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Abstract

The authors recently proposed a simplex-based Tardos’ algorithm
which is strongly polynomial if the coefficient matrix is totally unimod-
ular and the auxiliary problems are non-degenerate. Motivated by the
algorithmic practically of such methods, we introduce a modification
which circumvents the determination of the largest sub-determinant
while keeping the same theoretical performance. Assuming the coef-
ficient matrix is integer and non-degeneracy, the proposed algorithm
is polynomial in the dimension of the input data and the maximum
absolute value of a sub-determinant of the coefficient matrix.

Keywords: Tardos’ algorithm; simplex method; strong polynomiality

1 Introduction, main result, and related works

1.1 Introduction

Linear optimization deals with the minimization problem : min{ c>x | Ax =
b, x ≥ 0 } where the coefficient matrix A ∈ Rm×n, the right hand side
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b ∈ Rm, and the objective vector c ∈ Rn are given data. The question of
whether a linear optimization problem can be solved in strongly polynomial
time – that is, the existence of an algorithm independent from the input
data length and polynomial in m and n – is listed by Smale [21] as one of
the top mathematical problems for the XXI century. The celebrated Tardos’
algorithm [23, 24] for linear optimization is polynomial in m, n, and the size
LA of A. We recall that the size of A = [aij] is defined, for A integer, as
LA =

∑
i,j log(|aij| + 1). Thus, Tardos’ algorithm is strongly polynomial if

the size of A is polynomial in m and n which is the case for combinatorial
problems such as minimum cost flow, bipartite matching, multicommodity
flow, and vertex packing in chordal graphs.

A key element of Tardos’ algorithm is to identify the coordinates equal to
zero at optimality by solving several auxiliary dual problems via an ellipsoid
or interior-point method. Considering only the primal problem, Orlin [17]
proposed a modification of Tardos’ algorithm which specifically identifies the
coordinates strictly positive at optimality. Mizuno [15] modified Tardos’ al-
gorithm by using a dual simplex method to solve the auxiliary problems.
Assuming that A is integer and non-degeneracy, Mizuno’s algorithm is poly-
nomial in m, n, and ∆A. We recall that ∆A denotes the largest absolute value
of a sub-determinant of A and that the non-degeneracy assumption holds if
the basic variables are strictly positive for every basic feasible solution of the
auxiliary problems. In particular, Mizuno’s algorithm is strongly polynomial
if A is totally unimodular and non-degeneracy holds. Note that the com-
plexity analysis uses Kitahara and Mizuno’s bounds [10, 11] which depend
on the values of the entries rather than on the data length. Thus, the com-
plexity of Mizuno’s algorithm depends on ∆A rather than on LA. Combining
Orlin’s and Mizuno’s approaches, the authors introduced a primal-simplex
based Tardos’ algorithm with the same theoretical complexity as Mizuno’s
algorithm, see [16]. Tardos’ algorithm and the mentioned modifications by
Orlin, Mizuno, and Mizuno et al. are of rather theoretical interest. In partic-
ular, the determination of ∆A might be challenging as the naive upper bound
of m!Ammax is typically impractically large; we recall that Amax = max |ai,j|.
In addition, the coefficients of the auxiliary problems might be impractically
large too. For instance, the size of the coefficients in Orlin’s algorithm can be
m times larger than those in Tardos’ or Mizuno’s algorithm. The complexity
analysis of Mizuno et al. algorithm requires total unimodularity for A. We
conclude this section by recalling the min-cost flow problems introduced by
Zadeh [29] for which the network simplex method requires an exponential



3

number of steps, and thus illustrate the gap between the excellent practical
performances of the simplex method and its theoretical properties.

