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ABSTRACT

We show that the largest possible diameter δ(d, k) of a d-dimensional

polytope whose vertices have integer coordinates ranging between 0 and k

is at most kd−d2d/3e when k ≥ 3. In addition, we show that δ(4, 3) = 8.

This substantiates the conjecture whereby δ(d, k) is at most b(k + 1)d/2c
and is achieved by a Minkowski sum of lattice vectors.

1. Introduction

The convex hull of a set of points with integer coordinates is called a lattice

polytope. If all the vertices of a lattice polytope are drawn from {0, 1, . . . , k}d,
it is referred to as a lattice (d, k)-polytope. The diameter of a polytope P ,

denoted by δ(P ), is the diameter of its graph. The quantity we are interested

in is the largest possible diameter δ(d, k) of a lattice (d, k)-polytope.

At the end of the 1980’s, Naddef [10] showed that δ(d, 1) = d. A consequence

of this result is that all lattice (d, 1)-polytopes satisfy the Hirsch bound: their

diameter is at most the number of their facets minus their dimension. While

polytopes violating the Hirsch bound have been found by Santos [12], many

questions related with the diameter of polytopes, and more generally with the

combinatorial, geometric, and algorithmic aspects of linear optimization remain

open. Related recent results include the successive tightening by Todd [15] and
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Sukegawa [13] of the upper bound on the diameter of polytopes due to Kalai

and Kleitman [8], a counterexample to a continuous analogue of the polynomial

Hirsch conjecture by Allamigeon, Benchimol, Gaubert, and Joswig [2], and the

validation that transportation polytopes satisfy the Hirsch bound by Borgwardt,

De Loera, and Finhold [5]. For additional related results, we refer the reader

to [2, 4, 5, 12, 13, 15] and references therein.

The result of Naddef was generalized in the beginning of the 1990’s by Klein-

schmidt and Onn [9] who proved that δ(d, k) ≤ kd. In a recent article, Del Pia

and Michini [6] strenghtened this bound to δ(d, k) ≤ kd − dd/2e when k ≥ 2,

and showed that δ(d, 2) = b3d/2c. Pursuing the approach introduced by Del

Pia and Michini, we prove the following upper bound.

Theorem 1.1: δ(d, k) ≤ kd− d2d/3e when k ≥ 3.

We slightly refine Theorem 1.1.

Theorem 1.2: The following inequalities hold:

(i) δ(d, k) ≤ kd− d2d/3e − (k − 2) when k ≥ 4 ,

(ii) δ(d, 3) ≤ b7d/3c − 1 when d 6≡ 2 mod 3,

(iii) δ(d, 3) ≤ b7d/3c when d ≡ 2 mod 3.

Investigating the lower bound on δ(d, k), Deza, Manoussakis, and Onn [7]

introduced the primitive lattice polytope H1(d, p) as the Minkowski sum of the

following set of lattice vectors:

{v ∈ Zd : ‖v‖1 ≤ p , gcd(v) = 1 , v � 0},

where gcd(v) is the largest integer dividing all the coordinates of v, and v � 0

when the first non-zero coordinate of v is positive. They showed that, for any

k ≤ 2d− 1, there exists a subset of the generators of H1(d, 2) whose Minkowski

sum is, up to translation, a lattice (d, k)-polytope with diameter b(k + 1)d/2c.
As a consequence, they obtain the lower bound δ(d, k) ≥ b(k + 1)d/2c for

k ≤ 2d− 1, and propose the following conjecture:

Conjecture 1.3 ([7]): δ(d, k) is at most b(k + 1)d/2c, and is achieved, up to

translation, by a Minkowski sum of lattice vectors.

The 2-dimensional case had been previously studied in the early 1990’s in-

dependently by Thiele [14], Balog and Bárány [3], and Acketa and Žunić [1].
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It can also be found in Ziegler’s book [16] as Exercise 4.15. These results on

δ(2, k) can be summarized as follows:

Theorem 1.4 ([1, 3, 7, 14]): For any k, there exists a value of p so that δ(2, k)

is achieved, up to translation, by the Minkowski sum of a subset of the genera-

tors of H1(2, p). Moreover, for any p, and for k =
∑p
i=1 iφ(i), δ(2, k) is uniquely

achieved, up to translation, by H1(2, p), where φ denotes Euler’s totient func-

tion. Thus, δ(2, k) = 6( k
2π )2/3 +O(k1/3 log k).

