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ABSTRACT

We investigate the following question: how close can two disjoint lattice
polytopes contained in a fixed hypercube be? This question stems from
various contexts where the minimal distance between such polytopes ap-
pears in complexity bounds of optimization algorithms. We provide nearly
matching lower and upper bounds on this distance and discuss its exact
computation. We also give similar bounds in the case of disjoint rational
polytopes whose binary encoding length is prescribed.

1. Introduction

In general, the distance between two disjoint convex bodies P and Q contained
in Rd can get arbitrarily small. However, this is no longer the case when P and
Q satisfy certain constraints. For instance, if P and Q are two d-dimensional
0{1-polytopes, then they cannot be closer than a positive distance that only
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2 A. DEZA, S. ONN, S. POKUTTA AND L. POURNIN

depends on d. This is due to the observation that, when d is fixed, there are
finitely many such pairs of polytopes. Another relevant constraint that often
arises in optimization algorithms is when P and Q are rational polytopes whose
binary encoding length (as subsets of Rd satisfying a set of linear inequalities)
is prescribed. Here, again, the smallest possible distance between P and Q is a
positive number that depends on that encoding length and on d. Our goal is to
estimate these minimal distances.

Our study stems from the complexity bounds established by Gábor Braun,
Sebastian Pokutta, and Robert Weismantel [4]. In their article, an algorithm
is provided that either computes a point in P X Q when that intersection is
non-empty or certifies that P XQ is empty. In the latter case, the complexity
of certifying that P XQ is empty is

O

˜

1

dpP,Qq2

¸

and therefore, it is natural to ask how small dpP,Qq can get.
It turns out that our study of the minimum distance between disjoint poly-

topes is related to the notion of facial distance considered by Javier Peña and
Daniel Rodriguez [8, Section 2] and David Gutman and Javier Peña [5, 7]. It
is also related to the notion of vertex-facet distance investigated by Amir Beck
and Shimrit Shtern [2]. Another quantity linked to these three is the pyramidal
width of a polytope, studied by Simon Lacoste-Julien and Martin Jaggi [6]. We
refer the reader to the survey by Gábor Braun, Alejandro Carderera, Cyrille
Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Sebastian
Pokutta [3] for an overview of these notions.

The facial distance is crucial in establishing linear convergence rates for con-
ditional gradient methods over polytopes and naturally occurs in the complexity
bounds. The facial distance of a polytope P is defined as

(1) ΦpP q “ min
!

d
`

F, convpVzF q
˘

: F P F
)

,

where V denotes the vertex set of P and F the set of its proper faces. In other
words, the facial distance of P is the minimal distance between any of its faces
and the convex hull of its vertices not contained in that face. In contrast to
our study, this notion considers a specific polytope P and decomposes it into
its faces and their complements. The vertex-facet distance is measured in the
special case when F is a facet of the considered polytope and is replaced in (1)
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with its affine hull. It can then be expressed as

(2) ∆pP q “ min
!

d
`

affpF q, convpVzF q
˘

: F P F
)

,

where F is the set of the facets of P , as shown in [8, Section 2]. When P

is a 0{1-simplex, bounds have been given on the smallest possible vertex-facet
distance [1, 10]. In particular Noga Alon and Văn Vũ show in [1] that

(3)
1

?
2
d log d´2d`opdq

ď min ∆pSq ď
1

?
2
d log d´4d`opdq

where the minimum is over all the d-dimensional 0{1-simplices S.
The results of Stephen Vavasis on the complexity of quadratic optimiza-

tion [12], generalized by Alberto Del Pia, Santanu Dey, and Marco Molinaro
in [9] imply as a special case that the squared distance between two rational
polytopes is a rational number. Our work is concerned by providing bounds on
how close such polytopes can be under the mentioned constraints.

Recall that a polytope whose vertices belong to the integer lattice Zd is a
lattice polytope. We will refer to a lattice polytope contained in the hypercube
r0, ksd as a lattice pd, kq-polytope. In this article, we first provide a lower bound,
as a function of d and k on the smallest possible distance between two dis-
joint lattice pd, kq-polytopes and then we complement these lower bounds with
constructions that provide almost matching upper bounds.

In terms of lower bounds our main result is the following.

Theorem 1.1: If P and Q are disjoint lattice pd, kq-polytopes, then

dpP,Qq ě
1

pkdq2d
.

We shall in fact prove a stronger bound (see Theorem 2.3) which Theorem 1.1
is a consequence of. We also prove a lower bound on the distance of two ratio-
nal polytopes in terms of the dimension and their binary encoding length (see
Theorem 3.6). Our main result regarding upper bounds in the following.

Theorem 1.2: Consider a positive integer k. For any large enough d, there
exist two disjoint pd, kq-lattice polytopes P and Q such that

dpP,Qq ď
1

`

k
?
d
˘

?
d
.
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As above, Theorem 1.2 follows from a stronger bound (see Theorem 4.1). We
also give an upper bound on the smallest possible distance between two rational
polytopes whose binary encoding length is prescribed (see Theorem 4.6).

By its definition, the facial distance of a polytope is a distance between two
polytopes. Inversely, the distance between two polytopes P and Q is the dis-
tance between two of their faces that belong to parallel hyperplanes. In par-
ticular, dpP,Qq is at least the facial distance of the convex hull of these two
faces. As a consequence, our results provide bounds on the smallest possible
facial distance of a lattice pd, kq-polytope in terms of d and k.

Theorem 1.3: For any positive k and large enough d,

(4)
1

pkdq2d
ď min ΦpP q ď

1
`

k
?
d
˘

?
d

where the minimum is over all the lattice pd, kq-polytopes P .

Similar bounds in the case of rational polytopes, in terms of their dimension
and binary encoding length follow from Theorems 3.6 and 4.6.

Remark 1.4: While (3) and (4) have similar forms, neither of these statements
implies the other. Indeed, on the one hand ∆pP q is the distance between a point
and a hyperplane and on the other, ΦpP q is the distance between two polytopes
of arbitrary dimensions. More precisely, the lower bound in (4) cannot be
deduced from that in (3) and the same holds for the upper bounds.