1.2 Main result

We proposed an enhanced primal-simplex based Tardos’ algorithm circum-
venting the determination of ∆A while slightly strengthening the complexity.
The enhanced algorithm is obtained by modifying the auxiliary problem used
in Mizuno et al. algorithm. Assuming A is integer and non-degeneracy, the
enhanced Mizuno et al. algorithm is polynomial in m, n, and ∆A. Thus the
strong polynomiallity holds for a slightly larger class than totally unimodu-
lar matrices, e.g. a coefficient matrix resulting from the addition to a totally
unimodular matrix of a fixed number of rows (constraints) with entries poly-
nomially bounded in m and n. The determination of ∆A is circumvented via
a simple search procedure and the practically of the algorithm improves as
the coefficients of the auxiliary problems are typically substantially smaller in
the enhanced Mizuno et al. algorithm. After recalling some related works in
Section 1, the pre-processing and reformulations into auxiliary problems are
presented in Section 2. Sections 3 and 4 outline the proposed algorithm: the
main procedure – which requires the determination of ∆A – and, then, the
enhanced algorithm which circumvents the determination of ∆A. The cor-
rectness and the complexity analysis of the algorithm are proven in Sections 5
and 6.

1.3 Related works

We recall a few results dealing with the geometry, combinatorics and com-
putational aspects of linear optimization. Finding a good bound on the
maximal diameter ∆(n,m) of the vertex-edge graph of a polytope in terms
of its dimension n and the number of its facets m is one of the basic open
questions in polytope theory. Although some bounds are known, the be-
haviour of the function ∆(n,m) is largely unknown. The Hirsch conjecture,
formulated in 1957 and reported in [5], states that ∆(n,m) is linear in m and
n: ∆(n,m) ≤ m− n. The conjecture was recently disproved by Santos [19].
However, the asymptotic behaviour of ∆(n,m) is not well understood: the
best upper bounds — due to Kalai and Kleitman [8], Todd [26], and Sukegawa
and Kitahara [22] — are quasi-polynomial. The behaviour of ∆(n,m) is his-
torically closely connected with the theory of the simplex method as ∆(n,m)
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is a lower bound for the worst complexity of simplex methods. Bonifas et
al. [2] showed that the diameter is an O(n4∆2

A log(n∆A)) extending the pre-
vious bound of O(m16n3(logmn)3) by Dyer and Frieze [6] for totally unimod-
ular instances. Dadush and Hähnle [4] used another parameter associated to
the coefficient matrix A, called the curvature δA, to analyze the behaviour of
the shadow simplex method. They showed that the expected number of piv-
ots of the shadow simplex method is an O(n

3

δA
log n

δA
). Both δA and ∆A can be

regarded as a measure of how well-conditioned A is. Note that 1/δA ≤ n∆2
A.

Vavasis and Ye [27] proposed a primal-dual path-following interior-point al-
gorithm with an O(n3.5 log(nχ̄A)) iteration complexity bound where χ̄A can
be regarded as condition number associated with A. Megiddo et al. [13]
proposed a modification that circumvents the determination of χ̄A to en-
hanced the implementability. Another variant of Vavasis and Ye algorithm
was proposed by Monteiro and Tsuchiya [14]

In a similar fashion, we circumvent the determination of ∆A while Megiddo
et al. circumvent the determination of χ̄A. While we assume non-degeneracy,
Dadush and Hähnle algorithm analysis is non-deterministic. In practice, de-
generate pivots are typically rare and our algorithm may exhibit reasonable
performance under moderate degeneracy. The proposed algorithm may visit
infeasible points as, for example, Anstreicher and Terlaky monotonic build-
up simplex and Paparrizos exterior point simplex, or Fukuda and Terlaky
criss-cross method, see [1, 7, 18, 25] and references therein.

2 Pre-processing and reformulation via aux-

iliary problems

We consider the following linear optimization formulation:

minimize c>x
s.t. Ax = b,

x ≥ 0
(1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. In addition, A is assumed
to have full row rank m and be integer. We recall that Amax, respectively ∆A,
denotes the largest absolute value of an entry, respectively a sub-determinant,
of A. Note that Amax ≤ ∆A and ∆A ≤ m!Ammax.
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2.1 Pre-processing and problem reformulations: re-
duction and scaling

The optimal solution of (1), if any, is assumed without loss of generality to
be unique. Otherwise c could be perturbed by (ε, ε2, . . . , εn) for a sufficiently
small ε > 0. Such perturbations have no impact on the analysis of the pro-
posed algorithm as it is based on the results of Kitahara and Mizuno [10, 11]
which are independent of c. From an algorithmic viewpoint, perturbations
are not required as one can instead consider a lexicographical order if a tie
occurs when choosing the entering variable via the simplex method with
Dantzig’s rule.