We obtain a previously unknown value of δ(d, k) as a consequence of Theo-

rem 1.2 and of the lower bound on δ(d, k) provided in [7]:

Corollary 1.5: δ(4, 3) = 8.

All the values of δ(d, k) known so far are reported in Table 1.

This paper is organized as follows. In Section 2, we prove slightly more general

versions of two lemmas from [6]. Theorems 1.1 and 1.2 are proven in Section 4.

Their proof is done by induction on the dimension. Two lemmas that allow to

proceed with the inductive step in these proofs are given in Section 3. We discuss

the limitations of the approach in Section 5, and provide some perspectives for

possible extensions of our results.

k

1 2 3 4 5 6 7 8 9 10

d

1 1 1 1 1 1 1 1 1 1 . . .

2 2 3 4 4 5 6 6 7 8 . . .

3 3 4 6

4 4 6 8
...

...
...

d d
⌊
3
2d
⌋

Table 1. The largest possible diameter δ(d, k) of a lattice (d, k)-polytope.
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2. Preliminary lemmas

Given two vertices u and v of a polytope P , we call d(u, v) their distance in the

graph of P . If F is a face of P , we further call

d(u, F ) = min{d(u, v) : v ∈ F}.

The coordinates of a vector x ∈ Rd will be denoted by x1 to xd, and its scalar

product with a vector y ∈ Rd by x·y. We first recall a lemma introduced by

Del Pia and Michini, see Lemma 2 in [6]:

Lemma 2.1 ([6]): Consider a lattice (d, k)-polytope P . If u is a vertex of P

and c ∈ Rd a vector with integer coordinates, then d(u, F ) ≤ c·u − γ where

γ = min{c·x : x ∈ P} and F = {x ∈ P : c·x = γ}.

Lemma 2.2 is a generalization of Lemma 4 from [6]:

Lemma 2.2: Consider a lattice (d, k)-polytope P . If I is a subset of {1, . . . d}
such that li ≤ xi ≤ hi for all x ∈ P and all i ∈ I, then

δ(P ) ≤ δ(d− |I|, k) +
∑
i∈I

(hi − li).

Proof. We use an induction on |I|. The statement is obviously true when I is

empty, and simplifies to that of Lemma 4 from [6] when |I| = 1.

Assume that, for some integer n ≥ 1, the statement holds when |I| = n.

Further assume that |I| = n + 1. Consider an index j ∈ I and respectively

denote by Lj and by Hj the intersections of P with {x ∈ Rd : xj = lj} and

with {x ∈ Rd : xj = hj}. We can assume without loss of generality that Lj

and Hj are both non-empty. Note that Lj and Hj are faces of P and, possibly

up to an affine transformation, lattice (d− 1, k)-polytopes. By assumption, if x

belongs to either Lj or Hj , then li ≤ xi ≤ hi for all i ∈ I \ {j}. Therefore, by

induction, the following inequality holds:

(1) max{δ(Lj), δ(Hj)} ≤ δ(d− |I|, k) +
∑

i∈I\{j}

(hi − li).

Since P is a lattice polytope, d(x, Lj) ≤ xj − lj and d(x,Hj) ≤ hj − xj for

any vertex x of P . Thus, for any two vertices u and v of P , we either have the

inequality d(u, Lj)+d(v, Lj) ≤ hj − lj (when uj+vj ≤ hj + lj) or the inequality

d(u,Hj) + d(v,Hj) ≤ hj − lj (when uj + vj > hj + lj). As a consequence,

(2) δ(P ) ≤ max{δ(Lj), δ(Hj)}+ hj − lj .
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Combining inequalities (1) and (2) completes the proof.

The following result is obtained by invoking Lemma 2.1 for two vertices u

and v of a lattice (d, k)-polytope P , with the same, well-chosen vector c.

Lemma 2.3: Consider two vertices u and v of a lattice (d, k)-polytope P . If I

is a subset of {1, ..., d} with cardinality at most 3 such that ui + vi ≤ k when

i ∈ I, then the following inequality holds:

d(u, v) ≤ δ(d− |I|, k) +
∑
i∈I

(ui + vi).

