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Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose
coordinates are integers between 0 and k. Let §(d, k) be the largest diameter over all
lattice (d, k)-polytopes. We develop a computational framework to determine 6(d, k)
for small instances. We show that §(3,4) = 7 and §(3,5) = 9; that is, we verify for
(d,k) = (3,4) and (3,5) the conjecture whereby 6(d, k) is at most |(k + 1)d/2| and
is achieved, up to translation, by a Minkowski sum of lattice vectors.
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1 Introduction

Finding a good bound on the maximal edge-diameter of a polytope in terms of its dimen-
sion and the number of its facets is not only a natural question of discrete geometry, but
also historically closely connected with the theory of the simplex method, as the diameter
is a lower bound for the number of pivots required in the worst case. Considering bounded
polytopes whose vertices are rational-valued, we investigate a similar question where the
number of facets is replaced by the grid embedding size.

The convex hull of integer-valued points is called a lattice polytope and, if all the
vertices are drawn from {0,1,...,k}?, it is referred to as a lattice (d, k)-polytope. Let
d(d, k) be the largest edge-diameter over all lattice (d, k)-polytopes. Naddef [7] showed in
1989 that d(d, 1) = d, Kleinschmidt and Onn [6] generalized this result in 1992 showing
that d(d, k) < kd. In 2016, Del Pia and Michini [3] strengthened the upper bound to
d(d, k) < kd — [d/2] for k > 2, and showed that §(d,2) = [3d/2]|. Pursuing Del Pia and
Michini’s approach, Deza and Pournin [5] showed that d(d, k) < kd — [2d/3]| — (k — 3) for
k > 3, and that §(4,3) = 8. The determination of §(2, k) was investigated independently
in the early nineties by Thiele 8], Balog and Barany [2], and Acketa and Zuni¢ [1]. Deza,
Manoussakis, and Onn [4] showed that 6(d, k) > [(k + 1)d/2] for all k < 2d — 1 and
proposed Conjecture 1.1.



Conjecture 1.1. §(d, k) < [(k+ 1)d/2], and §(d, k) is achieved, up to translation, by a
Minkowski sum of lattice vectors.

In Section 2, we propose a computational framework which drastically reduces the search
space for lattice (d, k)-polytopes achieving a large diameter. Applying this framework to
(d,k) = (3,4) and (3,5), we determine in Section 3 that 6(3,4) =7 and §(3,5) = 9.

Theorem 1.2. Conjecture 1.1 holds for (d, k) = (3,4) and (3,5); that is, 6(3,4) =7 and
d(3,5) = 9, and both diameters are achieved, up to translation, by a Minkowski sum of
lattice vectors

Note that Conjecture 1.1 holds for all known values of d(d, k) given in Table 1, and

hypothesizes, in particular, that d(d,3) = 2d. The new entries corresponding to (d, k) =
(3,4) and (3,5) are entered in bold.

k
S(dk)|1 2 3 4 5 6 7 8 9 10
1 |1 1 1 1 1 1 1 1 1 1
2 |2 3 44566 78 8
, 3 |3 4 6709
4 |4 6 8
d [d [¥]

Table 1: Largest diameter 6(d, k) over all lattice (d, k)-polytopes

2 Theoretical and Computational Framework

Since §(2, k) and 6(d, 2) are known, we consider in the remainder of the paper that d > 3
and & > 3. While the number of lattice (d, k)-lattice polytopes is finite, a brute force
search is typically intractable, even for small instances. Theorem 2.1, which recalls con-
ditions established in [5], allows to drastically reduce the search space.

Theorem 2.1. For d > 3, let d(u,v) denote the distance between two vertices u and v in
the edge-graph of a lattice (d, k)-polytope P such that d(u,v) = 6(d, k). Fori=1,...,d,
let F?, respectively FF, denote the intersection of P with the facet of the cube [0, k]?
corresponding to x; = 0, respectively v; = k. Then, d(u,v) < 6(d — 1,k) + k, and the
following conditions are necessary for the inequality to hold with equality:

(1) u+v=(kk,.... k),

(2) any edge of P with u or v as vertezx is {—1,0, 1}-valued,



(3) fori=1,...,d, F?, respectively F", is a (d—1)-dimensional face of P with diameter
§(F?) = 6(d — 1,k), respectively §(EFF) = 6(d — 1, k).

Thus, to show that §(d, k) < 6(d — 1,k) + k, it is enough to show that there is no lattice
(d, k)-polytope admitting a pair of vertices (u,v) such that d(u,v) = §(d, k) and the con-
ditions (1), (2), and (3) are satisfied. The computational framework to determine, given
(d, k), whether §(d, k) = 6(d — 1, k) + k is outlined below and illustrated for (d, k) = (3,4)
or (3,5).