Let K∗ ⊆ N = {1, 2, . . . , n} be the set of indices i such that x∗i > 0 for
the optimal solution x∗ of (1) – which is assumed to exist. The proposed
algorithm inductively builds a subset K̄ ⊆ K∗ through solving an auxiliary
problem. If K̄ = K∗ we obtained the optimal solution. Otherwise, we obtain
a smaller, yet equivalent, problem by deleting the variables corresponding to
K̄. We first observe that (1) is equivalent to:

minimize c>
K̄
xK̄ + c>KxK

s.t. AK̄xK̄ + AKxK = b,
xK̄ free, xK ≥ 0

(2)

where K = N \ K̄ and K̄ is an arbitrary subset of K∗.
The reduced problem (3) is obtained by eliminating free variables in xK̄ as

follows. Let G be a m×m sub-matrix of A such that the first |K̄| columns
form AK̄ , and H = G−1. The Gaussian elimination for Ax = b of the
variables xi for i ∈ K̄ is performed via HAx = Hb. Let H1 consist of the
first |K̄| rows of H, and H2 denote the remainder. The equality HAx = Hb
yields:

H1AK̄xK̄ +H1AKxK = H1b,
H2AK̄xK̄ +H2AKxK = H2b

where H1AK̄ = I and H2AK̄ = 0 by the definition of H. Hence, the reduced
problem is:

minimize (c>K − c>
K̄
H1AK)xK + c>

K̄
H1b

s.t. H2AKxK = H2b,
xK ≥ 0.

(3)

Let xK be an optimal solution of (3). Then x = (xK̄ ,xK) with xK̄ =
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H1b−H1AKxK is an optimal solution of (2). Setting A′ = H2AK , b′ = H2b,
c′ = cK − A>KH>1 cK̄ , and x′ = xK , the reduced problem (3) is reformulated
as the standard linear optimization problem (4) where the constant in the
objective function is omitted:

minimize c′>x′

s.t. A′x′ = b′,
x′ ≥ 0.

(4)

Observe that HA has full row rank and thus A′ too. Problems (1) and (4)
are equivalent: If L∗ is an optimal basis of (4), then K̄ ∪ L∗ is an optimal
basis of (1). Let m′ = m−|K̄|, respectively n′ = n−|K̄|, denote the number
of equality constraints, respectively variables, of (4). To obtain the desired
auxiliary problem, we rewrite (4) and get a simplex tableau with respect to
some basis L ⊆ K of A′ and set L̄ = K \ L as follows:

minimize c′>x′

s.t. x′L + (A′L)−1A′
L̄
x′
L̄

= (A′L)−1b′,
x′ ≥ 0.

(5)

Considering a scaling factor κ = ‖A′>(A′A′>)−1b′‖2/(mnn
′Amax∆ +m′) for

some ∆, yields the following scaled problem:

minimize c′>x′

s.t. x′L + (A′L)−1A′
L̄
x′
L̄

= (A′L)−1b′/κ,
x′ ≥ 0.

(6)

The scaling factor κ is always strictly positive in our algorithm and, thus, a
basis is optimal for (6) if and only if it is optimal for (4) and for the simplex
tableau (5). Note that since A′ has full row rank, A′A′> is positive definite
and thus (A′A′>)−1 is well defined.

2.2 Auxiliary problem

The auxiliary problem is obtained from (6) by rounding up the right hand
side vector where dae denotes a vector whose i-th coordinate is the smallest
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integer not less than the i-th coordinate of a:

minimize c′>x′

s.t. x′L + (A′L)−1A′
L̄
x′
L̄

= d(A′L)−1b′/κe,
x′ ≥ 0,

(7)

Note that a feasible basis of (6) is feasible for (7) as (7) is a relaxation of (6).
The key feature of (7) is that the coordinates of the right hand side vectors
are small integers, see Lemma 6. Thus, (7) can be solved efficiently by the
simplex method, yielding the strong polynomiality analysis.

