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Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all
lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k)
for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for
(d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most b(k + 1)d/2c and
is achieved, up to translation, by a Minkowski sum of lattice vectors.
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1 Introduction
Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimen-
sion and the number of its facets is not only a natural question of discrete geometry, but
also historically closely connected with the theory of the simplex method, as the diameter
is a lower bound for the number of pivots required in the worst case. Considering bounded
polytopes whose vertices are rational-valued, we investigate a similar question where the
number of facets is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0, 1, . . . , k}d, it is referred to as a lattice (d, k)-polytope. Let
δ(d, k) be the largest edge-diameter over all lattice (d, k)-polytopes. Naddef [7] showed in
1989 that δ(d, 1) = d, Kleinschmidt and Onn [6] generalized this result in 1992 showing
that δ(d, k) ≤ kd. In 2016, Del Pia and Michini [3] strengthened the upper bound to
δ(d, k) ≤ kd− dd/2e for k ≥ 2, and showed that δ(d, 2) = b3d/2c. Pursuing Del Pia and
Michini’s approach, Deza and Pournin [5] showed that δ(d, k) ≤ kd−d2d/3e− (k− 3) for
k ≥ 3, and that δ(4, 3) = 8. The determination of δ(2, k) was investigated independently
in the early nineties by Thiele [8], Balog and Bárány [2], and Acketa and Žunić [1]. Deza,
Manoussakis, and Onn [4] showed that δ(d, k) ≥ b(k + 1)d/2c for all k ≤ 2d − 1 and
proposed Conjecture 1.1.
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Conjecture 1.1. δ(d, k) ≤ b(k + 1)d/2c, and δ(d, k) is achieved, up to translation, by a
Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces the search
space for lattice (d, k)-polytopes achieving a large diameter. Applying this framework to
(d, k) = (3, 4) and (3, 5), we determine in Section 3 that δ(3, 4) = 7 and δ(3, 5) = 9.

Theorem 1.2. Conjecture 1.1 holds for (d, k) = (3, 4) and (3, 5); that is, δ(3, 4) = 7 and
δ(3, 5) = 9, and both diameters are achieved, up to translation, by a Minkowski sum of
lattice vectors

Note that Conjecture 1.1 holds for all known values of δ(d, k) given in Table 1, and
hypothesizes, in particular, that δ(d, 3) = 2d. The new entries corresponding to (d, k) =
(3, 4) and (3, 5) are entered in bold.

k
δ(d, k) 1 2 3 4 5 6 7 8 9 10

d

1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6 7 9
4 4 6 8
...

...
...

d d b3d
2
c

Table 1: Largest diameter δ(d, k) over all lattice (d, k)-polytopes

2 Theoretical and Computational Framework
Since δ(2, k) and δ(d, 2) are known, we consider in the remainder of the paper that d ≥ 3
and k ≥ 3. While the number of lattice (d, k)-lattice polytopes is finite, a brute force
search is typically intractable, even for small instances. Theorem 2.1, which recalls con-
ditions established in [5], allows to drastically reduce the search space.

Theorem 2.1. For d ≥ 3, let d(u, v) denote the distance between two vertices u and v in
the edge-graph of a lattice (d, k)-polytope P such that d(u, v) = δ(d, k). For i = 1, . . . , d,
let F 0

i , respectively F k
i , denote the intersection of P with the facet of the cube [0, k]d

corresponding to xi = 0, respectively xi = k. Then, d(u, v) ≤ δ(d − 1, k) + k, and the
following conditions are necessary for the inequality to hold with equality:

(1) u+ v = (k, k, . . . , k),

(2) any edge of P with u or v as vertex is {−1, 0, 1}-valued,
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(3) for i = 1, . . . , d, F 0
i , respectively F k

i , is a (d−1)-dimensional face of P with diameter
δ(F 0

i ) = δ(d− 1, k), respectively δ(F k
i ) = δ(d− 1, k).

Thus, to show that δ(d, k) < δ(d− 1, k) + k, it is enough to show that there is no lattice
(d, k)-polytope admitting a pair of vertices (u, v) such that d(u, v) = δ(d, k) and the con-
ditions (1), (2), and (3) are satisfied. The computational framework to determine, given
(d, k), whether δ(d, k) = δ(d− 1, k)+k is outlined below and illustrated for (d, k) = (3, 4)
or (3, 5).

Algorithm to determine whether δ(d, k) < δ(d− 1, k) + k

Step 1: Initialization
Determine the set F of all the lattice (d− 1, k)-polytopes P such that δ(P ) = δ(d− 1, k).
For example, for (d, k) = (3, 4), the determination of all the 335 lattice (2, 4)-polygons P
such that δ(P ) = 4 is straightforward.

Step 2: Symmetries
Consider, up to the symmetries of the cube [0, k]d, the possible entries for a pair of vertices
(u, v) such that u+v = {k, k, . . . , k}. For example, for (d, k) = (3, 4), the following 6 ver-
tices cover all possibilities for u up to symmetry: (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
and (0, 2, 2), where v = (4, 4, 4)− u.