Proof. The statement is obviously true when I is empty. Therefore, we assume

that 1 ≤ |I| ≤ 3 in the remainder of the proof.

Consider the vector c of Rd such that ci is equal to 1 if i ∈ I and to 0

otherwise. By Lemma 2.1, any vertex x of P satisfies

d(x, F ) ≤ c·x− γ,

where γ = min{c·x : x ∈ P} and F = {x ∈ P : c·x = γ}.
Hence, if u and v are two vertices of P , then

(3) d(u, v) ≤ δ(F ) + c·(u+ v)− 2γ.

Observe that, for any x ∈ F and any i ∈ I, the following double inequality

holds since the coordinates of x are non-negative and since c·x = γ:

(4) 0 ≤ xi ≤ γ.

According to Theorem 3.3 from [11], there exists an index j ∈ {1, ..., d} such

that the orthogonal projection F̄ of F on the hyperplane {x ∈ Rd : xj = 0}
satisfies δ(F̄ ) = δ(F ). Note that F̄ is a lattice (d− 1, k)-polytope and that (4)

still holds for any x ∈ F̄ and any i ∈ I. Hence, applying Lemma 2.2 to F̄ and

to the set of indices I \ {j} results in the following upper bound:

δ(F̄ ) ≤ δ(d− 1− |I \ {j}|, k) + (|I| − 1)γ.

Observe that |I \ {j}| is either |I| − 1 (if j ∈ I), or |I| (if j 6∈ I). In both

cases, δ(d − 1 − |I \ {j}|, k) ≤ δ(d − |I|, k). As in addition, F and F̄ have the

same diameter, the above upper bound on δ(F̄ ) yields

δ(F ) ≤ δ(d− |I|, k) + (|I| − 1)γ,
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which, combined with (3), results in the following inequality:

(5) d(u, v) ≤ δ(d− |I|, k) +
∑
i∈I

(ui + vi) + (|I| − 3)γ.

As γ ≥ 0 and |I| ≤ 3, this completes the proof.

A key ingredient for the inductive step of our main proof is the following.

Remark 2.1: Note that the term (|I| − 3)γ in the right-hand side of (5) is

negative if both 1 ≤ |I| ≤ 2 and the sum
∑
i∈I xi is non-zero for all x ∈ P . As

a consequence, the inequality provided by Lemma 2.3 is strict in this case.

We now state a technical lemma that will be invoked twice in Section 3.

Lemma 2.4: Let u0, ..., up be the vertices of a lattice (2, k)-polytope, labeled

clockwise or counter-clockwise. If up = (0, 0) and u0 − u1 is either (1, 0), (0, 1),

or (1, 1), then uj1 + uj2 + 2 ≤ uj−11 + uj−12 whenever 2 ≤ j < p.

Proof. Note that the cone pointed at up and formed by the incident edges is

contained in the positive orthant. Assuming that u0 − u1 is either (1, 0), (0, 1),

or (1, 1), the corresponding cone pointed at u0 is contained in a translation of

the negative orthant. As a consequence, the polygon is inscribed in the rectangle

[0, u01]× [0, u02]. This situation is illustrated by Figure 1 when the vertices of are

labeled counter-clockwise.

Now observe that, by convexity, the only edges of the polygon that are pos-

sibly horizontal or vertical are incident to u0 or to up. Hence, uj1 + 1 ≤ uj−11

and uj2 + 1 ≤ uj−12 for all i ∈ {2, ..., p− 1}.

(u0
1; u

0
2)(0; u0

2)

(u0
1; 0)

u0

u1

up¡1

up

u2

(0; 0)

)

Figure 1. A sketch of the lattice polygon with vertices u0, ..., up.
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3. The inductive step

The proof of Theorem 1.1 is done by induction on the dimension. The inductive

step is split into two main cases, addressed by Lemmas 3.1 and 3.2.

Lemma 3.1: Let P be a lattice (d, k)-polytope such that d ≥ 3 and k ≥ 3. Let

u and v be two vertices of P such that ui + vi = k for all i ∈ {1, ..., d}. If there
exists a vertex w adjacent to u in the graph of P such that w − u has at least

two non-zero coordinates, then one of the following inequalities holds:

(i) d(u, v) ≤ δ(d− 1, k) + k − 1,

(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,

(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Assume that there exists a vertex w adjacent to u in the graph of P such

that w − u has at least two non-zero coordinates. For any index j ∈ {1, ..., d}
such that uj 6= wj , we can require that wj < uj by if needed, replacing P by

its symmetric with respect to the hyperplane {x ∈ Rd : xj = k/2}.
First assume that uj − wj ≥ 2 for some index j ∈ {1, ..., d}. In this case,

vj + wj ≤ k − 2, and invoking Lemma 2.3 with I = {j} yields

d(v, w) ≤ δ(d− 1, k) + k − 2.