3 Main procedure

The main procedure of the algorithm is frequently called to solve (1) and
involves, as subroutine, a two-phase simplex method to solve (7), see Sec-
tion 3.1. While ∆ ≥ ∆A guaranties that (1) is solved by the main procedure,
(1) may be solved even if ∆ < ∆A. The enhanced primal-simplex based
Tardos’ algorithm is presented in Section 4.

3.1 Two-phase simplex method TwoS((1); F, K̄∗)

Input: Problem (1).

Output: F which is either infeasbile or unbounded or feasible and
finite, and an optimal basis K̄∗ of (1) if F = feasible and finite.

Phase I: Solve the following auxiliary problem via the simplex method with
Dantzig’s rule: a non-negative slack variable is added for each con-
straint and the sum of the slacks is minimized. The optimal value σ
of this auxiliary problem is zero if and only if (1) is feasible. Output
infeasbile or unbounded for F if σ > 0. If σ = 0, the associated
optimal basis yields a feasible basis K̄0 for (1) used to initialize Phase
II.

Phase II: Starting from K̄0, solve (1) via the simplex method with Dantzig’s
rule. Output infeasbile or unbounded for F if (1) is unbounded;
otherwise output feasible and finite and an optimal basis K̄∗ for
(1) is obtained.
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3.2 Main procedure Proc((1), ∆; F, K̄∗)

Input: Problem (1) and ∆ > 0.

Output: F which is either infeasbile or unbounded, feasible and
finite, Degenerate, or unidentified, and an optimal basis K̄∗ for
(1) if F=feasible and finite.

Initialization K̄ := ∅.
Step 1: If K̄ 6= ∅, remove the variables xi in (1) for all i ∈ K̄ to obtain the

reduced problem (4). If K̄ = ∅, set A′ = A, b′ = b, c′ = c, and x′ = x.
Go to Step 2.

Step 2: Consider the simplex tableau (5) associated to a basis L of the
reduced problem (3). If (A′L)−1b′ = 0, output F=Degenerate. Oth-
erwise, determine κ = ‖A′>(A′A′>)−1b′‖2/(m

′nn′Amax∆ +m′) and ob-
tain the auxiliary problem (7). Go to Step 3.

Step 3: Perform TwoS((7); F, L∗). Output F if F=infeasbile or un-
bounded. Otherwise, let x′′ be the optimal solution of (7) associated
to the optimal basis L∗. Output F=feasible and finite and set
K̄∗ = K̄ ∪ L∗ if K̄ ∪ L∗ is an optimal basis for (1). Otherwise, go to
Step 4.

Step 4: Update K̄ := K̄ ∪J with J = { i ∈ L∗ | x′′i ≥ m′nAmax∆}. Output
F=unidentified if |K̄| = m. Otherwise, go to Step 1.

Theorem 1 shows that Proc((1), ∆; F, K̄∗) solves (1) if ∆ ≥ ∆A, and thus
extends Mizuno et al. [16] primal-simplex based Tardos’ algorithm.

3.2.1 Annotations for Proc((1), ∆; F, K̄∗)

We outline the stopping criteria before providing additional details about the
main procedure.

(i) If (A′L)−1b′ = 0, the original problem (1) is degenerate, and (3) is either
unbounded or admits zero as an optimal solution.

(ii) If (7) is infeasible then (1) is infeasible, and if (7) is unbounded then
(1) is unbounded or infeasible. Indeed, (7) being a relaxation of (6)
for any ∆, the infeasibility of (7) implies the infeasibilty of (6) and of
(3), and thus of (1). If (7) is unbounded, then (6) is unbounded or
infeasible, and thus (1) is unbounded or infeasible.
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Lemma 1 shows that the set J defined in Step 4 satisfies J 6= ∅, and thus
the main procedure is finite as at most m auxiliary problems are solved.
Corollary 1 shows that, if ∆ ≥ ∆A, x∗i > 0 for i ∈ J with x∗ the optimal
solution of (1). Thus, Corollary 1 shows that J ⊂ K∗ and validates Step 4,
and thus, the correctness of the main procedure for ∆ ≥ ∆A. As the main
procedure is guaranteed to solve (1) only if ∆ ≥ ∆A, F is set unidentified
if ∆ < ∆A. However, the correct solution may be obtained even if ∆ < ∆A.
For example, if K̄ = ∅; i.e. no reduction is performed in Step 4, and an
optimal basis for (7) turns out to be feasible for (1) in Step 3, then this basis
is optimal for (1) as (7) is a relaxation of (1).