We establish the announced lower bounds for lattice polytopes in Section 2
and for rational polytopes in Section 3. The upper bounds and the corre-
sponding constructions, for both lattice and rational polytopes, are provided in
Section 4. These upper bounds are only valid for all sufficiently large dimen-
sions and we therefore provide bounds that hold in all dimensions in Section 5,
where we also study the smallest possible distance of two lattice polytopes whose
dimension is fixed independently on the dimension of the ambient space. We
end the article with Section 6, that contains computational results and, in par-
ticular the exact value of the smallest possible distance between two disjoint
lattice pd, kq-polytopes for certain d and k (see Table 1). In order to compute
these distances, we prove in Section 6 that one can restrict to considering a
well-behaved subset of the pairs of lattice pd, kq-polytopes.
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2. Lower bounds

In this section P and Q are two fixed, disjoint polytopes contained in Rd and
our goal is to prove Theorem 1.1. Let us first introduce some notations and give
a few remarks. Since P and Q are compact subsets of Rd, there exists a point
p in P and a point q in Q whose distance is equal to dpP,Qq. Let fP denote
the unique face of P that contains p in its relative interior and fQ the unique
face of Q that contains q in its relative interior. This situation is illustrated in
Figure 1, where P and Q are two 0{1-polytopes, fP is the diagonal of the cube
and fQ a diagonal of one of its square faces.

We now consider dimpfP q ` 1 vertices of fP , that we label by u0 to udimpfP q

such that the vectors u1´u0 to udimpfP q´u0 are linearly independent. Similarly,
pick a family v0 to vdimpfQq of vertices of fQ such that the vectors v1 ´ v0 to
vdimpfQq ´ v0 are linearly independent. Consider the set

S “
!

ui ´ u0 : 1 ď i ď dimpfP q
)

Y

!

vi ´ v0 : 1 ď i ď dimpfQq
)

and extract from it a subset of linearly independent vectors w1 to wr that span
the same subspace of Rd than S. Further denote

w0 “ u0 ´ v0.

The equality

dpp, qq “
pp´ qq¨pp´ qq

}p´ q}

can be rewritten into

(5) dpp, qq “ w0¨
pp´ qq

}p´ q}
.

Q

P

p

q

Figure 1. Two 0{1-polytopes P and Q and points p and q such
that dpP,Qq is equal to dpp, qq.
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We will express the quotient in the right-hand side of (5) in terms of the
vectors wi. In order to do that, consider the matrixM whose term in row i and
column j is wi¨wj , the column vector b whose coordinates are w0¨w1 to w0¨wr,
and the column vector β whose coordinates are β1 to βr. Further denote by Mi

the matrix obtained from M by replacing column i with b.

Lemma 2.1: The distance between P and Q satisfies

dpP,Qq “ w0¨
a

}a}

where

a “ detpMqw0 ´

r
ÿ

i“1

detpMiqw
i.

Proof. Observe that p ´ q belongs to the space spanned by vectors w0 to wr.
Hence, λpp´qq also belongs to that space for any positive λ. As a consequence,
there exist r ` 1 coefficients α0 to αr such that

(6) λpp´ qq “
r
ÿ

i“0

αiw
i.

Let j be an integer such that 1 ď j ď r. As λpp´ qq is orthogonal to wj ,

(7)
r
ÿ

i“0

αipw
i¨wjq “ 0.

Now observe that λpp ´ qq cannot be a linear combination of w1 to wr as
otherwise λ would necessarily be equal to 0. Hence, α0 is non-zero and we can
denote, for each integer i such that 1 ď i ď r,

βi “ ´
αi
α0

.

With this notation, (7) can be rewritten into
r
ÿ

i“1

βipw
i¨wjq “ w0¨wj

and the linear system obtained by letting j range between 1 and r is

Mβ “ b.

Note that M has rank r since the vectors wi are linearly independent. As a
consequence, according to Cramer’s rule,

βi “
detpMiq

detpMq
.
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Picking α0 “ detpMq therefore yields

αi “ ´detpMiq

when 1 ď i ď r. This provides values for the coefficients α0 to αr that appear
in (6). In particular, with these coefficients,

(8) λpp´ qq “ detpMqw0 ´

r
ÿ

i“0

detpMiqw
i.

Now observe that (5) can be rewritten into

dpp, qq “ w0¨
λpp´ qq

}λpp´ qq}
.

Combining this with (8) yields proves the lemma.

Now observe that, when P and Q are rational polytopes, then the vectors
w0 to wr have rational coordinates. Therefore, we recover the following remark
from Lemma 2.1. This remark is a consequence of a more general result due to
Stephen Vavasis [12] that was further improved in [9].

Remark 2.2: If P and Q are rational polytopes then dpP,Qq2 is rational.

We are now ready to prove the announced bound on on dpP,Qq in the case
when both P and Q are lattice polytopes.

Theorem 2.3: If P and Q are disjoint lattice pd, kq-polytopes, then

dpP,Qq ě
1

k2d´1
?
d
3d`2

.

Proof. According to Lemma 2.1,

(9) dpP,Qq “
w0¨a

}a}

where

(10) a “ detpMqw0 ´

r
ÿ

i“1

detpMiqw
i.

Assuming that P and Q are lattice pd, kq-polytopes, the vectors w0 to wr

have integers coordinates. It then follows from (10) that all the coordinates of
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a are integers. By the assumption that P and Q are disjoint, the numerator in
the right-hand side of (10) is at least 1. As a consequence,

(11) dpP,Qq ě
1

}a}
.

Since P and Q are lattice pd, kq-polytopes, all the wi are contained in the
hypercube r´k, ksd. Hence the absolute value of each entry in the matrices M
and Mi is at most dk2 and, by Hadamard’s inequality,

|detpMiq| ď drk2rr
r
2

for all i. Moreover, the same inequality holds by replacing M in the left-hand
side by Mi. Plugging this into (10) yields

|ai| ď pr ` 1qdrk2r`1r
r
2 .

It follows that
}a} ď pr ` 1qd

2r`1
2 k2r`1r

r
2

and according to (11),

dpP,Qq ě
1

pr ` 1qd
2r`1

2 k2r`1r
r
2

.

Finally, observe that r ď d´ 1. Hence,

dpP,Qq ě
1

d
3d`2

2 k2d´1

as desired.

Note that the distance between the origin of Rd and the pd´ 1q-dimensional
standard simplex is equal to 1{

?
d. It turns out that the distance between the

origin and any lattice polytope contained in the positive orthant r0,`8rd but
that does not contain the origin is at least this value.

