-Completeness and Intractability 47/67

Other NP-complete Problems

SAT problem is the only problem that has been proven from
the definition.

All other problems have been proven NP-complete by using
polynomial reduction.

Fact

If X is NP-complete and X ≤P Y , i.e. X is polynomially reducible
to Y , then Y is NP-complete.

Since so far we only have SAT, the second problem X2 must
be a reduction of SAT, i.e SAT ≤P X2.

Ryszard Janicki NP-Completeness and Intractability 48/67

Conjunctive Normal Form (CNF)

Conjunctive Normal Form (CNF):
(x ∨ y) ∧ (y ∨ x ∨ z) ∧ (z ∨ x) ∈ CNF .
((x ∨ y) ∧ z) ∨ x /∈ CNF

Theorem

Every Boolean formula Ψ can be polynomially transformed into Φ
in CNF such that Ψ ≡ Φ.

Theorem

The satisfiability problem for Boolean expressions in CNF is
NP-complete.

Proof.

From Theorem above!

Ryszard Janicki NP-Completeness and Intractability 49/67

3-Conjunctive Normal Form (or 3-satisfiability)
3-Conjunctive Normal Form (3-CNF):

(t ∨ x ∨ y) ∧ ∗y ∨ x ∨ z) ∈ 3-CNF.
(x ∨ y) ∧ (y ∨ x ∨ z ∨ t) /∈ 3-CNF.

Theorem

SAT for 3-CNF is NP-complete.

Proof.

We will polynomially reduce SAT for CNF to SAT for 3-CNF.
Let k ≥ 0. Replace in CNF each (x1 ∨ . . . ∨ xk) by
(x1 ∨ x2∨y1) ∧ (x3 ∨ y1 ∨ y2) ∧ (x4 ∨ y2 ∨ y3) ∧ . . .

∧ (xk−2 ∨ yk−4 ∨ yk−3) ∧ (xk−1 ∨ xk ∨ yk−3),
where y1, . . . , yk−3 are new Boolean variables.
For example: x1 ∨ x2 ∨ x3 ∨ x4 → (x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ y4).

Transformation is polynomial.

x1 ∨ . . . ∨ xk = 1 ⇐⇒ ∃xi .xi = 1

If xi = 1 then y1 = y2 = . . . = yi−2 = 1, yi−1 = yi = . . . = yk−3 = 0
guarantees that the replacement has the value 1.

Hence SAT for CNF is reduced to SAT for 3-CNF.
Ryszard Janicki NP-Completeness and Intractability 50/67

Other NP-complete problems

Since:

3-satisfiability ≤P Independent set ≡P Vertex cover ≤P Set cover

and 3-satisfiability is NP-complete, then

Independent set,

Vertex cover and

Set cover

are NP-complete as well!

Ryszard Janicki NP-Completeness and Intractability 51/67

Theorem (Clique Problem)

Clique problem is NP-complete.

Proof. (idea).

We will polynomially reduce SAT for 3-CNF to clique problem.

Idea of transformation:

Φ =

Φ1︷ ︸︸ ︷
(x1 ∨ x1 ∨ x2)∧

Φ2︷ ︸︸ ︷
(x1 ∨ x2 ∨ x2)∧

Φ3︷ ︸︸ ︷
(x1 ∨ x2 ∨ x2)

Φ = 1 for x1 = 0, x2 = 1, and Φ = Φ1 ∧ Φ2 ∧ Φ3.
No edge between nodes of Φi

No edge between x and x

Transformation is polynomial.

Φ = Φ1 ∧ . . . ∧ Φk is satisfiable ⇐⇒ the graph contains k-clique.

Decision problems vs search problems

25

Search problems

Decision problem. Does there exist a vertex cover of size ≤ k ?
Search problem. Find a vertex cover of size ≤ k.

Ex. To find a vertex cover of size ≤ k :

・Determine if there exists a vertex cover of size ≤ k.

・Find a vertex v such that G − { v } has a vertex cover of size ≤ k − 1.

(any vertex in any vertex cover of size ≤ k will have this property)

・Include v in the vertex cover.