As u and w are adjacent in the graph of P , one then obtains (i) from the

triangle inequality. We therefore assume in the remainder of the proof that

0 ≤ uj − wj ≤ 1 for all j ∈ {1, ..., d}.
Let i1 and i2 be distinct indices such that ui1 = wi1 + 1 and ui2 = wi2 + 1.

Invoking Lemma 2.3 with I = {i1, i2} yields

(6) d(v, w) ≤ δ(d− 2, k) + 2k − 2.

According to Remark 2.1, if

F = {x ∈ P : xi1 + xi2 = 0}

is empty, then (6) is strict. In this case, one obtains (ii) from the triangle

inequality because u is adjacent to w in the graph of P . In the sequel, we will

further assume that F is non-empty. In particular, F is a non-empty face of P

of dimension at most d− 2. Consider a sequence u0, ..., up of vertices of P that

forms a path from u to F in the graph of P . In other words, u0 = u, up ∈ F ,

and uj−1 is adjacent to uj in the graph of P whenever 0 < j ≤ p. It can be
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assumed that for all j ∈ {1, ..., p}, the following inequality holds:

(7) uji1 + uji2 ≤ u
j−1
i1

+ uj−1i2
− 1.

For instance, such a path is provided by the simplex algorithm when min-

imizing xi1 + xi2 from vertex u under the constraint x ∈ P . It can also be

required that u1 = w. Note that, because of this requirement, inequality (7) is

strict when j = 1. Denote by Su the square made up of the points x ∈ [0, kd]

so that xi = u0i whenever i ∈ {1, ..., d} \ {i1, i2}. We will now review two cases

depending on whether the path u0, ..., up remains in Su or not. In each case,

we will prove that (i), (ii) or (iii) holds.

Assume that the path u0, ..., up does not remain within Su. In this case,

there exists an index i3 ∈ {1, ..., d} \ {i1, i2} such that uri3 6= uri3 for some index

r ∈ {1, ..., p}. Assume that r is the smallest such index, or equivalently that

vertices u0 to ur−1 all belong to Su. As above, we can require that uri3 < u0i3
by if needed, replacing P by its symmetric with respect to the hyperplane

{x ∈ Rd : xi3 = k/2}. Recall that inequality (7) holds whenever 1 ≤ j ≤ r, and

is strict when j = 1. As in addition, uri3 < u0i3 , we have:∑
i∈I

(uri + vi) ≤ 3k − r − 2,

where I = {i1, i2, i3}. Hence, by Lemma 2.3,

d(ur, v) ≤ δ(d− 3, k) + 3k − r − 2.

As d(u, ur) is at most r, one obtains (iii) from the triangle inequality.

Now assume that the path u0, ..., up remains within Su. In this case, u0 to up

are, up to an affine transformation, the vertices of a lattice (2, k)-polygon sat-

isfying the requirements of Lemma 2.4. In particular, if p ≥ 3, then Lemma 2.4

yields u2i1 + u2i2 + 2 ≤ u1i1 + u1i2 . As a consequence,∑
i∈I

(u2i + vi) ≤ 2k − 4,

where I = {i1, i2}, and by Lemma 2.3,

d(u2, v) ≤ δ(d− 2, k) + 2k − 4.

As d(u, u2) ≤ 2, one obtains (ii) from the triangle inequality. We therefore

assume that p ≤ 2 from now on.

Consider a sequence v0, ..., vq of vertices of P that forms a path from v to F

in the graph of P . In other words, v0 = v, vq ∈ F , and vj−1 is adjacent to vj in
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the graph of P whenever 0 < j ≤ q. It can be required that for all j ∈ {1, ..., p},
the following inequality holds:

(8) vji1 + vji2 ≤ v
j−1
i1

+ vj−1i2
− 1,

by assuming, for instance, that this path is provided by the simplex algorithm

when minimizing xi1 + xi2 from vertex v under the constraint x ∈ P . Denote

by Sv the square made up of the points x ∈ [0, kd] so that xi = v0i whenever

i ∈ {1, ..., d} \ {i1, i2}. We proceed as with sequence u0, ..., up and review two

sub-cases depending on whether v0, ..., vq all belong to Sv or not.