Lemma 2.4: If P is a lattice polytope contained in r0,`8rdzt0u, then

dp0, P q ě
1
?
d
.

Proof. Let p be a point in P such that dp0, P q “ dp0, pq. Observe that all the
vertices x of P satisfy }x}1 ě 1. As any point in P is a convex combination
of vertices of P , it follows that }p}1 ě 1. However, by the Cauchy–Schwarz
inequality }p}1 ď

?
d}p}2, which proves the lemma.
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3. Lower bounds in terms of encoding length

We now turn our attention to bounding dpP,Qq in the case when P and Q are
rational polytopes, in terms of their binary encoding input data length. We
first recall some definitions regarding this quantity, see [11]. If α and β are two
relatively prime integers such that β is positive, the size of α{β is

size

ˆ

α

β

˙

“ 1`
P

logp|α| ` 1q
T

`
P

logp|β| ` 1q
T

.

In turn, the size of a vector a from Rd with rational coordinates is

sizepaq “ d`
d
ÿ

i“1

sizepaiq.

In other words, the size of a vector with rational coordinates is the number
of its coordinates plus the sum of the sizes of these coordinates.

If P is a rational polytope, then its vertices have rational coordinates and the
vertex complexity of P is the smallest number νpP q such that νpP q is at least
d and the size of any vertex of P is at most νpP q. Still under the assumption
that P is a rational polytope, the facet complexity of P is the smallest number
ϕpP q such that ϕpP q is at least d and there exists a family of vectors a1 to an

from Qd and a family of rational numbers b1 to bn such that

P “
 

x P Rd : @ i P t1, . . . , du, ai¨x ď bi
(

and for all i satisfying 1 ď i ď n,

sizepaiq ` sizepbiq ď ϕpP q.

The following is proven in [11] (see Theorem 10.2 therein).

Theorem 3.1: If P is rational, then νpP q ď 4d2ϕpP q and ϕpP q ď 4d2νpP q.

The size of a matrix can be defined in the same spirit as the size of a vec-
tor: if M is a matrix with rational coefficients, then sizepMq is the number of
coefficients in M plus the sum of the sizes of these coefficients.

The following statement is the Theorem 3.2 from [11].

Theorem 3.2: If M is a square matrix with rational coefficients, then

size
`

detpMq
˘

ď 2 sizepMq.

We now bound the size of a sum and a product of rational numbers.
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Proposition 3.3: If a is a vector from Qd, then

(12) size

˜

d
ÿ

i“1

ai

¸

ď 2
d
ÿ

i“1

sizepaiq

and

(13) size

˜

d
ź

i“1

ai

¸

ď

d
ÿ

i“1

sizepaiq.

Proof. First recall that the logarithm of a product of numbers is the sum of the
logarithms of these numbers. Moreover, the ceiling of a sum of numbers is at
most the sum of the ceilings of these numbers. The inequality (13) immediately
follows from these two properties. Let us now prove (12).

Consider a vector a contained in Qd. There exist two relatively prime integers
α and β such that the later is positive and

d
ÿ

i“1

ai “
α

β
.

For any integer i satisfying 1 ď i ď d, further denote by γi and δi the two
relatively prime integers such that δi is positive and

ai “
γi
δi
.

With these notations,

(14)
d
ÿ

i“1

γi
δi
“
α

β

and, as a consequence,

(15) β ď
d
ź

i“1

δi ď
d
ź

i“1

`

δi ` 1
˘

.

Now observe that

(16)

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

i“1

γi
δi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

i“1

ˇ

ˇγi
ˇ

ˇ ď

d
ź

i“1

´

ˇ

ˇγi
ˇ

ˇ` 1
¯

.

If follows from (14), (15), and (16) that

(17) |α| ď
d
ź

i“1

´

ˇ

ˇγi
ˇ

ˇ` 1
¯

`

δi ` 1
˘

.
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Finally, observe that

size

ˆ

α

β

˙

ď 1`
P

logp2|α|q
T

`
P

logp2|β|q
T

.

As a consequence,

size

˜

d
ÿ

i“1

ai

¸

ď 3`
P

log |α|
T

`
P

log |β|s.

As the ceiling of a sum is at most the sum of the ceilings of the summands,
combining this with (15) and (17) proves the proposition.

Proposition 3.3 allows to bound the size of a scalar product.

Proposition 3.4: If a and b are two vectors from Qd, then

sizepa¨bq ď 2 sizepaq ` 2 sizepbq.

Proof. Consider two two vectors a and b in Qd. By Proposition 3.3,

sizepa¨bq ď 2
d
ÿ

i“1

sizepaibiq ď 2
d
ÿ

i“1

sizepaiq ` 2
d
ÿ

i“1

sizepbiq.

Since the size of a vector coincides with the sum of the sizes of its coordinates,
this immediately results in the desired inequality.

The following proposition whose proof is straightforward provides the smallest
possible positive rational number with a given size.

Proposition 3.5: If x is a positive rational number, then

4

2sizepxq
ď x ď

2sizepxq

4
.

We can now state our lower bound on the distance of P and Q when these
polytopes are rational, in terms of their binary encoding input data length. In
the statement of the following theorem and its proof, we denote

νpP,Qq “ max
 

νpP q, νpQq
(

.

and
ϕpP,Qq “ max

 

ϕpP q, ϕpQq
(

.

Theorem 3.6: If P and Q are disjoint rational polytopes, then

dpP,Qq ě
8

24νpP,Qqp2dq4
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and
dpP,Qq ě

8

24ϕpP,Qqp2dq6
.

Proof. In this proof, we consider the vectors w0 to wr as well as the matrices
M and M1 to Mr that have been associated to P and Q at the beginning of
Section 2. Recall that the vectors w0 to wr are obtained by subtracting from
one another two vertices of P , two vertices of Q, or a vertex of P and a vertex
of Q. As a consequence, it follows from the first inequality in the statement of
Proposition 3.3, that for every integer i satisfying 0 ď i ď r,

size
`

wi
˘

ď 2νpP,Qq.

In turn, for any two integers i and j satisfying 0 ď i ď j ď r, it follows from
Proposition 3.4 that the size of wi¨wj can be bounded as

size
`

wi¨wj
˘

ď 4νpP,Qq

and by Theorem 3.2,
size

`

detpMq
˘

ď 8r2νpP,Qq.

