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ABSTRACT

We establish sharp asymptotic estimates for the diameter of primitive

zonotopes when their dimension is fixed. We also prove that, for infin-

itely many integers k, the largest possible diameter of a lattice zonotope

contained in the hypercube [0, k]d is uniquely achieved by a primitive zono-

tope. As a consequence, we obtain that this largest diameter grows like

kd/(d+1) up to an explicit multiplicative constant, when d is fixed and

k goes to infinity, providing a new lower bound on the largest possible

diameter of a lattice polytope contained in [0, k]d.

1. Introduction

A polytope contained in Rd is called a lattice polytope when all of its vertices

belong to the lattice Zd. These objects appear in a variety of contexts as, for

instance in combinatorial optimization [11, 20, 21, 25], in discrete geometry

[1, 4, 6, 7, 10, 19], or in combinatorics [3, 8, 9, 16, 24]. In order to investigate

their extremal properties, the lattice polytopes contained in compact convex sets

of growing size, such as balls [4], squares [1, 28], hypercubes [11, 12], or arbitrary

2-dimensional compact convex sets [6] are often considered. For instance, the
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largest possible number of vertices �(2, k) of a lattice polygon contained in the

square [0, k]2 is known to behave as

(1) �(2, k) ⇠ 12

(2⇡)2/3
k2/3

when k goes to infinity [1, 28]. In higher dimension, a similar result can be

obtained from [2] and from [4]. More precisely, the largest possible number of

vertices �(d, k) of a lattice polytope contained in the hypercube [0, k]d grows

like kd(d�1)/(d+1) up to a multiplicative term that only depends on d. Note that

no expression is known for this multiplicative term when d � 3.

Another quantity that has attracted attention, due to its connection with

the complexity of the simplex algorithm [15, 23, 26, 27], is the largest diameter

�(d, k) a lattice polytope contained in [0, k]d can have [11, 12, 13, 17, 20]. Here,

by the diameter of a polytope, we mean the diameter of the graph made of

its vertices and edges. Since a polygon with n vertices has diameter bn/2c,
estimating the asymptotic behavior of �(d, k) and �(d, k) when k goes to infinity

can be considered two generalizations of (1) to higher dimensions. It is shown

in [20] that �(d, 1) = d, in [11] that �(d, 2) = b3d/2c, in [13] that

�(d, k)  kd�
⇠
2d

3

⇡
� (k � 3) when k � 3,

and in [12] that

(2) �(d, k) �
�
(k + 1)d

2

⌫
when k < 2d.

This lower bound on �(d, k) is obtained using a particular family of lattice

zonotopes, referred to as primitive zonotopes. Recall that a zonotope is the

Minkowski sum of pairwise non-collinear line segments, which we call its gen-

erators. Informally, primitive zonotopes are generated by the shortest possible

lattice segments. In particular these segments themselves are primitive in the

sense that the only lattice points they contain are their extremities. A formal

definition of primitive zonotopes will be given in Section 2. In this paper, we

provide the asymptotic diameter of the primitive zonotopes defined in [12] when

their dimension is fixed while the number of their generators goes to infinity.

We also show that, for infinitely-many integers k, the largest possible diame-

ter �z(d, k) of a lattice zonotope contained in the hypercube [0, k]d is uniquely

achieved by a primitive zonotope. As a first consequence, we partially answer

the following question, posed by Günter Rote: how can one compute �z(d, k)?
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In addition, we establish the following asymptotic estimate for �z(d, k). In the

statement of this result, ⇣ stands for Riemann’s zeta function.

Theorem 1.1: For any fixed d, the largest possible diameter of a lattice zono-

tope contained in the hypercube [0, k]d satisfies

�z(d, k) ⇠ c(d)k
d

d+1
,

when k goes to infinity, where c(d) =

✓
2d(d+ 1)d

2 d!⇣(d)

◆ 1
d+1

.

