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Abstract

We study a family of lattice polytopes, called primitive zonotopes, which can be
seen as a generalization of the permutahedron of type Bd. We describe primitive
zonotopes with small parameters, and discuss connections to the largest diameter
of lattice polytopes and to the computational complexity of multicriteria matroid
optimization. Complexity results and open questions are also presented.
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1 Introduction
We pursue the study of the primitive zonotopes initiated in [7]. After recalling their defini-
tion and some of their properties, we highlight in Section 2 connections between primitive
zonotopes and convex matroid optimization and the diameter of lattice polytopes. Small
instances are presented in Section 3, and complexity results and open questions are dis-
cussed in Section 4.

Recent results dealing with the combinatorial, geometric, and algorithmic aspects of
linear optimization include Santos’ counterexample [24] to the Hirsch conjecture, and Al-
lamigeon, Benchimol, Gaubert, and Joswig’s counterexample [2] to a continuous analogue
of the polynomial Hirsch conjecture. The Hirsch bound was validated by Borgwardt,
De Loera, and Finhold [4]. Kalai and Kleitman’s upper bound [15] for the diameter of
polytopes was strengthened by Todd [29], and then by Sukegawa [27]. Kleinschmidt and
Onn’s upper bound [16] for the diameter of lattice polytopes was strengthened by Del Pia
and Michini [6], and then by Deza and Pournin [8]. Multicriteria matroid optimization
is a generalization of standard linear matroid optimization introduced by Onn and Roth-
blum [23] where each basis is evaluated according to several, rather than one, criteria,
and these values are traded-in by a convex function.
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2 Primitive zonotopes

2.1 Zonotopes generated by short primitive vectors

The convex hull of integer-valued points is called a lattice polytope and, if all the vertices
are drawn from {0, 1, . . . , k}d, is refereed to as a lattice (d, k)-polytope. For simplicity, we
only consider full dimensional lattice (d, k)-polytopes. Given a finite set G of vectors, also
called the generators, the zonotope generated by G is the convex hull of all signed sums of
the elements of G. We consider zonotopes generated by short integer vectors in order to
keep the grid embedding size relatively small. In addition, we restrict to integer vectors
which are pairwise linearly independent in order to maximize the diameter. Thus, for
q =∞ or a positive integer, and d, p positive integers, we consider the primitive zonotope
Zq(d, p) defined as the zonotope generated by the primitive integer vectors of q-norm at
most p:

Zq(d, p) =
∑

[−1, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}

= conv
(∑

{λvv : v ∈ Zd , ‖v‖q ≤ p , gcd(v) = 1 , v � 0} : λv = ±1
)

where gcd(v) is the largest integer dividing all entries of v, and � the lexicographic order
on Rd, i.e. v � 0 if the first nonzero coordinate of v is positive. Similarly, we consider the
Minkowski sum Hq(d, p) of the generators of Zq(d, p):

Hq(d, p) =
∑

[0, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}.

In other words, Hq(d, p) is, up to translation, the image of Zq(d, p) by a homothety
of factor 1/2. We also consider the positive primitive zonotope Z+

q (d, p) defined as the
zonotope generated by the primitive integer vectors of q-norm at most p with nonnegative
coordinates:

Z+
q (d, p) =

∑
[−1, 1]{v ∈ Zd

+ : ‖v‖q ≤ p , gcd(v) = 1}

where Z+ = {0, 1, . . . }. Similarly, we consider the Minkowski sum of the generators of
Z+

q (d, p):
H+

q (d, p) =
∑

[0, 1]{v ∈ Zd
+ : ‖v‖q ≤ p , gcd(v) = 1}.

We illustrate the primitive zonotopes with a few examples:

(i) For finite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d-cube.
Hq(d, 1) is the {0, 1}d-cube.

(ii) Z1(d, 2) is the permutahedron of type Bd and thus, H1(d, 2) is, up to translation, a
lattice (d, 2d−1)-polytope with 2dd! vertices and diameter d2. For example, Z1(2, 2)
is generated by {(0, 1), (1, 0), (1, 1), (1,−1)} and forms the octagon whose vertices
are {(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1), (1,−3), (−1,−3)}. H1(2, 2) is,
up to translation, a lattice (2, 3)-polygon, see Figure 1. Z1(3, 2) is congruent to
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Figure 1: H1(2, 2)

the truncated cuboctahedron, see Figure 2 for an illustration, which is also called
the great rhombicuboctahedron and is the Minkowski sum of an octahedron and a
cuboctahedron, see for instance Eppstein [9]. H1(3, 2) is, up to translation, a lattice
(3, 5)-polytope with diameter 9 and 48 vertices.

Figure 2: Z1(3, 2) is congruent to the truncated cuboctahedron

(iii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d-cube. Thus,

H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(
d+1
2

)
.

(iv) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron, see Figure 3 for
an illustration, which is the Minkowski sum of a cube, a truncated octahedron, and a
rhombic dodecahedron, see for instance Eppstein [9]. H∞(3, 1) is, up to translation,
a lattice (3, 9)-polytope with diameter 13 and 96 vertices.

(v) Z+
∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the decagon

whose vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3), (1,−3), (3,−1), (3, 5),
(5, 3), (5, 5)}. H+

∞(2, 2) is a lattice (2, 5)-polygon, see Figure 4.
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Figure 3: Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron

Figure 4: H+
∞(2, 2)

2.2 Combinatorial properties of the primitive zonotopes

We recall properties concerning Zq(d, p) and Z+
q (d, p), and in particular their symmetry

group, diameter, and vertices. Z1(d, 2) is the permutahedron of type Bd as its generators
form the root system of type Bd, see [14]. Thus, Z1(d, 2) has 2dd! vertices and its symmetry
group is Bd. The properties listed in this section are extensions to Zq(d, p) of known
properties of Z1(d, 2) whose proofs are given in Section 5.1. We refer to Fukuda [11],
Grünbaum [13], and Ziegler [30] for polytopes and, in particular, zonotopes.

Property 2.1.