In addition, the same inequality holds when replacing M by any of the ma-
trices M1 to Mr. Now consider the vector

a “ detpMqw0 ´

r
ÿ

i“1

detpMiqw
i

and observe that ai is the scalar product between the vector from Rr`1 whose
coordinates are detpMq and detpM1q to detpMrq with the one whose coordinates
are w0

i and ´w1
i to ´wri . Therefore, by Proposition 3.4,

sizepaq ď 2dp8r2 ` 1qpr ` 1qνpP,Qq

and
size

`

w0¨a
˘

ď 4
`

dp8r2 ` 1qpr ` 1q ` 1
˘

νpP,Qq.

Now recall that r is at most d´ 1. Hence,

(18) sizepaq ď 16d4νpP,Qq

and
size

`

w0¨a
˘

ď 32d4νpP,Qq.

In turn, according to Lemma 2.1 and Proposition 3.5,

(19) dpP,Qq ě
4

232d4νpP,Qq}a}
.



KISSING POLYTOPES 13

Now, by (18), Propositions 3.4 and 3.5 yield

(20) }a}2 ď
264d

4νpP,Qq

4
.

Combining (19) with (20) and using Theorem 3.1 completes the proof.

4. Upper bounds

In this section, k is fixed and we further consider two positive integers σ and δ.
Our aim is to build two lattice pδpσ ` 1q, kq-polytopes P and Q such that

(21) dpP,Qq ď

?
δσ

`

kpδ ´ 1q
˘σ .

when δ is at least 4 (see Theorem 4.5). Before we build P and Q, let us state
and prove the main result of the section, which is a consequence of (21).

Theorem 4.1: Consider a number α in s0, 1r. For any large enough d, there
exist two disjoint lattice pd, kq-polytopes P and Q such that

dpP,Qq ď
1

kdαdp1´αqdα
.

Proof. Let β be a number in the interval sα, 1r. Assume that

(22) d ě 8
1

1´β

and denote

(23)

$

’

&

’

%

σ “
X

dβ
\

and

δ “

Z

d

σ ` 1

^

.

Observe that σ is at least 1. In addition, it follows from (22) that

d ě 4dβ ` 4

and as a consequence, δ is at least 4.
As announced above (see also Theorem 4.5 below), under these conditions on

σ and δ, there exist two lattice pδpσ ` 1q, kq-polytopes P and Q such that

(24) dpP,Qq ď

?
δσ

`

kpδ ´ 1q
˘σ .
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However, by (23), d is at least pσ ` 1qδ. Therefore, P and Q are also lattice
pd, kq-polytopes. Moreover, replacing σ and δ in the right-hand side of (24) by
their expressions as functions of d and β yields

(25) dpP,Qq ď

c

tdβu

Y

d
tdβu`1

]

ktdβu

´Y

d
tdβu`1

]

´ 1
¯tdβu

.

Now observe that the right-hand side of (25) behaves like
?
d

kdβdp1´βqdβ

as d goes to infinity. Since α is less than β,
?
d

kdβdp1´βqdβ
ă

1

kdαdp1´αqdα

when d is large enough. Hence, the right-hand side of (25) is less than

1

kdαdp1´αqdα

for any large enough d, as desired.

It should be noted that, taking α equal to 1{2 in the statement of Theorem 4.1
results in Theorem 1.2. From now we denote δpσ ` 1q by d. Let us proceed to
building the two announced lattice pd, kq-polytopes P and Q.

Denote by a the vector from Zσ`1 whose coordinate i is

ai “
`

kp1´ δq
˘i´1.

A vector x in Rd can be built from any vector x in Rσ`1 by taking

xi “ xr

for every integer i where r “ tpi´ 1q{δu` 1. Equivalently,

x “ px1, . . . , x1
loooomoooon

δ times

, x2, . . . , x2
loooomoooon

δ times

, . . . , xσ`1, . . . , xσ`1
loooooooomoooooooon

δ times

q.

Denote by P the convex hull of the lattice points x contained in r0, ksd that
satisfy a¨x “ 0. Likewise, denote by Q the convex hull the lattice points x in
r0, ksd such that a¨x “ 1. In order to prove that P and Q satisfy the inequality
(21), we will exhibit a point in P and a point in Q whose distance is at most
the right-hand side of this inequality.
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Consider the pσ ` 1qˆpσ ` 1q matrix

MP “

»

—

—

—

—

—

—

—

–

0 A A ¨ ¨ ¨ A

0 B C ¨ ¨ ¨ C

0 0 B
. . .

...
...

...
. . . . . . C

0 0 ¨ ¨ ¨ 0 B

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where
$

’

&

’

%

A “ pδ ´ 1qk{δ,
B “ 1{δ, and
C “ A`B.

Recall that we identify the points from Rσ`1 to the vector of their coordinates.
In particular, the columns of MP are points from Rσ`1.

Proposition 4.2: If x is a column of MP , then x belongs to P .

Proof. Let x be the column i of Mp. Observe that, if i is equal to 1, then
a¨x “ 0 and in particular, x belongs to P . Now assume that i is at least 2 and
consider an integer s such that 1 ď s ď δ. Denote by us the lattice point in
r0, ksd whose coordinates are given by

usj “

$

’

&

’

%

k if 1 ď j ď δpi´ 1q and
`

pj ´ 1q mod δ
˘

` 1 ‰ s,
1 if δ ă j ď δi and

`

pj ´ 1q mod δ
˘

` 1 “ s, and
0 otherwise.

Note that us is a point in P because a¨us “ 0. As the barycenter of the points
us when s ranges from 1 to δ is precisely x this proves the proposition.

Now consider the pσ ` 1qˆpσ ` 1q matrix MQ obtained from MP by adding
1{δ to all the entries of the first row:

MQ “

»

—

—

—

—

—

—

—

–

B C C ¨ ¨ ¨ C

0 B C ¨ ¨ ¨ C

0 0 B
. . .

...
...

