
McMaster University

Advanced Optimization Laboratory

McMaster University

Advanced Optimization Laboratory

Title:

A computational framework for determining square-maximal
strings

Authors:

Antoine Deza, Frantisek Franek, and Mei Jiang

AdvOL-Report No. 2011/5

December 2011, Hamilton, Ontario, Canada

Title:
The complexity of geometric scaling

Authors:

Antoine Deza, Sebastian Pokutta, and Lionel Pournin

AdvOL-Report No. 2022/1

May 2022, Hamilton, Ontario, Canada

THE COMPLEXITY OF GEOMETRIC SCALING

Antoine Deza

McMaster University, Hamilton, Ontario, Canada
e-mail: deza@mcmaster.ca

Sebastian Pokutta

Zuse Institute Berlin, Germany
e-mail: pokutta@zib.de

Lionel Pournin

Université Paris 13, Villetaneuse, France
e-mail: lionel.pournin@univ-paris13.fr

ABSTRACT

Geometric scaling, introduced by Schulz and Weismantel in 2002, solves
the integer optimization problem max{c·x : x ∈ P ∩ Zn} by means of
primal augmentations, where P ⊂ Rn is a polytope. We restrict ourselves
to the important case when P is a 0/1 polytope. Schulz and Weismantel
showed that no more than O(n logn‖c‖∞) calls to an augmentation oracle
are required. This upper bound can be improved to O(n log ‖c‖∞) using
the early-stopping policy proposed in 2018 by Le Bodic, Pavelka, Pfetsch,
and Pokutta. Considering both the maximum ratio augmentation variant
of the method as well as its approximate version, we show that these upper
bounds are essentially tight by maximizing over a n-dimensional simplex
with vectors c such that ‖c‖∞ is either n or 2n.

1. Introduction

The computational performance of linear optimization algorithms is closely re-
lated to the geometric properties of the feasible region. The combinatorial
properties can also play an important role, in particular for integer optimiza-
tion algorithms. Starting with the Klee–Minty cubes [7] exhibiting an exponen-
tial number of simplex pivots, worst-case constructions have helped providing

1

2 A. DEZA, S. POKUTTA AND L. POURNIN

a deeper understanding of how the structural properties of the input affect the
performance of linear optimization. Recent examples include the construction
of Allamigeon et al. [1, 2] for which the primal-dual log-barrier interior point
method performs an exponential number of iterations, and thus is not strongly
polynomial. In a similar spirit, a lower bound on the number of simplex pivots
required in the worst case to perform linear optimization on a lattice polytope
has been recently established in [4, 5]. In turn, a preprocessing and scaling
algorithm has been proposed by Del Pia and Michini in [8] to construct simplex
paths that are short relative to these lower bounds. We focus on geometric
scaling methods, introduced in [10], for integer optimization on 0/1 polytopes.
For these methods, no worst-case instances have been proposed to the best of
our knowledge. In contrast, a tight lower bound has been provided by Le Bodic
et al. [3] for bit scaling methods [11].

A 0/1 polytope is the convex hull of a subset of the vertex set of the unit
n-dimensional hypercube [0, 1]n. Given a 0/1 polytope P ⊂ Rn and a vector c
in Zn, we are interested in the following optimization problem:

max{c·x : x ∈ v(P)},

where v(P) denotes the vertex set of P .
We recall geometric scaling in Section 2 and refer the reader to [3, 9, 10]

for comprehensive expositions. In Section 3, we show that the maximum-ratio
augmentation variant of this method sometimes requires n+log n‖c‖∞+1 steps
and in Section 4 that any implementation can require n/3+log n‖c‖∞+1 steps.
In Section 5, we improve this number of steps to n+ log n‖c‖∞ + 1 by showing
that the halving ratio is the reason for the gap between the two lower bounds
obtained in Sections 3 and 4. This result highlights the tradeoff between the
chosen amount of scaling and the accuracy of the feasibility oracle used in the
implementation. Open questions are discussed in Section 6.