Theorem 1.1 can be thought of as a generalization of (1) to zonotopes of

arbitrary dimension because, as mentioned above, the number of vertices of a

polygon is roughly twice its diameter. In particular, c(2) is half the multiplica-

tive constant in (1). Theorem 1.1 also immediately provides a lower bound on

�(d, k) similar to (2), except that it is valid when k goes to infinity.

Corollary 1.2: For any fixed d, �(d, k) � c(d)k
d

d+1 + o(1).

It is conjectured in [12] that �(d, k) is achieved for all d and k by a lattice

zonotope generated by primitive segments. Hence, Corollary 1.2 conjecturally

provides the correct asymptotic estimate for �(d, k).

The asymptotic diameter of primitive zonotopes will be established in Sec-

tion 2. The proof that �z(d, k) is uniquely achieved by a primitive zonotope

for infinitely-many values of k is given in Section 3. Theorem 1.1 is proven in

Section 4.

2. The asymptotic diameter of primitive zonotopes

We first recall the formal definition of primitive zonotopes [12]. Call a point

in the lattice Zd
primitive when it is not equal to 0 and the greatest common

divisor of its coordinates is equal to 1. In other words, the line segment that

connects the origin of Rd to such a point is primitive in the sense given in

the previous section. The set of the primitive points contained in Zd will be

denoted by Pd in the sequel. We will also refer to the d-dimensional ball of

radius p centered in 0 for the q-norm as Bq(d, p).

A first family of primitive zonotopes, denoted by Hq(d, p), is defined in [12]

as the lattice zonotopes whose generators are the segments incident to 0 on one

end and to a point in Pd \ Bq(d, p) whose first non-zero coordinate is positive
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on the other. Another family, referred to as H+
q (d, p) are the lattice zonotopes

whose generators are the generators ofHq(d, p) contained in the positive orthant

[0,+1[d. A useful property of zonotopes is that their diameter is equal to the

number of their generators [29]. Therefore, in order to determine the diameter

of Hq(d, p) and H+
q (d, p), we only need to count the primitive points in Bq(d, p)

at the extremity of their generators. For instance, H1(d, 2) has diameter d2. In

this section we provide the asymptotic diameter of both Hq(d, p) and H+
q (d, p)

for any fixed d and q, when p goes to infinity; that is, when the radius of the

ball the generators of these zonotopes are picked from grows large.

It is well known that the density of the primitive points in the lattice is 1/⇣(d)

[14, 18, 22]. The following result is proven in [18] (see also the remark in Page 4

of [5]). In the statement of this result, C is any convex compact subset of Rd

that contains the origin and whose interior is non-empty and vol(pC) stands for

the volume of the dilation of C by a coe�cient p.

Lemma 2.1: lim
p!1

��pC \ Pd
��

vol(pC)
=

1

⇣(d)
.

It is also well known that

(3) vol(Bq(d, p)) =

⇣
2�
⇣

1
q + 1

⌘
p
⌘d

�
⇣

d
q + 1

⌘ ,

where � denotes Euler’s gamma function.

In the remainder of the article, we refer to the diameter of a polytope P as

�(P ). The following is obtained by combining (3) with Lemma 2.1.

Theorem 2.2: lim
p!1

�(Hq(d, p))

pd
=

⇣
2�
⇣

1
q + 1

⌘⌘d

2�
⇣

d
q + 1

⌘
⇣(d)

.

Proof. Recall that the diameter of Hq(d, p) is equal to the number of its gen-

erators; that is, to the number of the primitive points in Bq(d, p) whose first

non-zero coordinate is positive or, equivalently, to half the number of the prim-

itive points contained in Bq(d, p). As a consequence,

(4)
�(Hq(d, p))

pd
=

��Bq(d, p) \ Pd
��

2pd
.
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Taking pC = Bq(d, p) in the statement of Lemma 2.1 and evaluating the

volume of this ball using equation (3) yields

(5) lim
p!1

��Bq(d, p) \ Pd
��

pd
=

⇣
2�
⇣

1
q + 1

⌘⌘d

�
⇣

d
q + 1

⌘
⇣(d)

.