3.2.2 Warm start for Proc((1), ∆; F, K̄∗)

Although the main procedure builds the simplex tableau (5) and the reduced
problem (3) from scratch at each iteration, it is essentially for clarity of the
exposition. In practice, one can observe that L∗ \ J can serve as the basis L
for (3) at the next iteration, thus enabling a warm start – as already noticed
in Mizuno et al. algorithm [16].

4 An enhanced primal-simplex based Tardos’

algorithm

The proposed algorithm circumvents the determination of ∆A via a simple
search procedure in the following algorithm Alg((1), ∆0, λ; F, K̄∗) where,
typically, one can use ∆0 = 1 and λ = mAmax. Assuming non-degeneracy
and ∆A being polynomially bounded in m and n, the proposed algorithm is
strongly polynomial – as shown in Theorem 2.

Input: Problem (1), ∆0 > 0, and λ > 1.

Output: F which is either infeasbile or unbounded, degenerate, or
feasible and finite and an optimal basis K̄∗ for (1) if F=feasible
and finite.

Initialization ∆ := ∆0.

Step 1: Perform Proc((1), ∆; F, K̄∗). Output F if F=infeasbile or
unbounded or F=degenerate. Output F and K̄∗ if F=feasbile
and finite. Otherwise, go to Step 2.
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Step 2: Update ∆ := λ∆. Go to Step 1.

Theorem 1. Since ∆ ≥ ∆A guaranties that the original problem (1) is solved
by the main procedure Proc((1), ∆; F, K̄∗), the enhanced primal-simplex
based Tardos’ algorithm Alg((1), ∆0, λ; F, K̄∗) solves (1).

Theorem 1 is a consequence of (i) ∆ eventually satisfies ∆ ≥ m!Ammax ≥ ∆A,
and (ii) J ⊂ K∗ for ∆ ≥ ∆A as shown in Corollary 1; that is, Step 4 is valid.

Theorem 2. Alg((1), ∆0 = 1, λ = mAmax; F, K̄∗) performs Proc((1), ∆;
F, K̄∗) at most m+ 1 times. Proc((1), ∆; F, K̄∗) performs TwoS((7); F,
K̄∗) at most m times. If all the auxiliary problems are non-degenerate, the
number of arithmetic operations used by Alg((1), ∆0 = 1, λ = mAmax; F,
K̄∗) to solve (1) is polynomial in m, n, and ∆A.

The first statement of Theorem 2 is implied by the stopping criterion ∆ ≥
m!Ammax and the setting ∆0 = 1 and λ = mAmax. As mentioned in Sec-
tion 3.2.1, the second statement of Theorem 2 is implied by Lemma 1. Thus,
to complete the proof of Theorem 2 one has to show that TwoS((7); F, K̄∗)
is polynomial in m, n, and ∆A – as proved in Section 6.

Instances of coefficient matrices with ∆A polynomial in m and n include
the one associated to capacitated network flow problems with additional
linear constraints considered by Chen and Saigal [3]. The coefficient matrix
they consider consists in the incidence matrix of a directed network, and thus
totally unimodilar, to which a fixed number of arbitrary linear constraints
on arc flow are added – assuming the entries are polynomial in m and n.

5 Proof of Theorem 1

Lemma 1 implies that, for any ∆, Proc((1), ∆; F, K̄∗) performs TwoS((7);
F, K̄∗) at most m times.