Step 3: Shelling
For each of the possible pairs (u, v) determined during Step 2, consider all possible ways
for 2d elements of the set F determined during Step 1 to form the 2d facets of P lying on
a facet of the cube [0, k]d. For example, for (d, k) = (3, 4) and u = (0, 0, 0), we must find
6 elements of F , 3 with (0, 0) as a vertex, and 3 with (4, 4) as a vertex. In addition, if
an edge of an element of F with u or v as vertex is not {−1, 0, 1}-valued, this element is
disregarded.

Note that since the choice of an element of F defines the vertices of P belonging to a
facet of the cube [0, k]d, the choice for the next element of F to form a shelling is sig-
nificantly restricted. In addition, if the set of vertices and edges belonging to the current
elements of F considered for a shelling includes a path from u to v of length at most
δ(d − 1, k) + k − 1, a shortcut between u and v exists and the last added elements of F
can be disregarded.

Step 4. Inner points
For each choice of 2d elements of F forming a shelling obtained during Step 3, consider
the {1, 2, . . . , k− 1}-valued points not in the convex hull of the vertices of the 2d elements
of F forming a shelling. Each such {1, 2, . . . , k−1}-valued point is considered as a poten-
tial vertex of P in a binary tree. If the current set of edges includes a path from u to v of
length at most δ(d−1, k)+k−1, a shortcut between u and v exists and the corresponding
node of the binary tree can be disregarded, and the the binary tree is pruned at this node.
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A convex hull and diameter computation are performed for each node of the obtained
binary tree. If there is a node yielding a diameter of δ(d− 1, k) + k we can conclude that
δ(d, k) = δ(d − 1, k) + k. Otherwise, we can conclude that δ(d, k) < δ(d − 1, k) + k. For
example, for (d, k) = (3, 5), no choice of 6 elements of F forming a shelling such that
d(u, v) ≥ 10 exist, and thus Step 4 is not executed.

3 Computational Results
For (d, k) = (3, 4), a shelling exists for which path lengths are not decidable by the algo-
rithm without convex hull computations. However, this shelling only achieves a diameter
of 7. For (d, k) = (3, 5) the algorithm stops at Step 3, as there is no combination of 6
elements of F which form a shelling such that d(u, v) ≥ δ(2, 5) + 5. Thus, no convex hull
computations are required for (d, k) = (3, 5). A shortcut from u to v is typically found
early on in the shelling, which leads to the algorithm terminating quickly. Run on a 2009
Intel R© CoreTM2 Duo 2.20GHz CPU, the algorithm is able to terminate for (d, k) = (3, 4)
and (3, 5) in under a minute. Consequently, δ(3, 4) < 8 and δ(3, 5) < 10. Since the
Minkowski sum of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1) forms a
lattice (3, 4)-polytope with diameter 7, we conclude that δ(3, 4) = 7. Similarly, since the
Minkowski sum of (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1,−1), (1, 0,−1),
and (1,−1, 0) forms, up to translation, a lattice (3, 5)-polytope with diameter 9, we con-
clude that δ(3, 5) = 9. Computations for additional values of δ(d, k) are currently under-
way. In particular, the same algorithm may determine whether δ(d, k) = δ(d − 1, k) + k
or δ(d− 1, k) + k− 1 for (d, k) = (5, 3) and (4, 4) provided the set of all lattice (d− 1, k)-
polytopes achieving δ(d− 1, k) is determined for (d, k) = (5, 3) and (4, 4). Similarly, the
algorithm could be adapted to determine whether δ(d, k) < δ(d−1, k)+k−1 provided the
set of all lattice (d− 1, k)-polytopes achieving δ(d− 1, k) or δ(d− 1, k)− 1 is determined.
For example, the adapted algorithm may determine whether δ(3, 6) = 10.
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[1] Dragan Acketa and Jovĭsa Z̆unić, On the maximal number of edges of convex digital

polygons included into an m×m-grid, Journal of Combinatorial Theory A 69 (1995),
358–368.

[2] Antal Balog and Imre Bárány, On the convex hull of the integer points in a disc,
Proceedings of the Seventh Annual Symposium on Computational Geometry (1991),
162–165.



5

[3] Alberto Del Pia and Carla Michini, On the diameter of lattice polytopes, Discrete and
Computational Geometry 55 (2016), 681–687.

[4] Antoine Deza, George Manoussakis, and Shmuel Onn, Primitive zonotopes, Discrete
and Computational Geometry (to appear).

[5] Antoine Deza and Lionel Pournin, Improved bounds on the diameter of lattice poly-
topes, arXiv:1610.00341 (2016).

[6] Peter Kleinschmidt and Shmuel Onn, On the diameter of convex polytopes, Discrete
Mathematics 102 (1992), 75–77.

[7] Dennis Naddef, The Hirsch conjecture is true for (0, 1)-polytopes, Mathematical Pro-
gramming 45 (1989), 109–110.

[8] Torsten Thiele, Extremalprobleme für Punktmengen, Master thesis, Freie Universität,
Berlin, 1991.

Nathan Chadder, Advanced Optimization Laboratory, Faculty of Engineering
McMaster University, Hamilton, Ontario, Canada.
Email: chaddens@mcmaster.ca

Antoine Deza, Advanced Optimization Laboratory, Faculty of Engineering
McMaster University, Hamilton, Ontario, Canada.
Email: deza@mcmaster.ca