2. Geometric scaling

There are several variants of geometric scaling. In Section 3, we will focus on
Algorithm 1, a practical implementation of Algorithm 3 from [3] based on the
description from Sections 5.4 and 5.5 in the same article. It is important to
keep in mind that this implementation is by no means canonical. For example,

THE COMPLEXITY OF GEOMETRIC SCALING 3

Line 3 could be replaced by the computation of a vertex x of P such that

c·(x− x̃) > µ‖x− x̃‖1

and the condition in Line 4 by checking whether such a vertex exists: if there
is such a vertex, then x gets assigned to x̃ and otherwise, µ is halved (see
Algorithm 3 in [3]). This results in Algorithm 2, that we study in Section 4.
In any case, the steps that end at Line 5 will be referred to as halving steps
and the steps that end at Line 7 as augmenting steps. A series of consecutive
augmentation steps performed with same the value of µ is referred to as a scaling
phase, and a series of consecutive halving steps as an halving phase.

Algorithm 1: MRA-based geometric scaling
Input: a 0/1 polytope P contained in Rn,

a vector c in Zn,
a vertex x0 of P , and
a number µ0 greater than ‖c‖∞.

Output: A vertex x? of P that maximizes c·x.
1 µ← µ0, x̃← x0

2 repeat
3 compute a vertex x of P that maximizes c·(x− x̃)/‖x− x̃‖1
4 if x = x̃ or c·(x− x̃) < µ‖x− x̃‖1 then
5 µ← µ/2 (halving step)
6 else
7 x̃← x (augmenting step)
8 end
9 until µ < 1/n;

10 Return x̃

The following remarks about geometric scaling hold for both the variants
described in Algorithm 1 and Algorithm 2; for details we refer the interested
reader to [3]. In particular, the combination of these two remarks provides a
slightly differentiated picture on the complexity we study here.

Remark 2.1 (Solutions are strictly monotonically increasing with respect to c):
The sequence of points x1, x2, . . . generated by geometric scaling satisfies

c · x1 < c · x2 < . . .

4 A. DEZA, S. POKUTTA AND L. POURNIN

Note that this is very different from bit scaling, another augmentation-based
optimization approach for 0/1 polytopes introduced in [11], where points can
be revisited in successive scaling phases and the sequence of generated points
is not strictly increasing with respect to the original objective c. This fact
also impacts the structure of our lower bounds: for bit scaling it was shown
in [3] that the number of required augmenting steps can depend on log ‖c‖∞ by
making bit scaling revisit points. It will not be possible to do the same here
and, in contrast to the bounds obtained for bit scaling, we will only be able
to show that the total number of steps (the sum of the number of augmenting
steps and the number of halving steps) depends on log ‖c‖∞. Our bounds for
the number of required augmenting steps do not exceed n.

Remark 2.2 (µ provides an upper bound on the primal gap): Consider the value
of µ taken before a halving update. Either µ = µ0 and then by definition this is
a lower bound or µ arose from a previous halving step. In that halving iteration,
before the actual halving, we had for some iterate x̃:

max
y∈v(P)

c·(y − x̃) ≤ µ‖y − x̃‖1 ≤ µn.

The worst-case complexity in the number of total steps for geometric scaling
on 0/1 polytopes is O(n log n‖c‖∞). The above two remarks allow to improve
the worst-case complexity of geometric scaling slightly in the case of 0/1 poly-
topes as shown in [3]. Observe that geometric scaling requires O(n log ‖c‖∞)

iterations until µ ≤ 1/2. According to Remark 2.2, we know that the primal
gap at that point in time is at most

max
y∈v(P)

c·(y − x̃) ≤ µ‖y − x̃‖1 ≤ 2µn ≤ n

and by Remark 2.1, we know that we improve by at least 1 in each iteration,
so that the total number of iterations can be bounded as

O(n log ‖c‖∞) + n = O(n log ‖c‖∞)

iterations; we assume here that one would simply stop the algorithm after (at
most) n additional steps and does not continue performing unnecessary halving
steps as we are guaranteed to be optimal. In the following, we will refer to these
improved bounds as early stopping bounds. With this we obtain the following
upper bounds that we compare against.

THE COMPLEXITY OF GEOMETRIC SCALING 5

Proposition 2.3 ([3]): Given a 0/1 polytope and an objective function c, geo-
metric scaling (either variant) solves

max
x∈v(P)

c·x

in no more than O(n log n‖c‖∞) iterations using Algorithm 1 and Algorithm 2
and no more than O(n log ‖c‖∞) iterations via early stopping.

Note that in the following we state the lower bounds for the exact forms of Al-
gorithm 1 and Algorithm 2. In light of the above discussion and Proposition 2.3,
using the early stopping variants reduces the number of required halving steps,
and thus the lower bounds, by the n term under log.

3. Worst-case instances for geometric scaling via MRA

x0

x1

x2 x3

Figure 1. The simplex S when n = 3.