Assume that vertices v0, ..., vq do not all belong to Sv. In this case, there

exists i3 ∈ {1, ..., d} \ {i1, i2} such that vri3 6= vri3 for some index r ∈ {1, ..., q}.
Assume that r is the smallest such index. In particular, vertices v0 to vr−1 all

belong to Sv. We can again require that vri3 < v0i3 by if needed, replacing P by

its symmetric with respect to the hyperplane {x ∈ Rd : xi3 = k/2}.
As inequality (8) holds whenever 1 ≤ j ≤ r, as wi1 + wi2 ≤ k − 2, and as

vri3 < v0i3 , we obtain the following:∑
i∈I

(vri + wi) ≤ 3k − r − 3,

where I = {i1, i2, i3}. Therefore, Lemma 2.3 yields:

d(vr, w) ≤ δ(d− 3, k) + 3k − r − 3.

Since d(v, vr) is at most r, and since w is adjacent to u in the graph of P ,

one obtains (iii) from the triangle inequality.

Now assume that all the vertices v0, ..., vq belong to Sv. Observe that if

v0i1 ≥ v1i1 + 2 or v0i2 ≥ v1i2 + 2, then using I = {i1} in the former case and

I = {i2} in the latter, Lemma 2.3 immediately provides inequality (i). We

therefore assume that the differences v0i1 − v
1
i1

and v0i2 − v
1
i2

are both at most 1.

By (8), the sum of these differences is at least 1, and each of them must therefore

be non-negative. In this case, v0 to vq are, up to an affine transformation, the

vertices of a lattice (2, k)-polygon satisfying the requirements of Lemma 2.4. In

particular, if q ≥ 3, then Lemma 2.4 yields v2i1 + v2i2 + 2 ≤ v1i1 + v1i2 .

As a consequence, ∑
i∈I

(v2i + wi) ≤ 2k − 5,

where I = {i1, i2}, and by Lemma 2.3,

d(v2, w) ≤ δ(d− 2, k) + 2k − 5.
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As d(v, v2) ≤ 2 and d(u,w) = 1, inequality (ii) is again obtained by using

the triangle inequality, and we assume that q ≤ 2.

We have narrowed the possibilities to p ≤ 2 and q ≤ 2. Hence,

d(u, v) ≤ δ(F ) + 4.

As F is a lattice (d− 2, k)-polytope and as k ≥ 3, the right-hand side of this

inequality is bounded above by δ(d− 2, k) + 2k− 2. Therefore, (ii) holds.

Lemma 3.2: Let P be a lattice (d, k)-polytope with d ≥ 3 and k ≥ 3. Let u

and v be two vertices of P . If both u and v belong to {0, k}d, and ui + vi = k

for all i ∈ {1, ..., d}, then one of the following inequalities holds:

(i) d(u, v) ≤ δ(d− 1, k) + k − 1,

(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,

(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Assume that u ∈ {0, k}d, v ∈ {0, k}d, and ui+vi = k whenever 1 ≤ i ≤ d.

Consider an index j ∈ {1, ..., d}. We can assume without loss of generality that

uj = 0 and vj = k by, if needed, replacing P by its symmetric with respect the

the hyperplane {x ∈ Rd : xj = k/2}. Repeating this for all coordinates, we can

therefore require that ui = 0 and vi = k for all i ∈ {1, ..., d}.
Let F = {x ∈ P : x1 = 0}. Observe that d(v, F ) ≤ k. This inequality is

obtained, for instance, by invoking Lemma 2.1 with the vector c so that ci is

equal to 1 when i = 1 and to 0 otherwise. We will review three cases, depending

on which vertices of F are distance at most k from v in the graph of P .