Lemma 1. For any ∆ > 0, a basic solution x′′ of the auxiliary problem (7)
satisfies ‖x′′‖∞ ≥ m′nAmax∆. Hence, the set J defined in Step 4 satisfies
J 6= ∅.

Proof. Let x′′ be a solution of (7). We have A′x′′ = A′Ld(A′L)−1b′/ke, A′A′>
is positive definite, and, for any g, A′T (A′A′T )−1g is the minimal l2-norm
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point satisfying A′x′ = g. Thus,

‖x′′‖2 ≥ ‖A′>(A′A′>)−1A′Ld(A′L)−1b′/κe‖2

≥ ‖A′>(A′A′>)−1b′/κ‖2 − ‖A′>(A′A′>)−1A′Ld‖2

= (m′nn′Amax∆ +m′)− ‖A′>(A′A′>)−1A′
(

d
0L̄

)
‖2

≥ (m′nn′Amax∆ +m′)− ‖
(

d
0L̄

)
‖2

= m′nn′Amax∆ +m′ − ‖d‖2

where κ = ‖A′>(A′A′>)−1b′‖2/(m
′nn′Amax∆ +m′) and d = d(A′L)−1b′/κe −

(A′L)−1b′/κ. Since ‖d‖∞ < 1 and ‖d‖2 ≤ m′‖d‖∞, we obtain: ‖x′′‖∞ ≥
‖x′′‖2/n

′ > (m′nn′Amax∆ +m′ −m′)/n′ = m′nAmax∆.

Applying a key result of Schrijver, recalled in Lemma 2, to (6) and (7) yields
Lemma 3 and Corollary 1 guarantying J ⊂ K∗, i.e. Step 4 is valid, for
∆ ≥ ∆A.

Lemma 2 ([20], Theorem 10.5). Let A be an m×n-matrix, and let ∆∗ be such
that for each nonsingular submatrix B of A all entries of B−1 are at most ∆∗

in absolute value. Let c be a column n-vector, and let b′′ and b∗ be column m-
vectors such that P ′′ : max{ c>x |Ax ≤ b′′ } and P ∗ : max{ c>x |Ax ≤ b∗ }
are finite. Then, for each optimal solution x′′ of P ′′, there exists an optimal
solution x∗ of P ∗ with ‖x′′ − x∗‖∞ ≤ n∆∗‖b′′ − b∗‖∞.

Lemma 3. Assume that the scaled problem (6) and the auxiliary problem (7)
are both feasible and finite. Then, for an optimal solution x′′ of (7), there
exists an optimal solution x∗ of (6) such that ‖x′′ − x∗‖∞ ≤ n∆A‖ALd‖∞
with d = d(A′L)−1b′/κe − (A′L)−1b′/κ.

Proof. Let x′′ be an optimal solution of (7). Then, x̃′′ = (x̃′′
K̄
, x̃′′K), with

x̃′′K = x′′ and x̃′′
K̄

= H1(b/κ+ ALd)−H1AKx
′′, is an optimal solution of:

minimize c′>xK
s.t. xK̄ +H1AKxK = H1(b/κ+ ALd),

H2AKxK = H2(b/κ+ ALd),
xK ≥ 0.

Multiplying both sides of the equalities from the left by G = H−1, and



12

recalling the definitions of H1 and H2 given in Section 2.1, yields:

minimize c′>xK
s.t. AK̄xK̄ + AKxK = b/κ+ ALd,

xK ≥ 0.

By Lemma 2, there exists an optimal solution x̃∗ = (x̃∗
K̄
, x̃∗K) of:

minimize c′>xK
s.t. AK̄xK̄ + AKxK = b/κ,

xK ≥ 0

such that ‖x̃′′− x̃∗‖∞ ≤ n∆A‖(b/κ+ALd)−b/κ‖∞, and thus ‖x̃′′− x̃∗‖∞ ≤
n∆A‖ALd‖∞. In addition, ‖x′′ − x̃∗K‖∞ ≤ ‖x̃′′ − x̃∗‖∞ since x′′ and x̃∗K are
sub-vectors of, respectively, x̃′′ and x̃∗. Note that x̃∗K is an optimal solution
of the scaled problem (6), and equal to x∗.