(i) Zq(d, p) is invariant under the symmetries induced by coordinate permutations and
the reflections induced by sign flips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p) and
Hq(d, p). The origin is a vertex of Hq(d, p), and −σq(d, p) is a vertex of Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd. Thus, the number of vertices of
Zq(d, p) is a multiple of 2d.
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(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the first
coordinates of all generators of Zq(d, p)

(v) The diameter of Zq(d, p), respectively Z+
q (d, p), is equal to the number of its gener-

ators.

Property 2.2.

(i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries induced by co-

ordinate permutations.

(ii) The sum σ+
q (d, p) of all the generators of Z+

q (d, p) is a vertex of both Z+
q (d, p) and

H+
q (d, p). The origin is a vertex of H+

q (d, p), and −σ+
q (d, p) is a vertex of Z+

q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 2.1 item (i)
implies that the vertices of Zq(d, p) are all the coordinate permutations and sign flips of
its canonical vertices.

Property 2.3.

(i) A canonical vertex v of Zq(d, p) is the unique maximizer of {max cTx : x ∈ Zq(d, p)}
for some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and sign flips
of the unique canonical vertex σ1(d, 2) = (2d− 1, 2d− 3, . . . , 1).

(iii) Zq(d, p) has at least 2dd! vertices including all coordinate permutations and sign flips
of the canonical vertex σq(d, p).

(iv) Z+
∞(d, 1) has at least 2 + 2d! vertices including the 2d! permutations of ±σ(d) where

σ(d) is a vertex with pairwise distinct coordinates, and the 2 vertices ±σ+
∞(d, 1).

2.3 Primitive zonotopes as lattice polytopes with large diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes. Find-
ing lattice polygons with the largest diameter; that is, to determine δ(2, k), was investi-
gated independently in the early nineties by Thiele [28], Balog and Bárány [3], and Acketa
and Žunić [1]. This question can be found in Ziegler’s book [30] as Exercise 4.15. The
answer is summarized in Proposition 2.4, with the role of primitive zonotopes highlighted.

Proposition 2.4. δ(2, k) is achieved, up to translation, by the Minkowski sum of a subset
of the generators of H1(2, p) for a proper p. In particular, for k =

∑
1≤j≤p

jφ(j) for some p,

δ(2, k) is uniquely achieved, up to translation, by H1(2, p).
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In general dimension, Naddef [21] showed in 1989 that δ(d, 1) = d, Kleinschmidt and
Onn [16] generalized this result in 1992 showing that δ(d, k) ≤ kd, before Del Pia and
Michini [6] strengthened the upper bound to δ(d, k) ≤ kd− dd/2e for k ≥ 2, and showed
that δ(d, 2) = b3d/2c. Deza and Pournin [8] further strengthened the upper bound to
kd−d2d/3e− (k− 3) for k ≥ 3 and showed that δ(3, 4) = 8. Concerning the lower bound
Deza, Manoussakis and Onn [7] showed that δ(d, k) ≥ b(k + 1)d/2c for k < 2d. These
bounds are summarized in Proposition 2.5, and Conjecture 2.6 given in [7] is recalled.

Proposition 2.5.

(i) δ(d, k) = b(k + 1)d/2c for (d, k) = (d, 1), (d, 2), (2, 3), (3, 3), and (3, 4),

(ii) 2d ≤ δ(d, 3) ≤ b7d/3c − 1 for d 6≡ 2 mod 3, and δ(d, 3) ≤ b7d/3c otherwise,

(iii) δ(d, k) ≥ b(k + 1)d/2c for k < 2d,

(iv) kd− d2d/3e − (k − 2) for k ≥ 4

Conjecture 2.6. δ(d, k) ≤ b(k + 1)d/2c, and δ(d, k) is achieved, up to translation, by a
Minkowski sum of lattice vectors.

Note that Conjecture 2.6 holds for all known values of δ(d, k) given in Table 1, and
hypothesizes, in particular, that δ(d, 3) = 2d.

k
δ(d, k) 1 2 3 4 5 6 7 8 9 10

d

1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6
4 4 6 8
...

...
...

d d b3d/2c

Table 1: Largest diameter δ(d, k) over all lattice (d, k)-polytopes

Soprunov and Soprunova [26] considered the Minkowski length of a lattice polytope P ;
that is, the largest number of lattice segments whose Minkowski sum is contained in P .
For example, the Minkowski length of the {0, k}d-cube is kd. We consider a variant of the
Minkowski length and the special case when P is the {0, k}d-cube. Let L(d, k) denote the
largest number of pairwise linearly independent lattice segments whose Minkowski sum
is contained in the {0, k}d-cube. One can check that the generators of H1(d, 2) form the
largest, and unique, set of primitive lattice vectors which Minkowski sum fits within the
{0, k}d-cube for k = 2d− 1; that is, for k being the sum of the first coordinates of the d2
generators of H1(d, 2). Thus, L(d, 2d− 1) = δ(H1(d, 2)) = d2. Similarly, L(2, k) = δ(2, k)
for all k, and L(d, k) = b(k + 1)d/2c for k ≤ 2d− 1.



7

2.4 Primitive zonotope and convex matroid optimization

We consider the convex multicriteria matroid optimization framework of Melamed, Onn
and Rothblum, see [19, 22, 23]. Call S ⊂ {0, 1}n amatroid if it is the set of the indicators of
bases of a matroid over {1, . . . , n}. For instance, S can be the set of indicators of spanning
trees in a connected graph with n edges. For a d×n matrix W , let WS = {Wx : x ∈ S},
and let conv(WS) = W conv(S) be the projection to Rd of conv(S) by W . Given a
convex function f : Rd → R, convex matroid optimization deals with maximizing the
composite function f(Wx) over S; that is, max {f(Wx) : x ∈ S}, and is concerned with
conv(WS); that is, the projection of the set of the feasible points. The maximization
problem can be interpreted as a problem of multicriteria optimization, where each row of
W gives a linear criterion Wix and f compromises these criteria. Thus, W is called the
criteria matrix or weight matrix. The projection polytope conv(WS) and its vertices play
a key role in solving the maximization problem as, for any convex function f , there is an
optimal solution x whose projection y = Wx is a vertex of conv(WS). In particular, the
enumeration of all vertices of conv(WS) enables to compute the optimal objective value
by picking a vertex attaining the optimal value f(y) = f(Wx). Thus, it suffices that f
is presented by a comparison oracle that, queried on vectors y, z ∈ Rd, asserts whether
or not f(y) < f(z). Coarse criteria matrices; that is, W whose entries are small or in
{0, 1, . . . , p}, are of particular interest. In multicriteria combinatorial optimization, this
case corresponds to the weight Wi,j attributed to element j of the ground set {1, . . . , n}
under criterion i being small or in {0, 1, . . . , p} for all i, j. In the remainder, we only
consider {0, 1, . . . , p}-valued W .