For any integer i such that 0 ≤ i ≤ n, denote by xi the point in Rn whose last
i coordinates are equal to 1 and whose other coordinates are equal to 0. Note
that x0 is the origin of Rn. This point will be our initial vertex for Algorithm 1,
and is therefore the same x0 as in the input of that algorithm. Consider the
n-dimensional simplex S illustrated in Fig. 1 when n = 3, whose vertices are
the points x0 to xn. Further consider the vector c whose ith coordinate is i:

c = (1, 2, . . . , n).

6 A. DEZA, S. POKUTTA AND L. POURNIN

In the remainder of the section, S and c are fixed as above, and we study how
Algorithm 1 behaves in the case when P is equal to S.

Lemma 3.1: If, during the execution of Algorithm 1, x̃ is equal to xi, then x̃

is set to xi+1 by the next augmentation step, regardless of the value of µ.

Proof. Let us compute the value of

(1)
c·(xj − xi)
‖xj − xi‖1

where j 6= i. If j is less than i, then xj − xi has no positive coordinate and at
least one negative coordinate. As a consequence, c·(xj − xi) is negative, as well
as the ratio (1). If j is greater than i, then

c·(xj − xi)
‖xj − xi‖1

=
1

j − i

j−1∑
k=i

cd−k,

where cd−k is the (d− k)th coordinate of c. As cd−i > cn−k when k > i,

c·(xj − xi)
‖xj − xi‖1

≤ cn−i,

with equality if and only if j = i+ 1. In other words, when j > i+ 1

c·(xj − xi)
‖xj − xi‖1

<
c·(xi+1 − xi)
‖xi+1 − xi‖1

.

Therefore, if at the beginning of a step during the execution of Algorithm 1,
x̃ is equal to xi where i < n, then x will be set to xi+1 in Line 3, and the next
augmentation will set x̃ to xi+1 as announced.

Theorem 3.2: Starting at x0, Algorithm 1 requires n augmentation steps and
log n‖c‖∞ + 1 halving steps in order to maximize c·x over S. With early stop-
ping, the number of required halving steps decreases to log ‖c‖∞ + 1.

Proof. Note that the optimal solution of the problem is xn. According to
Lemma 3.1, Algorithm 1 performs n augmenting steps to reach xn from x0.
As a consequence, it suffices to observe that this algorithm performs at least
log n‖c‖∞ + 1 halving steps in order to scale µ down to less than 1/n.

THE COMPLEXITY OF GEOMETRIC SCALING 7

4. Worst-case instances for feasibility-based geometric scaling

Let us now consider a more general description of geometric scaling by modifying
Algorithm 1 as described in Section 2: the point x computed in Line 3 of
Algorithm 1 can now be any vertex of P that satisfies

c·(x− x̃) > µ‖x− x̃‖1.

In particular, x is possibly not a maximizer of the ratio

c·(x− x̃)
µ‖x− x̃‖1

.

Moreover, the condition in Line 4 of Algorithm 1 should be modified in such
a way that µ is halved when no such point exists (and otherwise, this is an
augmentation step and x̃ is set to x). This results in Algorithm 2.

Algorithm 2: Geometric Scaling via a feasibility test
Input: a 0/1 polytope P contained in Rn,

a vector c in Zn,
a vertex x0 of P , and
a number µ0 greater than ‖c‖∞.

Output: A vertex x? of P that maximizes c·x.
1 µ← µ0, x̃← x0

2 repeat
3 compute a vertex x of P such that c·(x− x̃) > µ‖x− x̃‖1
4 if there is no such vertex of P then
5 µ← µ/2 (halving step)
6 else
7 x̃← x (augmenting step)
8 end
9 until µ < 1/n;

10 Return x̃

A close inspection of the behavior of that new algorithm shows that, while
it might not use the ratio-maximal solution contained in P , these solutions
approximately maximize the ratio and in fact provide a 2-approximation of the

8 A. DEZA, S. POKUTTA AND L. POURNIN

maximum ratio. More precisely,

1

2
max

y∈v(P)\{x̃}

c·(y − x̃)
µ‖y − x̃‖1

≤ c·(x− x̃)
µ‖x− x̃‖1

≤ max
y∈v(P)\{x̃}

c·(y − x̃)
µ‖y − x̃‖1

.