First assume that there exists a vertex w of F so that d(v, w) ≤ k and

w has at least two coordinates distinct from k other than w1. Let i1 and

i2 be two distinct indices in {2, ..., d} so that wi1 < k and wi2 < k. Let

G = {x ∈ F : xi1 + xi2 = 0}. In this case,∑
i∈I

(ui + wi) ≤ 2k − 2,

where I = {1, i1, i2}. Hence, by Lemma 2.3,

d(u,w) ≤ δ(d− 3, k) + 2k − 2.

As d(v, w) ≤ k, using the triangle inequality provides (iii).

Now assume that there exists a vertex w of F so that d(v, w) ≤ k and w has

exactly one coordinate distinct from k other than w1. Let j ∈ {2, ..., d} be an

index so that wj < k. We consider two sub-cases depending on the value of wj .



IMPROVED BOUNDS ON THE DIAMETER OF LATTICE POLYTOPES 11

First assume that wj ≤ k − 2. In this case, one obtains the following inequality

by invoking Lemma 2.3 with I = {j}:

d(u,w) ≤ δ(d− 2, k) + k − 2,

As d(v, w) ≤ k, the triangle inequality then provides (ii) because d(v, w) ≤ k.

Now assume that wj = k − 1. In this case, consider face G of P made up of

all the points x ∈ P so that xi = k when i ∈ {2, ..., d} \ {j}. Note that G is at

most 2-dimensional and at least 1-dimensional because it contains both v and

w. In other words, G is either an edge of P , or one of its polygonal faces.

Since vj = k and wj = k − 1, v and w necessarily have distance at most 2 in

the graph of G. Indeed, either they are adjacent in this graph, or there exists

a unique vertex x of G, such that xj = k and 1 ≤ x1 < k. There cannot be

another such vertex because it would be collinear with x and v. The vertices of

G adjacent to x are then v and w, and their distance is at most 2.

As a consequence,

d(u, v) ≤ δ(d− 1, k) + 2.

Since k ≥ 3, inequality (i) follows.

Finally, assume that the unique vertex w of F such that d(v, w) ≤ k satisfies

w1 = 0 and wi = k when 2 ≤ i ≤ d. In this case, the segment with vertices v

and w is an edge of P . Hence, d(v, F ) = 1 and d(u, v) ≤ δ(d − 1, k) + 1. As

k ≥ 3, inequality (i) holds, which completes the proof.

Combining Lemmas 3.1 and 3.2, one obtains Theorem 3.3 that provides the

inductive step for the proof of Theorem 1.1:

Theorem 3.3: Assume that d ≥ 3 and k ≥ 3. If u and v are two vertices of a

lattice (d, k)-polytope P , then one of the following inequalities holds:

(i) d(u, v) ≤ δ(d− 1, k) + k − 1,

(ii) d(u, v) ≤ δ(d− 2, k) + 2k − 2,

(iii) d(u, v) ≤ δ(d− 3, k) + 3k − 2.

Proof. Consider two vertices u and v of a lattice (d, k)-polytope P . Note that,

if uj + vj 6= k for some index j ∈ {1, ..., d}, then we can assume without loss

of generality that uj + vj < k by, if needed, replacing P by its symmetric

with respect the the hyperplane {x ∈ Rd : xj = k/2}. In this case, invoking

Lemma 2.3 with I = {j} provides inequality (i). In the remainder of the proof

we will assume that ui + vi = k whenever 1 ≤ i ≤ d.
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Assume that 0 < ui < k for some index i ∈ {0, ..., d}. If xi ≥ ui for all x ∈ P ,

then, invoking Lemma 2.2 with I = {i}, provides (i). By tLemma 2.2, (i) also

holds when xi ≤ ui for all x ∈ P . Hence we can assume that there exist two

vertices adjacent to u in the graph of P whose i-th coordinates are respectively

less and greater than ui. As argued in [6], there exists an index j ∈ {1, ..., d}
distinct from j so that one of these two vertices has a j-th coordinate distinct

uj . Indeed, u would otherwise be contained in the segment bounded by these

vertices. In this case, the result follows from Lemma 3.1.

By the same argument, the desired result also holds when 0 < vi < k for

some index i ∈ {0, ..., d}. Finally, if u and v both belong to {0, k}d, then

Theorem 1.1is a direct consequence of Lemma 3.2.

4. Proofs of Theorems 1.1 and 1.2

We first prove Theorem 1.1 by induction.

Proof of Theorem 1.1. Assume that k ≥ 3. According to Lemma 2.2,

δ(d, k) ≤ δ(1, k) + (d− 1)k.