Letm(d, p) denote the number of vertices ofH∞(d, p). Theorem 2.7, given in [7], settles
the computational complexity of the multicriteria optimization problem by showing that
the maximum number of vertices of the projection polytope conv(WS) of any matroid S
on n elements and any d-criteria p-bounded utility matrix; that is, W ∈ {0, 1, . . . , p}d×n,
is equal to m(d, p), and hence is in particular independent of n, S, and W .

Theorem 2.7. Let d, p be any positive integers. Then, for any positive integer n, any
matroid S ⊂ {0, 1}n, and any d-criteria p-bounded utility matrix W , the primitive zono-
tope H∞(d, p) refines conv(WS). Moreover, H∞(d, p) is a translation of conv(WS) for
some matroid S and d-criteria p-bounded utility matrix W . Thus, the maximum number
of vertices of conv(WS) for any n, any matroid S ⊂ {0, 1}n, and any d-criteria p-bounded
utility matrix W , equals the number m(d, p) of vertices of H∞(d, p), and hence is inde-
pendent of n, S, and W . Also, for any fixed d and convex f : Rd → R, the multicriteria
matroid optimization problem can be solved using a number of arithmetic operations and
queries to the oracles of S and f which is polynomial in n and p using m(d, p) greedily
solvable linear matroid optimization counterparts.

Theorem 2.8. The number m(d, 1) of vertices of H∞(d, 1) satisfies

2dd! ≤ m(d, 1) ≤ 2
∑

0≤i≤d−1

(
(3d − 3)/2

i

)
− 2

(
(3d−1 − 3)/2

d− 1

)
.
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Proof. The first inequality restates item (iii) of Property 2.3 where (q, d, p) is set to
(∞, d, 1). The second inequality is obtained by exploiting the structure of the generators
of H∞(d, 1). One can check that H∞(d, 1) has (3d−1)/2 generators and that removing the
first zero of the generators of H∞(d, 1) starting with zero yields exactly the (3d−1 − 1)/2
generators of H∞(d−1, 1). We recall that the number of vertices f0(Z) of a d-dimensional
zonotope Z generated by m generators is bounded by f̄(d,m) = 2

∑
0≤i≤d−1

(
m−1
i

)
. By

duality, the number f0(Z) of vertices of a zonotope Z is equal to the number fd−1(A) of
cells of the associate hyperplane arrangement A where each generatormj of Z corresponds
to an hyperplane hj of A. The inequality f0(Z) ≤ f̄(d,m) is based on the inequality
fd−1(A) ≤ fd−1(A \ hj) + fd−1(A ∩ hj) for any hyperplane hj of A where A \ hj denotes
the arrangement obtained by removing hj from A, and A ∩ hj denotes the arrangement
obtained by intersectingA with hj. This last inequality and the duality between zonotopes
and hyperplane arrangements are detailed, for example, in [11]. Recursively applying
this inequality to the arrangement A∞(d, 1) associated to H∞(d, 1) till the remaining
(3d−1−1)/2 hyperplanes form a (d−1)-dimensional arrangement equivalent toA∞(d−1, 1)
yields: fd−1(A∞(d, 1)) ≤ f̄(d, (3d − 1)/2) −

(
f̄(d, (3d−1 − 1)/2)− f̄(d− 1, (3d−1 − 1)/2)

)
which completes the proof since fd−1(A∞(d, 1)) = f0(H∞(d, 1)) and f̄(d,m)−f̄(d−1,m) =
2
(
m−1
d

)
. In other words, the inequality is based on the inductive build-up of H∞(d, 1)

starting with the (3d−1 − 3)/2 generators with zero as first coordinate, and noticing that
these (3d−1 − 3)/2 generators belong to a lower dimensional space.

3 Small primitive zonotopes Hq(d, p) and H+
q (d, p)

In this section we provide the number of vertices, the diameter; that is, the number of
generators, and the grid embedding size for Hq(d, p) and H+

q (d, p) for small d and p, and
q = 1, 2, and ∞. We recall that, up to translation, Zq(d, p), respectively Z+

q (d, p), is
the image of Hq(d, p), respectively H+

q (d, p), by a homothety of factor 2. Thus Zq(d, p)
and Hq(d, p), respectively Z+

q (d, p) and H+
q (d, p), have the same number of vertices and

the same diameter, while the grid embedding size of the Zq(d, p), respectively Z+
q (d, p),

is twice the one of Hq(d, p), respectively H+
q (d, p). Since both Hq(d, 1) and H+

q (d, 1) are
equal to the {0, 1}d-cube for finite q, both are omitted from the tables provided in this
section. The vertex enumeration was performed using standard algorithms described, for
instance, in [11]. The Euler totient function counting positive integers less than or equal
to j and relatively prime with j is denoted by φ(j). Note that φ(1) is set to 1.

Enumerative questions concerning Hq(d, p) and H+
q (d, p) have been studied in various

settings. We list a few instances, and the associated OEI sequences, see [25] for details
and references therein.

(i) f0(H
+
∞(d, 1)) corresponds to the OEI sequence A034997 giving the number of gen-

eralized retarded functions in quantum field theory. The value of f0(H+
∞(d, 1)) was

determined till d = 8.
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(ii) f0(H∞(d, 1)), which is the number of regions of hyperplane arrangements with
{−1, 0.1}-valued normals in dimension d, corresponds to the OEI sequence A009997
giving f0(H∞(d, 1))/(2dd!). The value of f0(H∞(d, 1)) was determined till d = 7.

(iii) δ(H+
∞(d, p)) corresponds to the OEI sequence A090030 with further cross-referenced

sequences for d ≤ 7 and p ≤ 8.