Combining equalities (4) and (5) completes the proof.

We now turn our attention to the primitive zonotopes H+
q (d, p).

Theorem 2.3: lim
p!1

�
�
H+

q (d, p)
�

pd
=

�
⇣

1
q + 1

⌘d

�
⇣

d
q + 1

⌘
⇣(d)

.

Proof. Denote by aq(d, p) the number of generators of H+
q (d, p) that are not

contained in any face of dimension less than d of the cone [0,+1[d. Consider

a face F of [0,+1[d. Assume that F is i-dimensional with i � 0 and observe

that there are exactly aq(i, p) generators of H+
q (d, p) contained in F but not in

any face of [0,+1[d of dimension less than i. Further observe that [0,+1[d has

exactly
�d
i

�
faces of dimension i. Since the diameter of H+

q (d, p) is the number

of its generators; that is
��Bq(d, p) \ [0,+1[d

��, we therefore obtain

(6) �
�
H+

q (d, p)
�
=

dX

i=1

✓
d

i

◆
aq(i, p).

Now consider the 2d orthants of Rd. These orthants are polyhedral cones, and

the faces of these cones collectively form a polyhedral subdivision of Rd. The

number of i-dimensional polyhedra in this subdivision is equal to the number of

the i-dimensional faces of a d-dimensional cross-polytope; that is, 2i
�d
i

�
. Hence,

the number of primitive lattice points in Bq(d, p) satisfies

(7)
��Bq(d, p) \ Pd

�� =
dX

i=1

2i
✓
d

i

◆
aq(i, p).

The equalities (6) and (7) yield

(8) 2d�
�
H+

q (d, p)
�
=
��Bq(d, p) \ Pd

��+
d�1X

i=1

(2d � 2i)

✓
d

i

◆
aq(i, p).
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Now observe that

0 
d�1X

i=1

(2d � 2i)

✓
d

i

◆
aq(i, p)  d2d�1

d�1X

i=1

✓
d� 1

i

◆
aq(i, p).

According to (6), the right-hand side of the second inequality can be expressed

in terms of �
�
H+

q (d� 1, p)
�
. Therefore, by (8),

(9) 0  2d�
�
H+

q (d, p)
�
�
��Bq(d, p) \ Pd

��  d2d�1�
�
H+

q (d� 1, p)
�
.

This double inequality makes it possible to prove the theorem by induction

on d. Indeed, under the inductive property that

lim
p!1

�
�
H+

q (d� 1, p)
�

pd
= 0,

the combination of (3), (9), and Lemma 2.1 provides the desired result. We still

need to establish the base case for the induction. Observe that aq(1, p) = 1. As

a consequence, equalities (6) and (7) yield
��Bq(2, p) \ P2

�� = 4�
�
H+

q (2, p)
�
� 4.

Combining this with (3) and Lemma 2.1 proves the result when d = 2.

3. Lattice zonotopes with the largest possible diameter

For any d-dimensional lattice polytope P , we denote by k(P ) the smallest integer

k such that some translate of P by a lattice vector is contained in the hypercube

[0, k]d. We first show in this section that, for all p, the unique lattice polytope

with diameter �z(d, k(H1(d, p))) contained in the hypercube [0, k(H1(d, p))]d is

a translate of H1(d, p). Note that the primitive zonotopes H1(d, p) and the

1-norm they are built from play an important role here.

Theorem 3.1: Consider a d-dimensional lattice zonotope Z and a positive

integer p. If �(H1(d, p))  �(Z), then k(H1(d, p))  k(Z). If in addition,

the first of these inequalities is strict then so is the second one, and if both

inequalities are equalities, then Z is a translate of H1(d, p).