・Recursively find a vertex cover of size ≤ k − 1 in G − { v }.

Bottom line. VERTEX-COVER ≡ P FIND-VERTEX-COVER.

delete v and all incident edges

Ryszard Janicki NP-Completeness and Intractability 53/67

Decision problems, search and optimization problems

26

Optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k ?
Search problem. Find a vertex cover of size ≤ k.
Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:

・(Binary) search for size k* of min vertex cover.

・Solve corresponding search problem.

Bottom line. VERTEX-COVER ≡ P FIND-VERTEX-COVER ≡ P OPTIMAL-VERTEX-COVER.

Ryszard Janicki NP-Completeness and Intractability 54/67

NP-complete problems: Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

28

Hamilton cycle

yes
Ryszard Janicki NP-Completeness and Intractability 55/67

NP-complete problems: directed Hamilton cycle

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed

cycle Γ that contains every node in V ?

Theorem. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a digraph G = (V, E), construct a graph G' with 3n nodes.

vin

aout

bout

cout

ein

v vout

v

30

Directed hamilton cycle reduces to hamilton cycle

a

b

c

d

e

din

G G'

Ryszard Janicki NP-Completeness and Intractability 56/67

NP-complete problems: directed Hamilton cycle

31

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. ⇒

・Suppose G has a directed Hamilton cycle Γ.

・Then G' has an undirected Hamilton cycle (same order).

Pf. ⇐

・Suppose G' has an undirected Hamilton cycle Γ'.

・Γ' must visit nodes in G' using one of following two orders:

 …, B, G, R, B, G, R, B, G, R, B, …

 …, B, R, G, B, R, G, B, R, G, B, …

・Blue nodes in Γ' make up directed Hamilton cycle Γ in G,

or reverse of one. ▪

B = blue, G = green, R = red

Ryszard Janicki NP-Completeness and Intractability 57/67

Directed Hamilton Cycle and Hamilton Cycle are
NP-Complete

Theorem

3-SAT ≤P DIR-HAM-CYCLE.

Proof.

Idea: Given an instance Φ of 3-SAT, we construct an instance of
DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.
See Kleinberg-Tardos for details.

Corollary

3-SAT ≤P DIR-HAM-CYCLE ≤P HAM-CYCLE

Both directed Hamilton cycle and Hamilton cycle are
NP-complete.

Ryszard Janicki NP-Completeness and Intractability 58/67

NPC-problems: Longest path

LONGEST-PATH. Given a directed graph G = (V ,E), does there
exists a simple path consisting of at least k edges?

Theorem

HAM-CYCLE ≤P LONGEST-PATH.

Corollary

3-SAT ≤P DIR-HAM-CYCLE ≤P HAM-CYCLE ≤P

LONGEST-PATH.

LONGEST-PATH is NP-complete.

Ryszard Janicki NP-Completeness and Intractability 59/67

NPC-problems: Traveling Salesperson Problem (TSP)

TSP. Given a set of n cities and a pairwise distance function
d(u, v), is there a tour of length ≤ D ?

HAM-CYCLE. Given an undirected graph G = (V ,E), does there
exist a simple cycle Γ that contains every node in V ?

Theorem

HAM-CYCLE ≤P TSP.

Proof.

42

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

Theorem. HAM-CYCLE ≤ P TSP.

Pf.

・Given instance G = (V, E) of HAM-CYCLE, create n cities with distance

function

・TSP instance has tour of length ≤ n iff G has a Hamilton cycle. ▪

Remark. TSP instance satisfies triangle inequality: d(u, w) ≤ d(u, v) + d(v, w).

€

d(u, v) =
 1 if (u, v) ∈ E
 2 if (u, v) ∉ E
⎧
⎨
⎩

Note that we have triangle inequality d(u,w) ≤ d(u, v) + d(v ,w).

Ryszard Janicki NP-Completeness and Intractability 60/67

NPC-problems: 3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green,

and blue so that no adjacent nodes have the same color?