(iv) δ(H+
1 (3, p)), respectively δ(H+

2 (2, p)), δ(H∞(d, 2)), δ(H∞(2, p))/4, δ(H2(2, p))/2,
δ(H+

1 (d, 3)), and δ(H+
2 (d, 2)), corresponds to the OEI sequence A048134, respec-

tively A049715, A005059, A002088, A175341, A008778, and A055795.

(v) the grid embedding size of H2(d, 2), respectively H∞(d, 2) and H+
1 (d, 3), corresponds

to the OEI sequence A161712, respectively A080961 and A052905.

3.1 Small primitive zonotopes Hq(d, p)

In Tables 2, 3, and 4, the number of vertices f0(Hq(d, p)) is divided by 2dd! and followed
by its diameter δ(Hq(d, p)) and grid embedding size. For instance, the entry 26(49, 53) for
(q, d, p) = (1, 3, 4) in Table 2 indicates thatH1(3, 4) has 26×233! = 1248 vertices, diameter
49, and is, up to translation, a lattice (3, 53)-polytope. The rather straightforward proofs
are given in Section 5.2.

3.1.1 Small primitive zonotopes H1(d, p)

Property 3.1.

(i) H1(d, 1) is the {0, 1}d-cube,

(ii) H1(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 2d− 1, and diameter
d2, and 2dd! vertices,

(iii) H1(d, 3) is, up to translation, a lattice (d, k)-polytope with k = 2d2 + 2d − 3, and
diameter d(d+ 2)(2d− 1)/3,

(iv) H1(d, 4) is, up to translation, a lattice (d, k)-polytope with k =
(
d−1
0

)
+ 16

(
d−1
1

)
+

20
(
d−1
2

)
+ 8
(
d−1
3

)
, and diameter d(d3 + 2d2 + 2d− 2)/3,

(v) H1(2, p) is, up to translation, a lattice (2, k)-polygon with k =
∑

1≤j≤p
jφ(j), and

diameter 2
∑

1≤j≤p
φ(j).
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p
H1(d, p) 2 3 4 5 6

d
2 1 (4,3) 2 (8,9) 3 (12,17) 5 (20,37) 6 (24,49)
3 1 (9,5) 7 (25,21) 26 (49,53) 102 (97,133) 227 (145,229)
4 1 (16,7) 40 (56,37) 531 (136,117) 6 741 (312,337) ? (560,709)
5 1 (25,9) 339 (105,57) ? (305,217) ? (801,713) ? (1 681,1 769)

Table 2: Small primitive zonotopes H1(d, p)

3.1.2 Small primitive zonotopes H2(d, p)

Property 3.2.

(i) H2(d, 1) is the {0, 1}d-cube,

(ii) H2(d, 2) is, up to translation, a lattice (d, k)-polytope with k =
∑

0≤j≤3
2j
(
d−1
j

)
, and

diameter
∑

0≤j≤3
2j
(

d
j+1

)
.

p
H2(d, p) 2 3 4 5

d
2 1 (4,3) 2 (8,9) 4 (16,27) 6 (24,51)
3 2 (13,9) 26 (49,57) 126 (109,161) 443 (205,377)
4 14 (40,27) 1 427 (192,193) ? (592,795) ? (1 424,2 411)
5 273 (105,65) ? (641,577)

Table 3: Small primitive zonotopes H2(d, p)

3.1.3 Small primitive zonotopes H∞(d, p)

Property 3.3.

(i) H∞(d, 1) is, up to translation, a lattice (d, k)-polytope with k = 3d−1, and diameter
(3d − 1)/2,

(ii) H∞(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 3× 5d−1− 2× 3d−1,
and diameter (5d − 3d)/2,

(iii) H∞(2, p) is, up to translation, a lattice (2, k)-polygon with diameter 4
∑

1≤j≤p
φ(j).
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p
H∞(d, p) 1 2 3 4

d

2 1 (4,3) 2 (8,9) 4 (16,27) 6 (24,51)
3 2 (13,9) 26 (49,57) 228 (145,249) 910 (289,633)
4 14 (40,27) 4 333 (272,321) ? (1 120,1 923) ? (2 928,6 459)
5 516 (121,81)
6 12 4187 (364,243)
7 214 580 603 (1 093,729)

Table 4: Small primitive zonotopes H∞(d, p)

3.2 Small positive primitive zonotopes H+
q (d, p)

In Tables 5, 6, and 7, the number of vertices f0(H+
q (d, p)) is followed by its diameter

δ(H+
q (d, p)) and grid embedding size. For instance, the entry 1082 (15, 5) for (q, d, p) =

(1, 5, 2) in Table 5 indicates that H+
1 (5, 1) has 1 082 vertices, diameter 15, and is a lattice

(5, 5)-polytope.

3.2.1 Small positive primitive zonotopes H+
1 (d, p)

Property 3.4.

(i) H+
1 (d, 1) is the {0, 1}d-cube,

(ii) H+
1 (d, 2) is a lattice (d, k)-polytope with k = d, and diameter

(
d+1
2

)
,

(iii) H+
1 (d, 3) is a lattice (d, k)-polytope with k = (d2 + 5d − 4)/2 and diameter d(d2 +

6d− 1)/6.

(iv) H+
1 (2, p) is a lattice (2, k)-polygon with k = 1 +

∑
2≤j≤p

jφ(j)/2, and diameter 1 +∑
1≤j≤p

φ(j).

p
H+

1 (d, p) 2 3 4 5 6

d

2 6 (3,2) 10 (5,5) 14 (7,9) 22 (11,19) 26 (13,25)
3 26 (6,3) 110 (13,10) 314 (22,22) 1 022 (40,52) 1 970 (55,82)
4 150 (10,4) 2 194 (26,16) 17534 (51,41) 145 198 (103,106) 593 402 (161,193)
5 1 082 (15,5) 71 582 (45,23) 2 062 682 (100,67) ? (221,188) ? (386,386)
6 9 366 (21,6) ? (71,31) ?(176,106)

Table 5: Small positive primitive zonotopes H+
1 (d, p)
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3.2.2 Small positive primitive zonotopes H+
2 (d, p)

Property 3.5.

