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ABSTRACT

We investigate the following question: how close can two disjoint lattice
polytopes contained in a fized hypercube be? This question stems from
various contexts where the minimal distance between such polytopes ap-
pears in complexity bounds of optimization algorithms. We provide nearly
matching lower and upper bounds on this distance and discuss its exact
computation. We also give similar bounds in the case of disjoint rational

polytopes whose binary encoding length is prescribed.

1. Introduction

In general, the distance between two disjoint convex bodies P and @ contained
in R? can get arbitrarily small. However, this is no longer the case when P and
Q satisfy certain constraints. For instance, if P and @) are two d-dimensional
0/1-polytopes, then they cannot be closer than a positive distance that only
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depends on d. This is due to the observation that, when d is fixed, there are
finitely many such pairs of polytopes. Another relevant constraint that often
arises in optimization algorithms is when P and () are rational polytopes whose
binary encoding length (as subsets of R? satisfying a set of linear inequalities)
is prescribed. Here, again, the smallest possible distance between P and @ is a
positive number that depends on that encoding length and on d. Our goal is to
estimate these minimal distances.

Our study stems from the complexity bounds established by Gabor Braun,
Sebastian Pokutta, and Robert Weismantel [4]. In their article, an algorithm
is provided that either computes a point in P n Q when that intersection is
non-empty or certifies that P n @) is empty. In the latter case, the complexity
of certifying that P n @ is empty is

1
O(ﬂRQF)

and therefore, it is natural to ask how small d(P, Q) can get.

It turns out that our study of the minimum distance between disjoint poly-
topes is related to the notion of facial distance considered by Javier Pena and
Daniel Rodriguez [8, Section 2| and David Gutman and Javier Pena [5l [7]. It
is also related to the notion of vertex-facet distance investigated by Amir Beck
and Shimrit Shtern [2]. Another quantity linked to these three is the pyramidal
width of a polytope, studied by Simon Lacoste-Julien and Martin Jaggi [6]. We
refer the reader to the survey by Gabor Braun, Alejandro Carderera, Cyrille
Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Sebastian
Pokutta [3] for an overview of these notions.

The facial distance is crucial in establishing linear convergence rates for con-
ditional gradient methods over polytopes and naturally occurs in the complexity
bounds. The facial distance of a polytope P is defined as

(1) B(P) = min{d(F, conv(V\F)) : F e f},

where V denotes the vertex set of P and F the set of its proper faces. In other
words, the facial distance of P is the minimal distance between any of its faces
and the convex hull of its vertices not contained in that face. In contrast to
our study, this notion considers a specific polytope P and decomposes it into
its faces and their complements. The vertex-facet distance is measured in the
special case when F' is a facet of the considered polytope and is replaced in



KISSING POLYTOPES 3

with its affine hull. It can then be expressed as
2) A(P) = min{d(aff (F), conv(V\F)) : F € F},

where F is the set of the facets of P, as shown in [8 Section 2]. When P
is a 0/1-simplex, bounds have been given on the smallest possible vertex-facet
distance [T, 10]. In particular Noga Alon and Van Va show in [I] that

1 1
(3) W < min A(S) < W
where the minimum is over all the d-dimensional 0/1-simplices S.

The results of Stephen Vavasis on the complexity of quadratic optimiza-
tion [12], generalized by Alberto Del Pia, Santanu Dey, and Marco Molinaro
in [9] imply as a special case that the squared distance between two rational
polytopes is a rational number. Our work is concerned by providing bounds on
how close such polytopes can be under the mentioned constraints.

Recall that a polytope whose vertices belong to the integer lattice Z% is a
lattice polytope. We will refer to a lattice polytope contained in the hypercube
[0, k] as a lattice (d, k)-polytope. In this article, we first provide a lower bound,
as a function of d and k£ on the smallest possible distance between two dis-
joint lattice (d, k)-polytopes and then we complement these lower bounds with
constructions that provide almost matching upper bounds.

In terms of lower bounds our main result is the following.

THEOREM 1.1: If P and Q are disjoint lattice (d, k)-polytopes, then

1
(kd)2d"

We shall in fact prove a stronger bound (see Theorem which Theorem
is a consequence of. We also prove a lower bound on the distance of two ratio-

d(P,Q) =

nal polytopes in terms of the dimension and their binary encoding length (see
Theorem [3.6). Our main result regarding upper bounds in the following.

THEOREM 1.2: Consider a positive integer k. For any large enough d, there
exist two disjoint (d, k)-lattice polytopes P and @ such that

AP.Q) < —

(kva)™
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As above, Theorem follows from a stronger bound (see Theorem. We
also give an upper bound on the smallest possible distance between two rational
polytopes whose binary encoding length is prescribed (see Theorem [4.6]).