Algorithm to determine whether §(d, k) < d(d —1,k) + k

Step 1: INITIALIZATION

Determine the set F of all the lattice (d — 1, k)-polytopes P such that §(P) = 6(d — 1, k).
For example, for (d,k) = (3,4), the determination of all the 335 lattice (2,4)-polygons P
such that 6(P) = 4 is straightforward.

Step 2: SYMMETRIES

Consider, up to the symmetries of the cube [0, k|%, the possible entries for a pair of vertices
(u,v) such that u+v = {k,k, ..., k}. For example, for (d, k) = (3,4), the following 6 ver-
tices cover all possibilities for u up to symmetry: (0,0,0), (0,0, 1), (0,0,2),(0,1,1), (0,1, 2),
and (0,2,2), where v = (4,4,4) — u.

Step 3: SHELLING

For each of the possible pairs (u,v) determined during Step 2, consider all possible ways
for 2d elements of the set F determined during Step 1 to form the 2d facets of P lying on
a facet of the cube [0,k]¢. For example, for (d,k) = (3,4) and u = (0,0,0), we must find
6 elements of F, 3 with (0,0) as a vertex, and 3 with (4,4) as a vertex. In addition, if
an edge of an element of F with u or v as vertex is not {—1,0, 1}-valued, this element is
disregarded.

Note that since the choice of an element of F defines the vertices of P belonging to a
facet of the cube [0,k]?, the choice for the next element of F to form a shelling is sig-
nificantly restricted. In addition, if the set of vertices and edges belonging to the current
elements of F considered for a shelling includes a path from u to v of length at most
0(d—1,k)+ k —1, a shortcut between u and v exists and the last added elements of F
can be disregarded.

Step 4. INNER POINTS

For each choice of 2d elements of F forming a shelling obtained during Step 3, consider
the {1,2, ...,k —1}-valued points not in the convex hull of the vertices of the 2d elements
of F forming a shelling. Fach such {1,2,... k—1}-valued point is considered as a poten-
tial vertex of P in a binary tree. If the current set of edges includes a path from u to v of
length at most 6(d—1,k)+k—1, a shortcut between u and v exists and the corresponding
node of the binary tree can be disregarded, and the the binary tree is pruned at this node.



A convex hull and diameter computation are performed for each mode of the obtained
binary tree. If there is a node yielding a diameter of 6(d — 1,k) + k we can conclude that
d(d, k) = 0(d—1,k) + k. Otherwise, we can conclude that 6(d, k) < 6(d —1,k) + k. For
example, for (d,k) = (3,5), no choice of 6 elements of F forming a shelling such that
d(u,v) > 10 ezist, and thus Step 4 is not executed.

3 Computational Results

For (d, k) = (3,4), a shelling exists for which path lengths are not decidable by the algo-
rithm without convex hull computations. However, this shelling only achieves a diameter
of 7. For (d,k) = (3,5) the algorithm stops at Step 3, as there is no combination of 6
elements of F which form a shelling such that d(u,v) > §(2,5) + 5. Thus, no convex hull
computations are required for (d, k) = (3,5). A shortcut from u to v is typically found
early on in the shelling, which leads to the algorithm terminating quickly. Run on a 2009
Intel® Core™?2 Duo 2.20GHz CPU, the algorithm is able to terminate for (d, k) = (3, 4)
and (3,5) in under a minute. Consequently, 0(3,4) < 8 and 6(3,5) < 10. Since the
Minkowski sum of (1,0, 0), (0, 1,0), (0,0, 1),(0,1,1),(1,0,1),(1,1,0), and (1,1,1) forms a
lattice (3,4)-polytope with diameter 7, we conclude that §(3,4) = 7. Similarly, since the
Minkowski sum of (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1, 1,0), (0,1, —1), (1,0, —1),
and (1, —1,0) forms, up to translation, a lattice (3,5)-polytope with diameter 9, we con-
clude that 6(3,5) = 9. Computations for additional values of 6(d, k) are currently under-
way. In particular, the same algorithm may determine whether 6(d, k) = §(d — 1,k) + k
ord(d—1,k)+k—1for (d, k) = (5,3) and (4,4) provided the set of all lattice (d — 1, k)-
polytopes achieving 6(d — 1, k) is determined for (d, k) = (5,3) and (4,4). Similarly, the
algorithm could be adapted to determine whether §(d, k) < 6(d—1, k) +k—1 provided the
set of all lattice (d — 1, k)-polytopes achieving d(d — 1, k) or 6(d — 1, k) — 1 is determined.
For example, the adapted algorithm may determine whether §(3,6) = 10.
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