...
. . . . . . C

0 0 ¨ ¨ ¨ 0 B

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proposition 4.3: If x is a column of MQ, then x belongs to Q.
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Proof. Let x be the column i of MQ. Consider an integer s such that 1 ď s ď δ

and denote by vj the lattice point in r0, ksd whose coordinates are

vsj “

$

’

&

’

%

k if 1 ď j ď δpi´ 1q and
`

pj ´ 1q mod δ
˘

` 1 ‰ s,
1 if 1 ď j ď δi and

`

pj ´ 1q mod δ
˘

` 1 “ s, and
0 otherwise.

By construction, a¨vs “ 1 and vs is a point in Q. The proposition then follows
from the observation that x is the barycenter of the points v1 to vδ.

For any integer i such that 0 ď i ď σ, we denote the column i ` 1 of the
matrix MP by pi and the column i` 1 of MQ by qi.

Assume that δ is at least 3 and consider the points

(26) p “

˜

1´ θ

`

kpδ ´ 1q
˘σ
´ 1

`

kpδ ´ 1q ´ 1
˘`

kpδ ´ 1q
˘σ

¸

p0 `
σ
ÿ

i“1

θ
`

kpδ ´ 1q
˘i
pi

and

(27) q “

˜

kpδ ´ 1q ` 1

kpδ ´ 1q
´ θ

`

kpδ ´ 1q
˘σ
´ 1

`

kpδ ´ 1q ´ 1
˘`

kpδ ´ 1q
˘σ

¸

q0`
σ
ÿ

i“1

θp1` p´1qiq
`

kpδ ´ 1q
˘i
qi

where

θ “

`

kp1´ δq ´ 1
˘`

kp1´ δq
˘σ´1

`

kp1´ δq
˘σ
´ 1

.

These points are defined as linear combinations of the columns of MP and
MQ. If δ is at least 4, they are convex combinations of these columns.

Proposition 4.4: If δ is at least 4, then p and q are convex combinations of
the columns of MP and MQ, respectively.

Proof. It suffices to show that the coefficients in the right-hand sides of the
equations (26) and (27) are non-negative and sum to 1. Assume that δ is at
least 4. In that case, θ is non-zero and its inverse is

(28)
1

θ
“

1

kpδ ´ 1q ` 1

˜

kpδ ´ 1q `
1

`

kp1´ δq
˘σ´1

¸

.

Since σ is positive,

(29)

ˇ

ˇ

ˇ

ˇ

ˇ

1
`

kp1´ δq
˘σ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1.
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It follows from (28) and (29) that 1{θ and therefore θ are positive numbers.
Hence, all the coefficients in the right-hand sides of (26) and (27) are non-
negative, except possibly for the coefficient of p0 in (26) and the coefficient of
q0 in (27). However, observe that (28) implies

1

θ
ě

1

kpδ ´ 1q ` 1

˜

kpδ ´ 1q ´
1

`

kpδ ´ 1q
˘σ´1

¸

and, as a consequence,

θ ď

`

kpδ ´ 1q ` 1
˘`

kpδ ´ 1q
˘σ´1

`

kpδ ´ 1q
˘σ
´ 1

.

It follows that the coefficient of p0 in the right-hand side of (26) is at least

1´
kpδ ´ 1q ` 1

`

kpδ ´ 1q ´ 1
˘

kpδ ´ 1q
.

This expression is positive when kpδ ´ 1q is greater than 2. Hence, the co-
efficient of p0 in the right-hand side of (26) is positive when k is at least 4.
Likewise, the coefficient of q0 in the right-hand side of (27) is at least

1

kpδ ´ 1q
` 1´

kpδ ´ 1q ` 1
`

kpδ ´ 1q ´ 1
˘

kpδ ´ 1q

which is positive as well when kpδ ´ 1q is greater than 2. Now observe that
σ
ÿ

i“1

1
`

kpδ ´ 1q
˘i
“

`

kpδ ´ 1q
˘σ
´ 1

`

kpδ ´ 1q ´ 1
˘`

kpδ ´ 1q
˘σ .

Therefore, the coefficients in the right-hand side of (26) sum to 1 and the
coefficients in the right-hand side of (27) to

kpδ ´ 1q ` 1

kpδ ´ 1q
`

σ
ÿ

i“1

θ
`

kp1´ δq
˘i
.

Finally, observe that
σ
ÿ

i“1

θ
`

kp1´ δq
˘i
“ θ

`

kp1´ δq
˘σ
´ 1

`

kp1´ δq ´ 1
˘`

kp1´ δq
˘σ “

1

kp1´ δq
.

Hence, the coefficients in the right-hand side of (26) also sum to 1.

We are now ready to bound the distance between P and Q.
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Theorem 4.5: If δ is at least 4, then

dpP,Qq ď

?
δσ

`

kpδ ´ 1q
˘σ .

Proof. According to Propositions 4.2, 4.3, and 4.4, the points p and q are con-
tained in P and Q, respectively. Therefore,

dpP,Qq ď dpp, qq.

Now observe that, by construction,

dpp, qq “
?
δdpp, qq.

Hence, it suffices to show that

dpp, qq ď

?
σ

`

kpδ ´ 1q
˘σ .

By (26) and (27), the first coordinate of q ´ p is

q1 ´ p1 “
kpδ ´ 1q ` 1

δkpδ ´ 1q
´ θ

`

kpδ ´ 1q
˘σ
´ 1

δ
`

kpδ ´ 1q ´ 1
˘`

kpδ ´ 1q
˘σ

`
θ

δ

σ
ÿ

i“1

1
`

kpδ ´ 1q
˘i
`
kpδ ´ 1q ` 1

δ

σ
ÿ

i“1

θ
`

kp1´ δq
˘i
.

However, since
σ
ÿ

i“1

1
`

kpδ ´ 1q
˘i
“

`

kpδ ´ 1q
˘σ
´ 1

`

kpδ ´ 1q ´ 1
˘`

kpδ ´ 1q
˘σ

and
σ
ÿ

i“1

θ
`

kp1´ δq
˘i
“

1

kp1´ δq

the first coordinate of q´ p is equal to 0. According to (26) and (27) again, for
any integer j satisfying 1 ď j ď σ,

qj`1 ´ pj`1 “
1

δ

θ
`

kp1´ δq
˘j
`
kpδ ´ 1q ` 1

δ

σ
ÿ

i“j`1

θ
`

kp1´ δq
˘i

However,
σ
ÿ

i“j`1

1
`

kp1´ δq
˘i
“

1´
`

kp1´ δq
˘σ´j

pkpδ ´ 1q ` 1
˘`

kp1´ δq
˘σ
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and as a consequence,

qj`1 ´ pj`1 “
θ

δ
`

kp1´ δq
˘σ “

kpδ ´ 1q ` 1

δkp1´ δq
´

1´
`

kp1´ δq
˘σ
¯

This quantity can be bounded as

|qj ´ pj | ď
1

pδ ´ 1q
´

`

kpδ ´ 1q
˘σ
´ 1

¯ ď
1

`

kpδ ´ 1q
˘σ

and therefore,

dpp, qq ď

?
σ

`

kpδ ´ 1q
˘σ

as desired.