We show in this section that Algorithm 2 sometimes requires

n/3 + log n‖c‖∞ + 1

steps to reach optimality. In order to do that, we will use the same simplex S
as in Section 3, with vertices x0 to xn but a different vector c whose coordinates
are exponential. More precisely, c is the vector whose ith coordinate is 2i:

c = (2, 4, . . . , 2n).

Note that, as in Section 3, we will start the algorithm at vertex x0.

Lemma 4.1: Assume that, at the start of some step during the execution of
Algorithm 2, x̃ is equal to xi. If, in addition, µ < cn−i ≤ 2µ, that step ends
with an augmentation that sets x̃ to either xi+1, xi+2, or xi+3.

Proof. We proceed as in the proof of Lemma 3.1 by computing

(2)
c·(xj − xi)
‖xj − xi‖1

when j 6= i. If j < i, this ratio is negative because xj − xi has at least one
negative coordinate and none of its coordinates is positive. In particular, the
next augmentation cannot set x̃ to xj . Now assume that j > i. In this case,

c·(xj − xi)
‖xj − xi‖1

=
1

j − i

j−1∑
k=i

cn−k,

=
1

j − i

 n∑
k=i

2n−k −
n∑
k=j

2n−k

,
=

2n−i+1 − 2n−j+1

j − i
,

= 2n
21−i − 21−j

j − i
.

If in addition µ < cn−i ≤ 2µ, then

2iµ < 2n ≤ 2i+1µ.

THE COMPLEXITY OF GEOMETRIC SCALING 9

As a consequence,

2
1− 2i−j

j − i
µ <

c·(xj − xi)
‖xj − xi‖1

≤ 4
1− 2i−j

j − i
µ.

As the ratio (1− 2−t)/t is less than 1/4 when t belongs to [4,+∞[, the step
cannot end with an augmentation that sets x̃ to xj where j ≥ i+ 4. Now
observe that this ratio is equal to 1/2 when t is equal to 1. Hence,

c·(xi+1 − xi)
‖xi+1 − xi‖1

> µ.

This proves that the step will end by an augmentation that sets x̃ to one of
the vertices xi+1, xi+2, or xi+3, as desired.

Theorem 4.2: Considering the n-dimensional simplex S, the vector

c = (2, 4, . . . , 2n),

and starting at the origin, Algorithm 2 requires n/3 augmentation steps and
log n‖c‖∞ + 1 halving steps in order to maximize c·x over S. With early stop-
ping, the number of required halving steps decreases to log ‖c‖∞ + 1.

Proof. Observe again that Algorithm 2 performs at least log n‖c‖∞+1 halving
steps. Theorem 4.2 then follows from Lemma 4.1 and from the observation that,
after a halving step where x̃ is equal to xi, either cn−i is less than µ (in which
case the next step is also a halving step) or satisfies µ < cn−i ≤ 2µ.

5. The tradeoff between scaling and oracle accuracy

In this section, we consider a generalization of Algorithm 2 where, in Line 5,
µ is divided by α instead of by 2. This modified algorithm will be referred to
as Algorithm 2α. Note that Algorithm 2 is recovered simply by setting α = 2.
Whole µ is no longer halved, we still refer to this operation as a halving step.
The parameter α controls the amount of both augmenting and halving steps
performed by the algorithm. If α is close to 1, then only a small region is
made feasible after each halving step. In this case, the feasibility oracle in
Line 3 of Algorithm 2 has few choices for feasible solutions and its ability to
find the best possible feasible point is not important. If, on the contrary α

is large, then many new points will be feasible after each halving step. In
fact, for large enough values of α, Algorithm 2α will be completely descaled

10 A. DEZA, S. POKUTTA AND L. POURNIN

as all the vertices of the polytope will be made feasible after the first halving
step. In this case, the number of steps required to reach an optimal solution
is completely determined by the ability of the feasibility oracle (called in Line
3 in Algorithm 2) to reach optimality. In other words, α also controls whether
the complexity of the procedure is mainly due to the augmenting steps or to
the accuracy of the feasibility oracle.

It turns out that α also explains the gap between the lower bounds provided
by Theorems 3.2 and 4.2 on the complexity of geometric scaling. In particular,
we will show how the term n/3 in the latter lower bound depends on α.

We consider, again, the same simplex S as in Sections 3 and 4 but use an
objective vector whose ith coordinate is dαei:

c = (dαe, dαe2, . . . , dαen).