Corollary 1. Lemma 3 implies ‖x′′−x∗K‖∞ ≤ n∆A‖ALd‖∞ < m′nAmax∆A.
Hence, for i ∈ J and ∆ ≥ ∆A, x∗i > 0 with x∗ the optimal solution of (1).
Note that xi is an optimal basic variable of both (6) and (1) – recall that (1)
has a unique optimal solution.

6 Proof of Theorem 2

As mentioned in Section 4, we need to show that TwoS((7); F, K̄∗) is
polynomial in m, n, and ∆A which is achieved via the following result of
Kitahara and Mizuno and the technical Lemma 5.

Lemma 4 ([11], Corollary 3). If the problem is nondegenerate, the sim-
plex method with the most negative pivoting rule, i.e. Dantzig’s rule, or
the best improvement pivoting rule finds an optimal solution in at most
ndmγ

δ
log(mγ

δ
)e iterations where m is the number of constraints, n is the

number of variables, and δ and γ are, respectively, the minimum and the
maximum values of all the positive elements of the primal basic feasible so-
lutions.

Lemma 5. Let L be a basis of A. Then, each coordinate of A−1
L (A, I) is a

rational number whose denominator is detAL and the absolute value of the
numerator is bounded above by ∆A.
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Proof. For j = 1, 2, . . . ,m + n, let yj be j-th column vector of A−1
L (A, I).

Then, ALyj = aj where aj is j-th column vector of (A, I). By Cramer’s rule,
the i-th coordinate of yj is yji = detAL(i, j)/ detAL with AL(i, j) being the
matrix where the i-th column vector of AL is replaced by aj.

In order to apply Lemma 4, the quantities γ and δ associated the auxiliary
problem (7) are estimated in Lemma 6 and yields γ/δ ≤ m2(m′nn′Amax∆ +
m′)∆3

A +m∆2
A. This bound for γ/δ combined with Lemma 4 completes the

proof of Theorem 2.

Lemma 6. Each positive element of a basic feasible solution x′′ of (7) is
bounded above by m2(m′nn′Amax∆ +m′)∆2

A +m∆A and below by 1/∆A.

Proof. Let x′′ be a basic feasible solution of (7). Then, x̃ = (x̃K̄ , x̃K), with
x̃K = x′′ and x̃K̄ = H1ALf −H1AKx

′′, is a basic solution of:

xK̄ +H1AKxK = H1ALf ,
H2AKxK = H2ALf

where f = d(A′L)−1b′/κe. Multiplying both sides of the equalities by G =
H−1 from the left yields Ax = ALf . Since x̃ is a basic feasible solution
of Ax = ALf , any positive coordinate x̃i of x̃ is a rational number whose
denominator is equal to the determinant of the basis matrix, see Lemma 5,
and numerator is bounded below by 1 by the integrality of ALf . Hence the
denominator of the coordinate of x′′ is bounded by ∆A.

Similarly, x̂ := (x̂K̄ , x̂K), with x̂K := x′′ and x̂K̄ := H1ALd−H1AKx
′′, is a

basic solution of:
xK̄ +H1AKxK = H1ALd,
H2AKxK = b′/κ+H2ALd.

Multiplying both sides of the equalities by G = H−1 from the left yields:

Ax = G

(
0K̄
b′/κ

)
+ ALd.

Since G and AL are submatrices of (A, I) and x̂ is a basic solution of this
system, from Lemma 5, and the integrality of A, we have

‖x̂‖∞ ≤ m∆A‖b′/κ‖∞ +m∆A‖d‖∞.
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Let v = A′>(A′A′>)−1b′; that is, A′v = b′. Since the absolute value of an
entry of A′ is bounded by ∆A by Cramer’s rule, we have

‖b′‖∞ ≤ m∆A‖v‖∞ = m(m′nn′Amax∆ +m′)∆Aκ

and thus: ‖x′′‖∞ ≤ ‖x̂‖∞ ≤ m2(m′nn′Amax∆ +m′)∆2
A +m∆A.
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