Theorem 4.1 can be rewritten in terms of the binary encoding input data
length of P and Q. Indeed, observe that, setting k to 1, νpP q and νpQq are
both bounded by 4d as the coordinates of the vertices of P and Q are equal
to 0 or to 1 and the sizes of these two numbers are 2 and 3. Hence νpP,Qq is
at most 4d as well and ϕpP,Qq at most 16d3 by Theorem 3.1. Therefore, we
immediately obtain the following from Theorem 4.1.

Theorem 4.6: For any number α in s0, 1r there exist two disjoint rational
polytopes P and Q with arbitrarily large νpP,Qq and ϕpP,Qq such that

dpP,Qq ď
1

˜

νpP,Qq

4

¸p1´αq
`

νpP,Qq
4

˘α

and
dpP,Qq ď

1

˜

ϕpP,Qq

16

¸

1´α
3

`

ϕpP,Qq
16

˘α
3
.

5. Special cases

From now on, εpd, kq denotes the smallest possible distance between two dis-
joint lattice pd, kq-polytopes. In this section, we focus on certain relevant special
cases. The upper bounds stated in Section 4 imply that εpd, kq decreases expo-
nentially fast with d but these bounds only hold when d is large enough. We
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will prove a different bound that holds for all d at least 2, according to which
εpd, 1q is at most inverse linear as a function of d. We shall see in Section 6 that
this bound on εpd, 1q is tight when d is equal to 2 or 3.

Lemma 5.1: For any d at least 2,

εpd, 1q ď
1

a

dpd´ 1q
.

Proof. Let P be the diagonal of the hypercube r0, 1sd that is incident to the
origin of Rd. Denote by Q the pd ´ 2q-dimensional simplex whose vertices are
the points x of Rd whose one of the first d ´ 1 coordinates is equal to 1 and
whose all other coordinates are equal to 0. Note that P and Q are disjoint as
the only point of P whose last coordinate is equal to 0 is the origin of Rd.

The point p of Rd whose all coordinates are equal to 1{d belongs to P . The
centroid of Q is the point q whose last coordinate is 0 and whose other coordi-
nates are all equal to 1{pd´ 1q. Since

dpp, qq “
1

a

dpd´ 1q
,

this proves the lemma.

Q

P

x4 = 0

x4 = 1

Figure 2. The construction of Lemma 5.1 when d is equal to 4.
The cube at the top is the facet of the hypercube r0, 1s4 made
up of the points x such that x4 “ 0 and the cube at the bottom
is the opposite facet of r0, 1s4.
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We complement Lemma 5.1 by showing that εpd, kq is at most inverse linear
as a function of d and as a function of k for all d and k at least 2.

Lemma 5.2: For any k and d at least 2,

εpd, kq ď
1

pd´ 1qk
.

Proof. Let P denote the point of Rd whose all coordinates are equal to 1. Denote
by Q the pd ´ 1q-dimensional simplex whose vertices are the origin of Rd and
the points whose one of the first d´ 1 coordinates is equal to k ´ 1 and whose
all other coordinates are equal to k. Now consider the point q such that

qi “ 1´
k

pd´ 1qk2 `
`

pd´ 1qk ´ 1
˘2

when 1 ď i ď d´ 1 and

qd “ 1`
pd´ 1qk ´ 1

pd´ 1qk2 `
`

pd´ 1qk ´ 1
˘2 .

This point is the convex combination of the vertices of Q where the coefficient
of the origin is 1 ´ qd{k and the coefficient of all the other vertices of Q is
qd{pkpd´ 1qq. The distance of P and q is

dpP, qq “
1

b

pd´ 1qk2 `
`

pd´ 1qk ´ 1
˘2

.

It suffices to observe that
1

b

pd´ 1qk2 `
`

pd´ 1qk ´ 1
˘2
ď

1

pd´ 1qk

when k ě 2 in order to complete the proof.

Let us now turn our attention to the case when the dimensions of P and Q
are fixed independently on the dimension of the ambient space as, for example
when P and Q are two line segments that live in a higher dimensional space.

We recall that the dimension of a non-necessarily convex subset of Rd is
defined as the dimension of its affine hull.

Lemma 5.3: For any two disjoint lattice pd, kq-polytopes P and Q,

dpP,Qq ě ε
`

dimpP YQq, k
˘

.
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Proof. The proof is by induction on d ´ dimpP Y Qq. If this quantity is equal
to 0, then the result is immediate. Let us assume that d is greater than the
dimension of P Y Q. In that case, there exists an hyperplane H of Rd that
contains P and Q. Identify Rd´1 with the subspace of Rd spanned by the first
d ´ 1 coordinates. We can assume that the vectors orthogonal to H do not
belong to Rd´1 by, if needed using an adequate permutation of the coordinates
of Rd. Now consider the orthogonal projection π : Rd Ñ Rd´1. Since the
vectors orthogonal to H do not belong to Rd´1, the restriction of π to H is a
bijection between H and Rd´1. Moreover, πpZdXHq is a subset of Zd´1. Hence,
πpP q and πpQq are two disjoint lattice pd ´ 1, kq-polytopes and the dimension
of πpP q Y πpQq coincides with the dimension of P YQ. In particular,

d´ 1´ dim
`

πpP q Y πpQq
˘

“ d´ dim
`

P YQ
˘

´ 1.

By induction,

(30) d
`

πpP q, πpQq
˘

ě ε
´

dim
`

πpP q Y πpQq
˘

, k
¯

“ ε
`

dimpP YQq, k
˘

.

Finally observe that the distance between two points in H is always at least
the distance between their images by π. Therefore,

dpP,Qq ě d
`

πpP q, πpQq
˘

and combining this with (30) proves the lemma.