(i) H+
2 (d, 1) is the {0, 1}d-cube,

(ii) H+
2 (d, 2) is a (d, k) polytope with k =

(
d
1

)
+
(
d
3

)
, and diameter

(
d+1
2

)
+
(
d+1
4

)
.

p
H+

2 (d, p) 2 3 4 5

d
2 6 (3,2) 10 (5,5) 18 (9,14) 26 (13,26)
3 32 (7,4) 212 (19,19) 1 010 (40,54) 3 074 (70,120)
4 370 (15,8) 19 438 (55,49) 362 962 (141,170) 3 497 862 (299,462)
5 10 922 (30,15) ? (136,108) ? (441,487)

Table 6: Small positive primitive zonotopes H+
2 (d, p)

3.2.3 Small positive primitive zonotopes H+
∞(d, p)

Property 3.6.

(i) H+
∞(d, 1) is, a lattice (d, k)-polytope with k = 2d−1, and diameter 2d − 1,

(ii) H+
∞(d, 2) is a lattice (d, k)-polytope with k = 3d − 2d, and diameter 3d − 2d,

(iii) H+
∞(2, p) is a lattice (2, k)-polygon with diameter 1 + 2

∑
1≤j≤p

φ(j).

p
H+
∞(d, p) 1 2 3 4

d

2 6 (3,2) 10 (5,5) 18 (9,14) 26 (13,26)
3 32 (7,4) 212 (19,19) 1 418 (49,76) 4 916 (91,184)
4 370 (15,8) 27 778 (65,65) 1 275 842 (225,344) ? (529,1 064)
5 11 292 (31,16) ? (211,211) ? (961,1456) ? (2 851,5 716)
6 1 066 044 (63,32)
7 347 326 352 (127,64)
8 419 172 756 930 (255,128)

Table 7: Small positive primitive zonotopes H+
∞(d, p)
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4 Complexity issues
We discuss a few complexity issues related to primitive zonotopes. While we mainly
focus on Zq(d, p), the discussion and results, such as Propositions 4.1 and 4.2, can be
adapted to Z+

q (d, p). As Hq(d, p), respectively H+
q (d, p), is the translation of the image

by a homothety of Zq(d, p), respectively Z+
q (d, p), the complexity results are the same.

4.1 Complexity properties

Proposition 4.1. For fixed positive integers p and q, linear optimization over Zq(d, p) is
polynomial-time solvable, even in variable dimension d.

Proof. Since the q-norm of a generator of Zq(d, p) is bounded by p, it has at most pq
nonzero entries – which is attained for the vector of all ones and d = pq. Thus, the
number of generators of Zq(d, p) is bounded by

(
d
pq

)
(2p)p

q
= O

(
dp

q). Hence, one can
explicitly write all the generators of Zq(d, p) in polynomial time. Consequently, one can
compute in polynomial time the following signed sum of generators of Zq(d, p) for any given
rational c ∈ Rd: v∗ =

∑
v∈Gq(d,p)

sign(cTv)v where Gq(d, p) denotes the set of generators of

Zq(d, p). Note that sign(0) is set to 0. Then, one can show that v∗ is a maximizer of
{max cTx : x ∈ Zq(d, p)}.

The algorithmic theory developed by Grötschel, Lovász, and Schrijver [12] shows that
polynomial-time solvability for linear optimization over a polytope implies polynomial-
time solvability for other questions. In particular, Proposition 4.1 implies Proposition 4.2.

Proposition 4.2. For fixed positive integers p and q, the following problems are polynomial-
time solvable.

(i) Extremality: Given v ∈ Zd, decide if v is a vertex of Zq(d, p),

(ii) Adjacency: Given v1, v2 ∈ Zd, decide if [v1, v2] is an edge of Zq(d, p);

(iii) Separation: Given rational y ∈ Rd, either assert y ∈ Zq(d, p), or find h ∈ Zd

separating y from Zq(d, p); that is, satisfying hTy > hTx for all x ∈ Zq(d, p).

4.2 Open problems

A natural open problem is to find direct algorithms to solve, over both Zq(d, p) and
Z+

q (d, p), the extremality, adjacency, and separation questions given in Proposition 4.2.

Note that the case q =∞, even for p = 1, seems to be significantly harder as the number
of nonzero entries in a generator of Z∞(d, p) can not bounded by a constant independent
of d. Thus, the number of generators of Z∞(d, p) is exponential in d. Hence, the com-
plexity of linear optimization, extremality, adjacency, and separation over both Z∞(d, p)
and Z+

∞(d, p), is open. In particular, it is not clear if deciding if a given point is a vertex
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of Z∞(d, 1), or of Z+
∞(d, p), is in NP or in coNP.

The remaining open questions deal with a reformulation in term of degree sequence of hy-
pergraphs. The question is presented within the context of H+

q (d, p) but could be adapted
to Hq(d, p). Each subset H ⊆ {0, 1}d can be associated to a hypergraph with ground set
[d]. The vector

∑
h∈H

h is called the degree sequence of H, and the convex hull of the de-

gree sequences of all hypergraphs with ground set [d] is called the hypergraph polytope
Dd; and thus Dd = H+

∞(d, 1). Considering only k-uniform hypergraphs; that is, subsets
H ⊆ {0, 1}d where all vectors in H have k nonzero entries, one obtains the k-uniform
hypergraph polytope Dd(k) as the convex hull of the degree sequences of all k-uniform hy-
pergraphs. The k-uniform hypergraph polytope, in particular Dd(2) and Dd(3), have been
extensively studied, see [5, 10, 17, 20] and references therein. A natural question raised
in the literature asks for suitable necessary and sufficient condition to check whether a
vector h ∈ Dd(k) ∩ Zd is the degree sequence of some k-uniform hypergraph. A triv-
ial necessary condition is that the sum of the coordinates of h is a multiple of k. For
k = 2; that is for graphs, the celebrated Erd´́os-Gallai Theorem [10] shows that the trivial
necessary condition is also sufficient. For k = 3; that is for 3-uniform hypergraphs, the
question was raised by Klivans and Reiner [17]. Liu [18] exhibited counterexamples by
constructing holes for d ≥ 16; that is, vectors h inDd(3)∩Zd such that the sum of the coor-
dinates of h is a multiple of 3, but h is not the degree sequence of a 3-uniform hypergraph.