By its definition, the facial distance of a polytope is a distance between two
polytopes. Inversely, the distance between two polytopes P and @ is the dis-
tance between two of their faces that belong to parallel hyperplanes. In par-
ticular, d(P, Q) is at least the facial distance of the convex hull of these two
faces. As a consequence, our results provide bounds on the smallest possible
facial distance of a lattice (d, k)-polytope in terms of d and k.

THEOREM 1.3: For any positive k and large enough d,

1 . 1
(4) (kjd)Zd < mmCI)(P) < W

where the minimum is over all the lattice (d, k)-polytopes P.

Similar bounds in the case of rational polytopes, in terms of their dimension
and binary encoding length follow from Theorems [3.6] and [4.6]

Remark 1.4: While and have similar forms, neither of these statements
implies the other. Indeed, on the one hand A(P) is the distance between a point
and a hyperplane and on the other, ®(P) is the distance between two polytopes
of arbitrary dimensions. More precisely, the lower bound in cannot be
deduced from that in and the same holds for the upper bounds.

We establish the announced lower bounds for lattice polytopes in Section
and for rational polytopes in Section The upper bounds and the corre-
sponding constructions, for both lattice and rational polytopes, are provided in
Section [l These upper bounds are only valid for all sufficiently large dimen-
sions and we therefore provide bounds that hold in all dimensions in Section 5]
where we also study the smallest possible distance of two lattice polytopes whose
dimension is fixed independently on the dimension of the ambient space. We
end the article with Section [f] that contains computational results and, in par-
ticular the exact value of the smallest possible distance between two disjoint
lattice (d, k)-polytopes for certain d and k (see Table[I). In order to compute
these distances, we prove in Section [f] that one can restrict to considering a
well-behaved subset of the pairs of lattice (d, k)-polytopes.
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2. Lower bounds

In this section P and @ are two fixed, disjoint polytopes contained in R¢ and
our goal is to prove Theorem[I.1] Let us first introduce some notations and give
a few remarks. Since P and @ are compact subsets of R¢, there exists a point
p in P and a point ¢ in @ whose distance is equal to d(P, Q). Let fp denote
the unique face of P that contains p in its relative interior and fg the unique
face of @) that contains ¢ in its relative interior. This situation is illustrated in
Figure |1} where P and @ are two 0/1-polytopes, fp is the diagonal of the cube
and fo a diagonal of one of its square faces.

We now consider dim(fp) + 1 vertices of fp, that we label by u® to udim(/r)
such that the vectors u* —u® to ud™(/#) —y0 are linearly independent. Similarly,
pick a family v° to vd™U/@) of vertices of fg such that the vectors v* — v° to
vdim{fe) — 0 are linearly independent. Consider the set

S = {ui—u0:1<i<dim(fp)}u{vi—vo : 1<i<dim(fQ)}

and extract from it a subset of linearly independent vectors w' to w” that span
the same subspace of R¢ than S. Further denote

UJO = uo —1]0.

The equality

(r—a)(—q
d Y VAR S V)
b:0) = =]
can be rewritten into
(5) (pg) =w Ip—dl
P
N
o

Figure 1. Two 0/1-polytopes P and @ and points p and g such
that d(P, Q) is equal to d(p, q).
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We will express the quotient in the right-hand side of in terms of the
vectors w. In order to do that, consider the matrix M whose term in row ¢ and
column j is w®-w’, the column vector b whose coordinates are w®-w' to w®-w",
and the column vector § whose coordinates are 81 to .. Further denote by M;

the matrix obtained from M by replacing column 7 with b.

LEMMA 2.1: The distance between P and () satisfies
a
d(PaQ) = wo'i
la]
where .
a = det(M)w® — Z det(M;)w'.
i=1

Proof. Observe that p — ¢ belongs to the space spanned by vectors w® to w”.
Hence, A(p — q) also belongs to that space for any positive A. As a consequence,
there exist r + 1 coefficients «q to «, such that

(6) Ap—q) =, aw'.
i=0

Let j be an integer such that 1 < j < r. As A(p — ¢q) is orthogonal to w,

T
(7) Z ai(w'w’?) = 0.
i=0
Now observe that A(p — ¢) cannot be a linear combination of w! to w" as

otherwise A would necessarily be equal to 0. Hence, aq is non-zero and we can

denote, for each integer ¢ such that 1 < < r,
O

fi=—-2

(7))
With this notation, can be rewritten into

T
Z Bi(w'w?) = w®w?
i=1

and the linear system obtained by letting j range between 1 and r is
M3 =b.