We will see in Section 6 that εp3, 1q is equal to 1{
?

6 (see for instance Table 1)
and that this distance is achieved between a diagonal of the cube r0, 1s3 and a
diagonal of one of its square faces. An immediate consequence of Lemma 5.3 is
that this holds independently on the dimension of the ambient space.

Theorem 5.4: The smallest possible distance between two disjoint line seg-
ments whose vertices belong to t0, 1ud is 1{

?
6.

6. Computational aspects

In this section, we are interested in computing the explicit value of εpd, kq, the
smallest between two disjoint lattice pd, kq-polytopes. A brute-force strategy is
to enumerate all possible pairs of disjoint lattice pd, kq-polytopes. Let us give
some properties of that allow to reduce the search space.

By its definition, εpd, kq is a non-increasing function of d for all fixed k. We
can prove the following stronger statement.
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Theorem 6.1: εpd, kq is a decreasing function of d for all fixed k.

Proof. Let us identify Rd´1 with the subspace of Rd spanned by the first d´ 1

coordinates. Consider two lattice pd´1, kq-polytopes P and Q such that dpP,Qq
is equal to εpd´ 1, kq. Now consider the map φ : Rd´1 Ñ Rd such that φpxq is
the point of Rd obtained from x by changing its last coordinate to 1.

Now consider the lattice pd, kq-polytope

Q1 “ conv
`

φpP q YQ
˘

.

Denote by p and q a point in P and a point in Q whose distance is equal to
εpd ´ 1, kq. By construction, both q and φppq belong to Q1. Now consider a
number λ in the interval r0, 1s and denote by δ the squared distance between
the points p and λφppq ` p1 ´ λqq. It should be noted that δ coincides with
dpp, qq2 when λ is equal to 0. Observe that

δ “ p1´ λq2dpp, qq2 ` λ2.

Differentiating this equality with respect to λ yields

Bδ

Bλ
“ 2λ

´

1` dpp, qq2
¯

´ 2dpp, qq2.

Note that this derivative is negative for all λ close enough to 0. In particular,
one can find a value of λ such that δ is less than dpp, qq2. As δ is the squared
distance between p and a point in Q1, this show that

dpP,Q1q ă dpp, qq

Since the right-hand side of this inequality is equal to εpd´ 1, kq and its left
hand side is at least εpd, kq, this proves the lemma.

By the following theorem, in order to compute εpd, kq using brute force enu-
meration of all possible pairs of lattice pd, kq-polytopes, one only needs to con-
sider pairs of disjoint simplices whose dimensions sum to d´ 1.

Theorem 6.2: There exist two lattice pd, kq-polytopes P and Q such that

(i) dpP,Qq is equal to εpd, kq,
(ii) both P and Q are simplices,
(iii) dimpP q ` dimpQq is equal to d´ 1, and
(iv) the affine hulls of P and Q are disjoint.
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Proof. Consider two disjoint lattice pd, kq-polytopes P and Q such that dpP,Qq
is equal to εpd, kq. Among all possible such pairs of polytopes, we choose P
and Q in such a way that their number of vertices sum to the smallest possible
number. We shall prove that a consequence of this choice is that P and Q

satisfy assertions (ii) and (iii) in the statement of the lemma.
Consider a point p in P and a point q in Q such that dpp, qq is equal to dpP,Qq.

By Carathéodory’s theorem, p is a convex combination of a set SP of at most
dimpP q ` 1 affinely independent vertices of P . Moreover, we can choose SP
in such a way that all the points it contains have a positive coefficient in that
convex combination. Equivalently, p lies in the relative interior of convpSP q.
In that case, εpd, kq is achieved as the distance between convpSP q and Q. It
then follows from the above choice for P and Q that SP must is precisely the
vertex set of P . As a consequence, P is a simplex that contains p in its relative
interior. By the same argument, Q is a simplex a well and q lies in its relative
interior which proves assertion (ii).

Let us now turn our attention to assertion (iii). First observe that if dimpP q`

dimpQq is less than d´ 1, then dimpP YQq is at most d´ 1 and by Lemma 5.3,
dpP,Qq ě εpd ´ 1, kq, which would contradict Theorem 6.1 because dpP,Qq is
equal to εpd, kq. This shows that dimpP q`dimpQq is at least d´ 1. Let us now
show that the opposite inequality holds.

By convexity, one can associate a positive number αu with each point in
SP Y SQ in such a way that these numbers collectively satisfy

$

’

’

&

’

’

%

ÿ

uPSP

αuu “ p,
ÿ

uPSP

αu “ 1,

and the same equalities hold when SP is replaced by SQ and p by q. Now
consider a vertex vP of P , a vertex vQ of Q. As P and Q are simplices, the sets

S1P “
!

u´ vP : u P SP ztvP u
)

and
S1Q “

!

u´ vQ : u P SQztvQu
)

.

are linearly independent. Further observe that all the vectors they contain are
orthogonal to p´ q. Hence, these vectors collectively span a linear subspace M
of Rd of dimension at most d´1. Assume for contradiction that the dimensions
of P and Q sum to at least d. In that case, the dimensions of the subspaces
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of M spanned by S1P and by S1Q also sum to at least d and the intersection of
these subspaces has dimension at least one. Let x be a non-zero point in that
intersection. This point can be expressed as a linear combination of S1P : one
can associate each point u in SP ztvP u with a number βu such that

ÿ

uPSP ztvP u

βupu´ vP q “ x.

As x is non-zero, the coefficients in the left-hand side of this equality cannot
all be equal to zero. For any u in SP , denote γu “ βu when u ‰ vP and

γu “ ´
ÿ

uPSP ztvP u

βu

when u “ vP . With these notations,

(31)
ÿ

uPSP

γu “ 0

and

(32)
ÿ

uPSP

γuu “ x.

Likewise, one can associate each point u in SQ with a number γu such that
(31) and (31) still hold when replacing SP by SQ.