Since δ(1, k) = 1, this can be rewritten as

δ(d, k) ≤ kd− (k − 1).

As d2d/3e ≤ k − 1 when k ≥ 3 and d ≤ 3, this inequality yields the desired

bound on δ(d, k) when d ≤ 3.

Assume that d ≥ 4 and δ(d− p, k) ≤ k(d− p)− d2d/3e whenever 1 ≤ p ≤ 3.

Consider two vertices u and v of a lattice (d, k)-polytope P whose distance in

the graph of P is precisely δ(d, k). By Theorem 3.3,

d(u, v) ≤ δ(d− p, k) + pk − q,

where 1 ≤ p ≤ 3 and q is equal to 1 when p = 1 and to 2 otherwise.

Hence, by induction,

d(u, v) ≤ kd− d2(d− p)/3e − q,

As 2p/3 ≤ q for all the pairs (p, q) considered in this proof, it follows that

d(u, v) ≤ kd− 2d/3. Since d(u, v) is equal to δ(d, k) and since these are integer

quantities, the desired bound on δ(d, k) holds.
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Theorem 1.2 relies on the same induction than Theorem 1.1. The only dif-

ference lies in the way this induction is initialized.

Proof of Theorem 1.2. We first prove assertion (i). Assume that k ≥ 4. Since

δ(1, k) = 1, this assertion holds when d = 1. According to Theorem 1.4,

δ(2, k) ≤ k when k ≥ 4; that is, assertion (i) also holds when d = 2. By

Lemma 2.2, δ(3, k) ≤ δ(2, k) + k. As a consequence, δ(3, k) ≤ 2k when k ≥ 4.

In other words, assertion (i) further holds when d = 3. Using Theorem 3.3

inductively then provides (i) for any d.

Now assume that k = 3 and note that δ(1, 3) = 1, δ(2, 3) = 4, and δ(3, 3) = 6

(see Table 1). Consider two vertices u and v of a lattice (4, 3)-polytope P such

that d(u, v) = δ(4, 3). Invoking Theorem 3.3 with d = 4 and k = 3 yields

δ(4, 3) ≤ 8. Thus, assertions (ii) and (iii) both hold when d ≤ 4. Theorem 3.3

can then be used inductively to prove assertions (ii) and (iii) for any d.

5. Discussion

Observe that the term d/2 in the bound by Del Pia and Michini, and the term

2d/3 in our bound are both derived from the expression (|I| − 1)d/|I|, where I

is the set in the statement of Lemma 2.3. The former bound is obtained with

|I| = 2 and the latter with |I| = 3. A first limitation of the approach is that

Lemma 2.3 can only be used up to |I| = 3. Another limitation comes from

Lemma 2.4 that only deals with lattice polygons. In order to further improve

the result obtained with this approach, a similar lemma regarding 3-dimensional

lattice polytopes may be needed.

Table 1 suggests that the next values of δ(d, k) to determine are δ(d, 3) when

d ≥ 5 and δ(3, k) when k ≥ 4. One may be able to compute δ(3, 4), δ(3, 5), and

δ(5, 3) for which the known lower and upper bounds differ by only one. More

precisely 7 ≤ δ(3, 4) ≤ 8, 9 ≤ δ(3, 5) ≤ 10, and 10 ≤ δ(5, 3) ≤ 11. In these three

cases, the computational search space can be significantly limited by using the

following necessary conditions for the upper bound to be achieved by a given

lattice (d, k)-polytope P :

(i) If u and v are two vertices of P such that δ(u, v) = δ(P ), then ui+vi = k

whenever 1 ≤ i ≤ d, and the differences between these vertices and their

neighbors in the graph of P belong to {−1, 0, 1}d,
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(ii) The intersection of P with any facet of the cube [0, k]d is, up to an affine

transformation, a lattice (d− 1, k)-polytope of diameter δ(d− 1, k).

Observe that these conditions could also be used for a possible inductive proof

of Conjecture 1.3 when k = 3, that is δ(d, 3) = 2d.
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[1] Dragan Acketa and Jovǐsa Žunić, On the maximal number of edges of convex digital

polygons included into an m ×m-grid, Journal of Combinatorial Theory A 69 (1995),

358–368.

[2] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig, Long and
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