Proof. Denote by Z the set of the generators of Z and by G the set of the

generators of H1(d, p). We will assume that the generators of Z are all incident

to the origin of Rd and that the first non-zero coordinate of their other vertex

is positive. This can be done without loss of generality by translating the
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generators of Z or equivalently, by translating Z itself. Recall that the diameter

of a zonotope is equal to the number of its generators. Therefore, if the diameter

of H1(d, p) is not greater than that of Z, then there exists an injection  from

G into Z. Since distinct generators of a zonotope are never collinear, we can

require this injection to be such that, if a generator z of Z is collinear to a

generator g of H1(d, p), then  (g) is equal to z. It follows from this assumption

that the 1-norm of a generator g of H1(d, p) is never greater than the 1-norm

of  (g). Moreover, by construction, if these 1-norms are equal, then g and  (g)

must coincide. Now observe that the 1-norms of the generators of Z sum to at

most k(Z)d and, since H1(d, p) is invariant up to translation by the isometries

of Rd that consist in permuting coordinates, the 1-norms of the generators of

H1(d, p) sum to exactly k(H1(d, p))d. As a consequence,

k(H1(d, p))d  k(Z)d,

and this inequality is strict when the number of generators of Z is greater than

that of H1(d, p). Dividing this inequality by d provides the first part of the

theorem. Now observe that, if �(H1(d, p)) = �(Z), then  must be a bijection.

If in addition, k(H1(d, p)) = k(Z), the 1-norm of a generator of H1(d, p) is

necessarily equal to the 1-norm of its image by  . In this case, Z and H1(d, p)

have exactly the same generators and they must coincide.

Theorem 3.1 will be one of the main ingredients in the proof of Theorem 1.1.

Before we move on to that, let us give a couple of other consequences of Theo-

rem 3.1. For instance, as announced above, we obtain the following.

Corollary 3.2: The unique lattice zonotope of diameter �z(d, k(H1(d, p)))

contained in the hypercube [0, k(H1(d, p))]d is a translate of H1(d, p).

Proof. Consider a lattice zonotope Z with diameter �z(d, k(H1(d, p))) contained

in the hypercube [0, k(H1(d, p))]d. In particular,

(10) k(Z)  k(H1(d, p)).

By definition, H1(d, p) is a lattice zonotope contained, up to translation in

[0, k(H1(d, p))]d. Therefore, its diameter must be at most �z(d, k(H1(d, p))). In

other words, �(H1(d, p))  �(Z). Hence, by Theorem 3.1,

(11) k(H1(d, p))  k(Z).
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According to (10) and (11), k(H1(d, p)) and k(Z) coincide. Since the diameter

of H1(d, p) is not greater than that of Z, it therefore follows from Theorem 3.1

that these diameters also coincide. Invoking Theorem 3.1 a third time, we

obtain that Z is a translate of H1(d, p). It remains to show that there is only

one translate of H1(d, p) contained in the hypercube [0, k(H1(d, p))]d. This is

an immediate consequence of H1(d, p) being invariant up to translation by the

isometries of Rd that consist in permuting coordinates.

We further remark that Corollary 3.2 provides a way to determine �z(d, k)

when, for some integer p, k coincides with k(H1(d, p)). This partially answers

a question posed by Günter Rote. Indeed, in this case, it follows from Corol-

lary 3.2 that it su�ces count the points in Pd \ B1(d, p) whose first non-zero

coordinate is positive. Observe that, when k is strictly between k(H1(d, p)) and

k(H1(d, p+ 1)), computing �z(d, k) greedily would require an appropriate order

on the set of the generators of H1(d, p+ 1) that are not generators of H1(d, p).

4. An upper bound on the diameter of lattice zonotopes

This section is devoted to proving Theorem 1.1. We first relate k(H1(d, p)) and

�(H1(d, p)) as follows.

Lemma 4.1: k(H1(d, p))d = p�(H1(d, p))�
p�1X

i=0

�(H1(d, i)).

Proof. Recall that the diameter of H1(d, p) is the number of primitive lattice

points in B1(d, p) whose first non-zero coordinate is positive. Hence, when

1  i  p, the number of these points whose 1-norm is equal to i is

�(H1(d, i))� �(H1(d, i� 1)) .