Now consider the number

λ “ min

"

αu
γu

: u P SP Y SQ, γu ą 0

*

It follows from this choice for λ that the point p ´ λx is still contained in
P because the coefficients of is decomposition into an affine combination of SP
all remain non-negative. Likewise q ´ λx still belongs to Q. Further observe
that the distance between p´ λx and q ´ λx is still equal to εpd, kq. However,
also by our choice for λ, at least one of the coefficients in the expression of
p´λx as a convex combination of SP or in the expression of q´λx as a convex
combination of SQ must vanish. In other words, εpd, kq is achieved by a pair of
disjoint lattice simplices whose combined number of vertices is less than that
of P and Q. This contradicts the assumption that P and Q have the smallest
combined number of vertices among the pairs of disjoint lattice pd, kq-polytopes
whose distance is equal to εpd, kq, which proves assertion (iii).

Finally, in order to prove (iv), observe that the affine hulls of P and Q are
contained in two hyperplanes of Rd orthogonal to p´ q. These two hyperplanes
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Figure 3. Two line segments P and Q whose distance is equal
to εp3, kq when 1 ď k ď 3 (from left to right).

are disjoint because they are parallel and one of them contains p while the other
contains q. As a consequence, (iv) holds, as desired.

Using Lemma 6.2, one can compute εpd, kq by considering all the pairs of
lattice pd, kq-simplices whose dimensions sum to d ´ 1. This procedure can be
further sped up by doing the computation up to the symmetries of r0, ksd. This
allowed to determine the values of εpd, kq reported in Table 1.

Let us provide two lattice pd, kq-polytopes that achieve each of the values of
εpd, kq reported in that table. The smallest possible distance between disjoint
lattice p2, 1q-polytopes is achieved by the origin of R2 and the diagonal of r0, 1s2

that doesn’t contain the origin. The smallest possible distance between disjoint
lattice p2, 2q-polytopes is achieved by the point p0, 1q and the line segment with
vertices p0, 0q and p1, 2q. For all the other values of k considered in Table 1
in the two dimensional case, εp2, kq is achieved by the point p1, 1q and the line
segment with vertices p0, 0q and pk ´ 1, kq.

In three dimensions, line segments whose distance are εp3, 1q, εp3, 2q, and
εp3, 3q are shown in Figure 3. As already mentioned, εp3, 1q is achieved by a
diagonal of the cube r0, 1s3 and a diagonal of a square face. In addition, the line

d
k

1 2 3 4 5 6

2
?

2
?

5
?

13 5
?

41
?

61

3
?

6 5
?

2
?

299

4 3
?

2

5
?

58

Table 1. A few values of 1{εpd, kq.
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segment with vertices p0, 0, 0q and p1, 2, 2q is at distance εp3, 2q of the segment
with vertices p0, 1, 2q and p2, 2, 1q. Similarly, the line segment with vertices
p0, 0, 0q and p2, 3, 3q is at distance εp3, 3q from the segment with vertices p0, 1, 2q
and p3, 2, 0q. In four dimensions, εp4, 1q is achieved between the diagonal of the
hypercube r0, 1s4 incident to the origin and the triangle with vertices p0, 0, 0, 1q,
p0, 1, 1, 0q, and p1, 0, 1, 0q. In five dimensions, εp5, 1q is achieved between the
diagonal of the hypercube r0, 1s5 incident to the origin and the tetrahedron
with vertices p0, 0, 0, 1, 1q, p0, 0, 1, 0, 1q, p0, 1, 1, 1, 0q, and p1, 1, 0, 0, 0q.

Acknowledgements. This article is based upon work partially supported by
the National Science Foundation under Grant No. DMS-1929284 while the
authors were in residence at the Institute for Computational and Experimen-
tal Research in Mathematics in Providence, Rhode Island, during the Discrete
Optimization: Mathematics, Algorithms, and Computation semester program.
The authors are grateful to Amitabh Basu, Santanu Dey, Yuri Faenza, Frédéric
Meunier, and Dmitrii Pasechnik for useful discussions and for pointing out rele-
vant references. The first author is partially supported by the Natural Sciences
and Engineering Research Council of Canada Discovery Grant program number
RGPIN-2020-06846 and the second author by a grant from the Israel Science
Foundation and by the Dresner Chair at the Technion.

References

[1] Noga Alon and Văn H. Vũ, Anti-Hadamard matrices, coin weighing, threshold gates,
and indecomposable hypergraphs, Journal of Combinatorial Theory, Series A 79 (1997),
133–160.

[2] Amir Beck and Shimrit Shtern, Linearly convergent away-step conditional gradient for
non-strongly convex functions, Mathematical Programming 164 (2017), 1–27.

[3] Gábor Braun, Alejandro Carderera, Cyrille W. Combettes, Hamed Hassani, Amin
Karbasi, Aryan Mokhtari, and Sebastian Pokutta, Conditional gradient methods,
arXiv:2211.14103 (2022).

[4] Gábor Braun, Sebastian Pokutta and Robert Weismantel, Alternating linear minimiza-
tion: revisiting von Neumann’s alternating projections, arXiv:2212.02933 (2022).

[5] David H. Gutman and Javier F. Peña, The condition of a function relative to a polytope,
arXiv:1802.00271 (2018).

[6] Simon Lacoste-Julien and Martin Jaggi, On the global linear convergence of Frank–
Wolfe optimization variants, Proceedings of the 28th International Conference on Neural
Information Processing Systems (NIPS), 2015, pp. 496–504.

[7] Javier F. Peña, Generalized conditional subgradient and generalized mirror descent: du-
ality, convergence, and symmetry, arXiv:1903.00459 (2019).



28 A. DEZA, S. ONN, S. POKUTTA AND L. POURNIN

[8] Javier F. Peña and Daniel Rodríguez, Polytope conditioning and linear convergence of
the Frank–Wolfe algorithm, Mathematics of Operations Research 44 (2018), no. 1, 1–18.

[9] Alberto Del Pia, Santanu S. Dey and Marco Molinaro, Mixed-integer quadratic program-
ming is in NP, Mathematical Programming 162 (2017), 225–240.

[10] Neil J. A. Sloane Ronald L. Graham, Anti-Hadamard matrices, Linear Algebra and its
Applications 62 (1984), 113–137.

[11] Alexander Schrijver, Theory of linear and integer programming, Wiley, 1998.
[12] Stephen A. Vavasis, Quadratic programming is in NP, Information Processing Letters

36 (1990), 73–77.


	1. Introduction
	2. Lower bounds
	3. Lower bounds in terms of encoding length
	4. Upper bounds
	5. Special cases
	6. Computational aspects
	References