As there is no trivial congruence necessary condition, we call a vector in H+
q (d, p) ∩ Zd a

hole if it cannot be written as the sum of a subset of the generators of H+
q (d, p). While

the answer to the question “Do H+
q (d, p) have holes?’’ is likely yes for most p, q, d, it

would be interesting to explicitly find such holes and better understand them. A natural
follow-up question, provided there are holes, is “For given fixed positive integers p and q,
what is the complexity of deciding if a given vector h ∈ H+

q (d, p) ∩ Zd is a hole, and if
not, of writing h as the sum of a subset of generators of H+

q (d, p)?".

As noted in the proof of Proposition 4.1, there are polynomially many generators for fixed
integer p and q. Thus, the above follow-up question is in coNP as, if h is not a hole, it is
possible to write h as a sum of a subset of generators H+

q (d, p). The last question is thus
“Is this problem coNP-complete?".

As for the linear optimization related questions, the hole related questions seem to be
significantly harder for q = ∞. In particular, for (q, d, p) = (∞, d, 1), the questions
investigates the holes of Dd.



15

5 Proofs for Sections 2.2 and 3
LetGq(d, p), respectivelyG+

q (d, p), denote the generators of Zq(d, p), respectively Z+
q (d, p).

Recall that σq(d, p), respectively σ+
q (d, p), denotes the sum of the generators of Zq(d, p),

respectively Z+
q (d, p).

5.1 Proof for Section 2.2

5.1.1 Proof of item (i) of Property 2.1

Proof. Note that if the set G of generators of a zonotope Z is invariant under coordinate
permutation or sign flip, then the same holds for Z. Let π denote a permutation or a sign
flip, and consider a signed sum

∑
g∈G

εgg. Then, π(
∑
g∈G

εgg) =
∑
g∈G

εgπ(g) is also a signed sum

of generators since G is permutation and sign flip invariant. In other words, the set of all
signed sums is invariant under permutations and sign flips, and thus the same holds for
the convex hull Z of all signed sums. Let Jq(d, p) be the set of all −g for g ∈ Gq(d, p). The
zonotope Z̃q(d, p) generated by Gq(d, p)∪Jq(d, p) is the image of Zq(d, p) by a homothety
of factor 2, and thus shares the same symmetry group. One can check that the set of
generators of Z̃q(d, p) is invariant under coordinate permutation or sign flip, thus the same
holds for Z̃q(d, p), and consequently holds for Zq(d, p).

5.1.2 Proof of item (ii) of Property 2.1

Proof. Consider the minimization problem {min cTx : x ∈ Hq(d, p)} or, equivalently,
min cTx over all integer valued points of Hq(d, p). Set c = (d!x̄d, (d − 1)!x̄d−1, . . . , x̄)
where x̄ = (2p + 1)d+1. Assuming that x is not the origin, let xi0 denotes the first
nonzero coordinate of x. Note that xi0 ≥ 1 by definition of Gq(d, p), and |xi| ≤ x̄. Thus,
cTx ≥ (d + 1 − i0)!x̄d+1−i0 − x̄

∑
i0<i≤d

(d + 1 − i)!x̄d+1−i > 0. In other words, the origin is

the unique minimizer of a linear optimization instance over Hq(d, p); that is, the origin
is a vertex of Hq(d, p). As Zq(d, p) = 2Hq(d, p)− σq(d, p), the point −σq(d, p) is a vertex
of Zq(d, p). By item (i) of Proposition 2.1, the point σq(d, p) is a vertex of Zq(d, p), and
thus (σq(d, p) + σq(d, p))/2 is a vertex of Hq(d, p).

5.1.3 Proof of item (iii) of Property 2.1

Proof. We first show that the coordinates of the vertex σq(d, p) are odd. As noted in
the proof of item (iii) of Property 2.3, the i-th coordinate of σq(d, p) is equal to the first
coordinate of σq(d − i + 1, p). Thus, it is enough to show that the first coordinate of
σq(d, p) is odd. Except for the first unit vector (1, 0, . . . , 0), any generator g of Zq(d, p)
with nonzero first coordinate can be paired with the generator ḡ where ḡ1 = g1 and
ḡi = −gi for i 6= 1. Thus, the sum of the first coordinates of the generators of Zq(d, p),
excluding the first unit vector, is even. Hence, the first coordinate of σq(d, p) is odd,
and thus all the coordinates of σq(d, p) are odd. Consider a vertex v =

∑
g∈Gq(d,p)

ε(g)g of
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Zq(d, p). Since flipping the sign of an ε(g) does not change the parity of a coordinate of v,
the coordinates of v have the same parity as the ones of σq(d, p); i.e. are odd. In particular,
the coordinates of a vertex of Zq(d, p) are nonzero and item (i) of Proposition 2.1 implies
that the number of vertices of Zq(d, p) is a multiple of 2d.

5.1.4 Proof of items (iv) and (v) of Property 2.1

Proof. Let Z be a zonotope generated by integer-valued generators mj : j = 1, . . . ,m(Z).
Then, Z is, up to translation, a lattice (d, k)-polytope with k ≤ max

i=1,...,d

∑
1≤j≤m(Z)

|mj
i |. Item

(i) of Property 2.1 implies that the integer range of its coordinates is independent of
the chosen coordinate. The same holds for Hq(d, p), and, thus to determine the integer
range of Hq(d, p), it is enough to consider the first coordinates of its generators. Since
the origin is a vertex of Hq(d, p) and the first coordinate of its generator is nonnegative,
the integer range of Hq(d, p) is the sum of the first coordinates of its generators. For item
(v), recall that the diameter of a zonotope is at most the number of its generators, and
this inequality is satisfied with equality if no pair of generators are linearly dependent –
which is the case for Zq(d, p) and Z+

q (d, p).

5.1.5 Proof of Property 2.2

Proof. Consider a generator g ∈ G+
q (d, p) and a coordinate permutation π. Since π(g) ∈

G+
q (d, p), π(Z+

q (d, p)) = π(
∑

[−1, 1]G+
q (d, p)) =

∑
[−1, 1]π(G+

q (d, p)) =
∑

[−1, 1]G+
q (d, p) =

Z+
q (d, p). As in the proof of item (ii) of Property 2.1, one can check that the origin is the

unique minimizer of {min cTx : x ∈ Hq(d, p)} with c = (1, 1, . . . , 1). Thus, the origin is
a vertex of H+

q (d, p). As Z+
q (d, p) = 2H+

q (d, p) − σq(d, p), the point −σq(d, p) is a vertex
of Z+

q (d, p). Since Z+
q (d, p) is invariant under the symmetries induced by coordinate per-

mutations, σq(d, p) is a vertex of Z+
q (d, p), and thus (σq(d, p) + σq(d, p))/2 is a vertex of

H+
q (d, p).