By symmetry, the 1-norms of the primitive lattice points in B1(d, p) whose

first non-zero coordinate is positive sum to k(H1(d, p))d. As a consequence,

k(H1(d, p))d =
pX

i=1

i[�(H1(d, i))� �(H1(d, i� 1))] .

Rearranging the right-hand side of this equality completes the proof.

The following theorem provides the asymptotic behavior of k(H1(d, p)).
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Theorem 4.2: lim
p!1

k(H1(d, p))

pd+1
=

2d�1

(d+ 1)!⇣(d)
.

Proof. First observe that, according to Theorem 2.2,

(12)

����
�(H1(d, p))

pd
� 2d�1

d!⇣(d)

����  "(p),

where " : N ! R is a function such that

lim
p!1

"(p) = 0.

We can further assume without loss of generality that " is decreasing. Invok-

ing Lemma 4.1, and using (12), one obtains

(13)

�����
k(H1(d, p))d

pd+1
� 2d�1

d!⇣(d)

 
1� 1

pd+1

p�1X

i=1

id

!�����  "(p) +
1

pd+1

p�1X

i=1

"(i)id

However, by Faulhaber’s formula,

(14)
p�1X

i=1

id =
1

d+ 1
pd+1 +N(p),

where N(p) is a polynomial of degree at most d in p. Therefore,

lim
p!1

2d�1

d!⇣(d)

 
1� 1

pd+1

p�1X

i=1

id

!
=

d2d�1

(d+ 1)!⇣(d)
.

Now observe that

lim
p!1

1

pd+1

p�1X

i=1

"(i)id = 0.

Indeed,

1

pd+1

bppcX

i=1

"(i)id  "(1)

p(d+1)/2
,

and

1

pd+1

p�1X

i=dppe

"(i)id  "(dppe).

Hence, letting p go to infinity in (13) provides the desired limit.

The following result is a consequence of Theorems 2.2 and 4.2. It provides the

exact asymptotic behavior of the diameter of H1(d, p) in terms of k(H1(d, p))

when d is fixed and p goes to infinity.
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Corollary 4.3: lim
p!1

�(H1(d, p))
d+1

k(H1(d, p))
d

=
2d(d+ 1)d

2 d!⇣(d)
.

Proof. By Theorem 2.2,

lim
p!1

�(H1(d, p))
d+1

pd(d+1)
=

✓
2d�1

d!⇣(d)

◆d+1

,

and by Theorem 4.2,

lim
p!1

k(H1(d, p))
d

pd(d+1)
=

✓
2d�1

(d+ 1)!⇣(d)

◆d

.

Combining these equalities provides the desired result.

Note that, for any fixed d, �(d, k) is an increasing function of k. Therefore,

Corollary 1.2 is immediately obtained from Corollary 4.3.

We are finally ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider a lattice zonotope Z contained in the hyper-

cube [0, k]d, where k is positive. We can assume without loss of generality that

the diameter of Z is not less than the diameter of H1(d, 1). Since

lim
p!1

�(H1(d, p)) = +1,

there exists a non-negative integer p such that

�(H1(d, p))  �(Z)  �(H1(d, p+ 1)) .

According to the first inequality and to Theorem 3.1,

k(H1(d, p))  k.

Therefore, it follows from the second inequality that

(15)
�(Z)

k
d

d+1

 �(H1(d, p+ 1))

k(H1(d, p))
d

d+1

.

By Corollary 4.3,

lim
p!1

�(H1(d, p))

k(H1(d, p))
d

d+1

=

✓
2d(d+ 1)d

2 d!⇣(d)

◆ 1
d+1

,

and by Theorem 2.2,

lim
p!1

�(H1(d, p+ 1))

�(H1(d, p))
= 1.
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Therefore, the right-hand side of (15) satisfies

(16) lim
p!1

�(H1(d, p+ 1))

k(H1(d, p))
d

d+1

=

✓
2d(d+ 1)d

2 d!⇣(d)

◆ 1
d+1

.

By construction, when k goes to infinity, so does p. Hence, combining in-

equality (15) with equation (16) provides the desired result.
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