56

3-colorability

yes instance

Ryszard Janicki NP-Completeness and Intractability 61/67

Application of 3-colorability: register allocation

Register allocation. Assign program variables to machine
register so that no more than k registers are used and no two
program variables that are needed at the same time are
assigned to the same register.

Interference graph. Nodes are program variables names; edge
between u and v if there exists an operation where both u
and v are “live” at the same time.

Observation. Can solve register allocation problem iff
interference graph is k-colorable.

Fact. 3-COLOR ≤P k-REGISTER-ALLOCATION for any
constant k ≥ 3.

Ryszard Janicki NP-Completeness and Intractability 62/67

NPC-problems: 3-colorability

Theorem

3-SAT ≤P 3-COLOR.

Proof.

Given 3-SAT instance Φ, we construct an instance of 3-COLOR
that is 3-colorable iff Φ is satisfiable. See Kleinberg-Tardos for
details.

3-COLOR is NP-complete.

Ryszard Janicki NP-Completeness and Intractability 63/67

NPC-problems: Subset sum

66

Subset sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

Ex. { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.

Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary.

Poly-time reduction must be polynomial in binary encoding.

67

Subset sum

Theorem. 3-SAT ≤ P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM

that has solution iff Φ is satisfiable.

SUBSET-SUM is NP-complete.

Ryszard Janicki NP-Completeness and Intractability 64/67

NPC-problems: Partition

72

Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned into two

subsets that add up to the same value ½ Σi vi ?

Theorem. SUBSET-SUM ≤ P PARTITION.

Pf. Let W, w1, …, wn be an instance of SUBSET-SUM.

・Create instance of PARTITION with m = n + 2 elements.

- v1 = w1, v2 = w2, …, vn = wn, vn+1 = 2 Σi wi – W, vn+2 = Σi wi + W

・Lemma: there exists a subset that sums to W iff there exists a partition

since elements vn+1 and vn+2 cannot be in the same partition. ▪

vn+2 = Σi wi + W

vn+1 = 2 Σi wi – W

Σi wi – W

W subset A

subset B

Ryszard Janicki NP-Completeness and Intractability 65/67

NPC-problems: Scheduling with release times

73

Scheduling with release times

SCHEDULE. Given a set of n jobs with processing time tj, release time rj , and

deadline dj, is it possible to schedule all jobs on a single machine such that

job j is processed with a contiguous slot of tj time units in the interval [rj, dj]?

Ex.

1 + Σj wj0

74

Scheduling with release times

Theorem. SUBSET-SUM ≤ P SCHEDULE.

Pf. Given SUBSET-SUM instance w1, …, wn and target W, construct an instance

of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

・Create n jobs with processing time tj = wj, release time rj = 0,

and no deadline (dj = 1 + Σj wj).

・Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W + 1.

・Lemma: subset that sums to W iff there exists a feasible schedule. ▪

W W+1

must schedule job 0 here

must schedule
jobs 1 to n
either here or here

1 + Σj wj0

74

Scheduling with release times

Theorem. SUBSET-SUM ≤ P SCHEDULE.

Pf. Given SUBSET-SUM instance w1, …, wn and target W, construct an instance

of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

・Create n jobs with processing time tj = wj, release time rj = 0,

and no deadline (dj = 1 + Σj wj).

・Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W + 1.

・Lemma: subset that sums to W iff there exists a feasible schedule. ▪

W W+1

must schedule job 0 here

must schedule
jobs 1 to n
either here or here

30

How to find closest pair with one point in each side?

Def. Let si be the point in the 2 δ-strip, with the ith smallest y-coordinate.

Claim. If | i – j | ≥ 12, then the distance

between si and sj is at least δ.

Pf.

・No two points lie in same ½ δ-by-½ δ box.

・Two points at least 2 rows apart

have distance ≥ 2 (½ δ). ▪

Fact. Claim remains true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

 2 rows

½δ

½δ

½δ

39

i

j

⋮

⋮

NP-complete problems

75

Polynomial-time reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing partitioning

PLANAR-3-COLOR is just GRAPH-3-COLOR for planar graphs.

Ryszard Janicki NP-Completeness and Intractability 67/67