5.1.6 Proof of items (i) and (ii) of Property 2.3

Proof. Given a canonical vertex v of Zq(d, p), let c be a vector such that v is the unique
maximizer of {max cTx : x ∈ Zq(d, p)}. Up to infinitesimal perturbations, we can assume
that the coordinates of c are pairwise distinct and nonzero. Note that each coordinate
ci of c is positive as otherwise flipping the sign of vi > 0 would yield a point in Zq(d, p)
with higher objective value than v. Assume that ci < cj for some i < j. Then, vi = vj as
otherwise permuting vi and vj would yield a point in Zq(d, p) with higher objective value
than v. Let πij(c) be obtained by permuting ci and cj. Then, one can check that v is
the unique maximizer of {maxπij(c)

Tx : x ∈ Zq(d, p)}. Assume, by contradiction, that
v′ ∈ Zq(d, p) satisfies πij(c)Tv′ ≥ πij(c)

Tv. Then, cTπij(v′) = πij(c)
Tv′ ≥ πij(c)

Tv = cTv
which implies πij(v′) = v, and hence v′ = v, since v is the unique maximizer of {max cTx :
x ∈ Zq(d, p)}. Thus, successive appropriate permutations yield a vector π(c) with π(c)1 >
· · · > π(c)d > 0 such that v is the unique maximizer of {max cTx : x ∈ Zq(d, p)}. For
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item (ii), one can check that σ1(d, 2) = (2d − 1, 2d − 3, . . . , 1) is the unique maximizer
of {max cTx : x ∈ Z1(2, p)} for any c satisfying c1 > · · · > cd > 0. Thus, by item (i) of
Property 2.3, σ1(d, 2) is the unique canonical vertex of Z1(d, 2) and the vertices of Z1(d, 2)
are the 2dd! coordinate permutations and sign flips of σ1(d, 2).

5.1.7 Proof of item (iii) of Property 2.3

Proof. We first note that the i-th coordinate of σq(d, p) is equal to the first coordinate of
σq(d − i + 1, p). The statement trivially holds for i = 1. For i > 1, consider a generator
g of Zq(d, p) with gi 6= 0 and gi0 > 0 for some i0 < i, then g can be paired with the
generator ḡ where gi = −ḡi and gi0 = ḡi0 . Thus, the sum of all the i-th coordinates of the
generators of Zq(d, p) is equal to the sum of the generators of Zq(d, p) such that the first
i−1 coordinates are zero. In other words, the i-th coordinate of σq(d, p) is equal to the first
coordinate of σq(d− i+1, p). Then, note that the first coordinate of σq(d− i+1, p), which
is the grid embedding size of Hq(d−i+1, p), is strictly decreasing with i increasing. Thus,
the action of the symmetry group of Zq(d, p) on σq(d, p) generates 2dd! distinct vertices
of Zq(d, p). For instance, one can check the i-th coordinate of σ∞(d, 1) is 3d−i.

5.1.8 Proof of item (iv) of Property 2.3

Proof. The statement trivially holds for d = 1. For d ≥ 2, we show by induction that the
vertices of Z+

∞(d, 1) include σ(d) satisfying 0 = σ1(d) < · · · < σd(d) = 2d−1. The base
case holds for d = 2 as σ(2) = (0, 2) is a vertex of Z+

∞(2, 1). Assume such a vertex σ(d)
exists, and thus σ(d) =

∑
g∈G+

∞(d,1)

ε(g)g for some ε(g) and σ(d) is the unique maximizer

of {max c(d)Tx : x ∈ Z+
∞(d, 1)} for some c(d). The generators of Z+

∞(d + 1, 1) consist of
the 2d − 1 vectors (g, 0) obtained by appending 0 to a generator of Z+

∞(d, 1), the 2d − 1
vectors (g, 1) obtained by appending 1, and the unit vector ed+1. Consider the point
s(d+ 1) = ed+1 +

∑
g∈G+

∞(d,1)

(g, 1)−
∑

g∈G+
∞(d,1)

ε(g)(g, 0) = (2d−1, . . . , 2d−1, 2d)− (σ(d), 0); that

is, s(d+ 1) = (2d−1−σ1(d), . . . , 2d−1−σd−1(d), 0, 2d). Thus, the coordinates of s(d+ 1) are
pairwise distinct and a suitable permutation of s(d+ 1) yields a point σ(d+ 1) satisfying
0 = σ1(d+ 1) < · · · < σd+1(d+ 1) = 2d. To show that σ(d+ 1) is a vertex of Z+

∞(d+ 1, 1),
one can check that σ(d+ 1) is the unique maximizer of {max c(d+1)Tx : x ∈ Z+

∞(d+1, 1)}
where c(d + 1) = (−c(d), cd+1) for sufficiently large cd+1. Thus, for d ≥ 2, a point σ(d)
satisfying 0 = σ1(d) < · · · < σd(d) = 2d−1 is a vertex of Z+

q (d, p). Zonotopes being
centrally symmetric, −σ(d) is a vertex of Z+

q (d, p) and the same holds for the distinct 2d!
permutations of ±σ(d).
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5.2 Proof for Section 3

5.2.1 Proof of Property 3.1

Proof. One can check that the generators of H1(d, 2) consist of
(
d
1

)
unity vectors and 2

(
d
2

)
vectors {. . . , 1, . . . ,±1, . . . }. Thus, the diameter of H1(d, 2) is

(
d
1

)
+ 2
(
d
2

)
= d2. Simi-

larly, one can check that the sum of the first coordinates of the generators of H1(d, 2) is
2d−1. Note that H1(d, 2) is the permutahedron of type Bd. Then, one can check that, in
addition to the previously determined generators of H1(d, 2), the generators of H1(d, 3)
consist of 2