Lemma 5.1: Assume that, at the start of some step during the execution of
Algorithm 2α, x̃ is equal to xi. If, in addition, µ < cn−i ≤ αµ, that step ends
with an augmentation that sets x̃ to xj where j > i and

(3) αdαe1− dαe
i−j

j − i
> 1.

Proof. Let us compute the ratio

(4)
c·(xj − xi)
‖xj − xi‖1

when j 6= i. As in the proof of Lemma 4.1, this ratio is negative when j < i. In
that case, the next augmentation will not set x̃ to xj . If, on the contrary, j > i

then the same calculation as in the proof of Lemma 4.1 yields

c·(xj − xi)
‖xj − xi‖1

= dαen dαe
1−i − dαe1−j

j − i
.

Now assume that µ < cn−i ≤ αµ. In that case,

dαeiµ < dαen ≤ αdαeiµ,

and it immediately follows that

dαe1− dαe
i−j

j − i
µ <

c·(xj − xi)
‖xj − xi‖1

≤ αdαe1− dαe
i−j

j − i
µ.

First observe that, when j = i+ 1, the first inequality is

(dαe − 1)µ <
c·(xi+1 − xi)
‖xi+1 − xi‖1

.

THE COMPLEXITY OF GEOMETRIC SCALING 11

As α > 1, it follows that the step will end by an augmentation. Moreover
that augmentation can set x̃ to xi+1. Finally, if the augmentation sets x̃ to xj ,
then j must satisfy (3) by the second inequality.

Now denote by ωα the number of integers t such that

αdαe1− dαe
−t

t
> 1.

As already noted in the proof of Lemma 5.1, that inequality is always satisfied
when t = 1 because α > 1, and thus ωα ≥ 1. One can check that the first few
values of ωα are ωα = 1 when

1 < α ≤ 4

3
,

ωα = 2 when
4

3
< α ≤ 12

7
,

and ωα = 3 when
12

7
< α ≤ 2.

Then, ωα jumps to 6 when

2 < α ≤ 729

364

because dαe is no longer equal to 2, but to 3. Further note that ωα grows like
α2 when α goes to infinity.

Theorem 5.2: Considering the n-dimensional simplex S, the vector

c = (dαe, dαe2, . . . , dαen),

and starting at the origin, Algorithm 2α requires n/ωα augmentation steps and
log n‖c‖∞ + 1 halving steps to maximize c·x over S. With early stopping, only
log ‖c‖∞ + 1 halving steps are required.

Proof. Recall that Algorithm 2α is identical to Algorithm 2, except that µ is
divided by α in Line 5, and thus still performs log n‖c‖∞ + 1 halving steps.
Theorem 5.2 then follows from Lemma 5.1. Indeed, as dαe ≥ α, after an
α-halving step where x̃ is equal to xi, either cn−i is less than µ (in which case
the next step is also an halving step) or satisfies µ < cn−i ≤ αµ (in which case
the next step is an augmenting step) and in the latter case, it is a consequence
of Lemma 5.1 that at most ωα vertices of S are feasible.

12 A. DEZA, S. POKUTTA AND L. POURNIN

Note that Theorem 4.2 is the special case of Theorem 5.2 obtained when
α = 2. Indeed, in this case, ωα is equal to 3 and, therefore at most three new
vertices are made feasible after each halving step. However, choosing α = 4/3

(or, in fact, any α satisfying 1 < α ≤ 4/3) provides Corollary 5.3 because in
that case, ωα is only equal to 1. More precisely, just as Algorithm 1 requires n
augmentation steps with the vector

c = (1, 2, . . . , n),

Algorithm 24/3 requires n augmentation steps with the vector

c =

(⌈
4

3

⌉
,

⌈
4

3

⌉2
, . . . ,

⌈
4

3

⌉n)
= (2, 4, 8, . . . , 2n)

in order to maximize c·x over S .

Corollary 5.3: Considering the n-dimensional simplex S, the vector

c = (2, 4, 8, . . . , 2n),

and starting at the origin, Algorithm 2α with α = 4/3 requires n augmentation
steps and log n‖c‖∞ + 1 halving steps to maximize c·x over S. With early
stopping, only log ‖c‖∞ + 1 halving steps are required.

6. A few simple upper bounds and open questions

We complement the above by providing a few simple upper bounds for geometric
scaling that indicate the potential structure of stronger lower bound instances.
Without loss of generality we assume from now on that c ∈ Zn and we use the
stronger upper bounds via early stopping.