(
d
2

)
vectors {. . . , 1, . . . ,±2, . . . }, 2

(
d
2

)
vectors {. . . , 2, . . . ,±1, . . . }, and 4

(
d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }. Thus, the diameter of H1(d, 3) is

(
d
1

)
+ 6
(
d
2

)
+ 4
(
d
3

)
=

d(d + 2)(2d − 1)/3. Similarly, one can check that the sum of the first coordinates of the
generators of H1(d, 3) is

(
d−1
0

)
+8
(
d−1
1

)
+4
(
d−1
2

)
= 2d2+2d−3. Furthermore, one can check

that, in addition to the previously determined generators of H1(d, 3), the generators of
H1(d, 4) consist of 2

(
d
2

)
vectors {. . . , 1, . . . ,±3, . . . }, 2

(
d
2

)
vectors {. . . , 3, . . . ,±1, . . . }, 4

(
d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±2, . . . }, 4

(
d
3

)
vectors {. . . , 1, . . . ,±2, . . . ,±1, . . . }, 4

(
d
3

)
vec-

tors {. . . , 2, . . . ,±1, . . . ,±1, . . . }, and 8
(
d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . . }.

Thus, the diameter of H1(d, 4) is
(
d
1

)
+ 10

(
d
2

)
+ 16

(
d
3

)
+ 8
(
d
4

)
= d(d3 + 2d2 + 2d − 2)/3.

Similarly, one can check that the sum of the first coordinates of the generators of H1(d, 4)
is
(
d−1
0

)
+16

(
d−1
1

)
+20

(
d−1
2

)
+8
(
d−1
3

)
. Finally, item (v) corresponds to Proposition 2.4.

5.2.2 Proof of Property 3.2

Proof. One can check that the generators of H2(d, 2) consist of
(
d
1

)
unity vectors, 2

(
d
2

)
vectors {. . . , 1, . . . ,±1, . . . }, 4

(
d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . }, and 8

(
d
4

)
vectors

{. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . . }. Thus, the diameter of H2(d, 2) is
∑

0≤j≤3
2j
(

d
j+1

)
. Sim-

ilarly, one can check that the sum of the first coordinates of the generators of H2(d, 2) is∑
0≤j≤3

2j
(
d−1
j

)
.

5.2.3 Proof of Property 3.3

Proof. One can check that H∞(d, 1) has (3d− 1)/2 generators consisting of all {−1, 0, 1}-
valued vectors which first nonzero coordinate is positive. Out of the 5d {−2,−1, 0, 1, 2}-
valued vectors, 3d are {−2, 0, 2}-valued. Thus, keeping the ones which first nonzero coor-
dinate is positive, H∞(d, 2) has (5d − 3d)/2 generators. Similarly, one can check that the
sum of the first coordinates of the generators of H∞(d, 2) is 3×5d−5×3d. The generators
(i, j) of H∞(2, p) such that ||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), (1, 1) and (1,−1). For a given
i > 1, there are 2φ(i) generators (i, j) such that ||(i, j)||∞ > 1 and j < i. Thus, there are
4
∑

2≤j≤p
φ(j) generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter of H∞(2, p) is

4
∑

1≤j≤p
φ(j).
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5.2.4 Proof of Property 3.4

Proof. One can check that the generators of H+
1 (d, 2) consist of

(
d
1

)
unity vectors and

(
d
2

)
vectors {. . . , 1, . . . , 1, . . . }. Thus, the diameter of H+

1 (d, 2) is
(
d
1

)
+
(
d
2

)
=
(
d+1
2

)
. Similarly,

one can check that the sum of the first coordinates of the generators of H+
1 (d, 2) is d.

Note that H+
1 (2, p) is the Minkowski sum of the permutahedron with the {0, 1}d-cube.

One can check that, in addition to the previously determined generators of H+
1 (2, p),

the generators of H+
1 (d, 3) consist of

(
d
3

)
vectors {. . . , 1, . . . , 1, . . . , 1, . . . , },

(
d
2

)
vectors

{. . . , 1, . . . , 2, . . . }, and
(
d
2

)
vectors {. . . , 2, . . . , 1, . . . }. Thus H+

1 (d, 3) has
(
d
3

)
+ 3
(
d
2

)
+
(
d
1

)
generators. Similarly, one can check that the sum of the first coordinates of the generators
of H+

1 (d, 3) is
(
d−1
2

)
+ 4
(
d−1
1

)
+
(
d
0

)
. Out of the generators of H1(2, p),

∑
2≤j≤p

φ(j) have a

negative coordinate. Thus, the diameter of H+
1 (2, p) is 1 +

∑
1≤j≤p

φ(j). Similarly, one

can check that the sum of the first coordinates of the generators of H+
1 (2, p) is 1 +∑

2≤j≤p
jφ(j)/2.

5.2.5 Proof of Property 3.5

Proof. One can check that the generators of H+
2 (d, 2) consist of

(
d
i

)
vectors with exactly i

ones for i = 1, 2, 3, and 4. Thus, the diameter of H+
2 (d, 2) is

(
d+1
2

)
+
(
d+1
4

)
. Similarly, one

can check that the sum of the first coordinates of the generators ofH+
2 (d, 2) is

(
d
1

)
+
(
d
3

)
.

5.2.6 Proof of Property 3.6

Proof. One can check that H+
∞(d, 1) has 2d − 1 generators consisting of all {0, 1}-valued

vectors except the origin. Thus, the diameter of H+
∞(d, 1) is 2d − 1. Similarly, one can

check that the sum of the first coordinates of the generators of H+
∞(d, 1) is 2d−1. Out of the

3d {0, 1, 2}-valued vectors, 2d are {0, 2}-valued. Thus, the diameter of H+
∞(d, 2) is 3d−2d.

Similarly, one can check that the sum of the first coordinates of the generators of H+
∞(d, 2)

is 3d − 2d. The generators (i, j) of H+
∞(2, p) such that ||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), and

(1, 1). For a given i > 1, there are φ(i) generators (i, j) such that ||(i, j)||∞ > 1 and j < i.
Thus, there are 2

∑
2≤j≤p

φ(j) generators (i, j) such that ||(i, j)||∞ > 1. Thus, the diameter

of H+
∞(2, p) is 1 + 2

∑
1≤j≤p

φ(j).
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