Remark 6.1 (Upper bound induced by few objective values): As the objective
is strictly increasing, the number of required augmentation steps is at most the
number of different values that c·x can take over v(P) and in particular at most
|v(P)| − 1 as we start from a point x0 ∈ v(P).

Remark 6.2: All our lower bounds are obtained by maximizing c·x over a
n-dimensional simplex S where c is a vector such that ‖c‖∞ is equal to n or
to 2n. In that case, |v(S)| − 1 is precisely n. Thus, a natural upper bound for
the number of required total steps for geometric scaling over S, assuming early

THE COMPLEXITY OF GEOMETRIC SCALING 13

stopping, is O(n + log ‖c‖∞). In this setting, our bounds are essentially tight
for both Algorithm 1 and Algorithm 2.

A close inspection of our lower bounds reveals that the dependance of the
complexity on ‖c‖∞ is exclusively reflected in the number of halving steps but
not in the number of augmenting steps which depend exclusively, and linearly,
on the dimension n. In fact, with early stopping, the situation is

n︸︷︷︸
augmenting steps

+ log ‖c‖∞︸ ︷︷ ︸
halving steps

vs. n︸︷︷︸
augmenting steps

· log ‖c‖∞︸ ︷︷ ︸
halving steps

,

where the left-hand side is our lower bound and the right-hand side is the
best-known upper bound for geometric scaling over 0/1 polytopes, leaving a
challenging gap. As mentioned earlier these bounds are also in stark contrast
to bit scaling, where instances with an arbitrary number of augmenting steps
can be created by forcing the algorithm to revisit points in the various scaling
phases. It remains open whether it is possible to create a geometric scaling
instance for which the number of required augmentation steps depends on the
encoding length log ‖c‖∞ of the vector c.

The polynomial time preprocessing given by Frank and Tardos in [6] allows to
preprocess the vector c in such a way that log ‖c‖∞ = O(n3) without changing
the optimal solution. As a consequence, an overall complexity that is polyno-
mial in n can be achieved for the total number of steps. However, this does not
resolve the complexity question for a moderately sized vector c and in particular
it also changes the considered instance.

Acknowledgments. We thank the 2021 HIM program Discrete Optimization
during which part of this work was developed.

References

[1] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig, Log-
barrier interior point methods are not strongly polynomial, SIAM Journal on Applied
Algebra and Geometry 2 (2018), no. 1, 140–178.

[2] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig, What
tropical geometry tells us about the complexity of linear programming, SIAM Review 63
(2021), no. 1, 123–164.

[3] Pierre Le Bodic, Jeffrey W. Pavelka, Marc E. Pfetsch, and Sebastian Pokutta, Solving
MIPs via scaling-based augmentation, Discrete Optimization 27 (2018), 1–25.

[4] Antoine Deza and Lionel Pournin, Primitive point packing, Mathematika, to appear.

14 A. DEZA, S. POKUTTA AND L. POURNIN

[5] Antoine Deza, Lionel Pournin and Noriyoshi Sukegawa, The diameter of lattice zono-
topes, Proceedings of the American Mathematical Society 148 (2020), no. 8, 3507–3516.

[6] András Frank and Éva Tardos, An application of simultaneous diophantine approxima-
tion in combinatorial optimization, Combinatorica 7 (1987), no. 1, 49–65.

[7] Victor Klee and George J. Minty, How good is the simplex algorithm?, Inequalities III
(Oved Shisha, ed.), Academic Press, New York, 1972, pp. 159–175.

[8] Alberto Del Pia and Carla Michini, Short simplex paths in lattice polytopes, Discrete &
Computational Geometry 67 (2018), no. 2, 503–524.

[9] Sebastian Pokutta, Restarting algorithms: sometimes there is free lunch, Lecture Notes
in Computer Science 12296 (2020), 22–38.

[10] Andreas S. Schulz and Robert Weismantel, The complexity of generic primal algorithms
for solving general integer programs, Mathematics of Operations Research 27 (2002),
no. 4, 681–692.

[11] Andreas S. Schulz, Robert Weismantel and Günter M. Ziegler, 0/1-integer programming:
Optimization and augmentation are equivalent, European Symposium on Algorithms ’95,
Springer, 1995, pp. 473–483.

	1. Introduction
	2. Geometric scaling
	3. Worst-case instances for geometric scaling via MRA
	4. Worst-case instances for feasibility-based geometric scaling
	5. The tradeoff between scaling and oracle accuracy
	6. A few simple upper bounds and open questions
	References