Note that M has rank r since the vectors w’ are linearly independent. As a
consequence, according to Cramer’s rule,
det(M;)
fi= det(M)
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Picking ag = det (M) therefore yields
Q; = —det(Ml)

when 1 < ¢ < r. This provides values for the coefficients o to «, that appear
in @ In particular, with these coefficients,

(8) Mp — q) = det(M)w® — ZT: det(M;)w'.
i=0

Now observe that can be rewritten into

wP- Alp—q)
IAp—a)|

Combining this with yields proves the lemma. ]

d(p,q) =

Now observe that, when P and @ are rational polytopes, then the vectors
w® to w” have rational coordinates. Therefore, we recover the following remark
from Lemma This remark is a consequence of a more general result due to
Stephen Vavasis [12] that was further improved in [9].

Remark 2.2: If P and Q are rational polytopes then d(P,Q)? is rational.

We are now ready to prove the announced bound on on d(P, Q) in the case
when both P and @ are lattice polytopes.

THEOREM 2.3: If P and Q are disjoint lattice (d, k)-polytopes, then

1
d(P,Q) 2 ———.
(P.Q)>

Proof. According to Lemma

w-a
9 d(P =
where
(10) a = det(M)w® — ZT] det(M;)w'.
i=1

Assuming that P and @Q are lattice (d, k)-polytopes, the vectors w® to w”
have integers coordinates. It then follows from that all the coordinates of
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a are integers. By the assumption that P and @ are disjoint, the numerator in
the right-hand side of is at least 1. As a consequence,

(11) A(P.Q) >

" al”

Since P and @ are lattice (d, k)-polytopes, all the w’ are contained in the
hypercube [k, k]%. Hence the absolute value of each entry in the matrices M
and M; is at most dk? and, by Hadamard’s inequality,

|det (M;)| < d"k*r3

for all . Moreover, the same inequality holds by replacing M in the left-hand
side by M;. Plugging this into yields

la;| < (r + 1)d" k> 1r2,

It follows that

2r+1

la| < (r+1)d"2 kK**tir2
and according to (L1)),
1
d(P,Q) = T

(r+1)d = k2r+irs .
Finally, observe that » < d — 1. Hence,
1
d(P,Q) = FECErry

as desired. [ |

Note that the distance between the origin of R? and the (d — 1)-dimensional
standard simplex is equal to 1/\/3 It turns out that the distance between the
origin and any lattice polytope contained in the positive orthant [0, +c0[? but
that does not contain the origin is at least this value.

LEMMA 2.4: If P is a lattice polytope contained in [0, +o0[?\{0}, then

> L

v

Proof. Let p be a point in P such that d(0, P) = d(0,p). Observe that all the
vertices x of P satisfy |z|; = 1. As any point in P is a convex combination

d(0, P)

of vertices of P, it follows that |p|1 = 1. However, by the Cauchy—Schwarz
inequality ||p|; < v/d|p|l2, which proves the lemma. n
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3. Lower bounds in terms of encoding length

We now turn our attention to bounding d(P, Q) in the case when P and ) are
rational polytopes, in terms of their binary encoding input data length. We
first recall some definitions regarding this quantity, see [I1]. If o and /8 are two
relatively prime integers such that § is positive, the size of «/3 is

size<ﬂ) =1+ [log(ler| + 1)] + [log(|B] + 1)].

In turn, the size of a vector a from R with rational coordinates is

d
size(a) = d + Z size(a;).

i=1

In other words, the size of a vector with rational coordinates is the number
of its coordinates plus the sum of the sizes of these coordinates.

If P is a rational polytope, then its vertices have rational coordinates and the
vertex complexity of P is the smallest number v(P) such that v(P) is at least
d and the size of any vertex of P is at most v(P). Still under the assumption
that P is a rational polytope, the facet complexity of P is the smallest number
©(P) such that ¢(P) is at least d and there exists a family of vectors a' to a"
from Q% and a family of rational numbers b; to b,, such that

P={zeR':Vie{l,...,d}, a"z < b;}
and for all 4 satisfying 1 <i < n,
size(a') + size(b;) < @(P).
The following is proven in [II] (see Theorem 10.2 therein).
THEOREM 3.1: If P is rational, then v(P) < 4d*p(P) and ¢(P) < 4d*v(P).

The size of a matrix can be defined in the same spirit as the size of a vec-
tor: if M is a matrix with rational coefficients, then size(M) is the number of
coefficients in M plus the sum of the sizes of these coefficients.

The following statement is the Theorem 3.2 from [IT].

THEOREM 3.2: If M is a square matrix with rational coefficients, then
size(det(M)) < 2size(M).

We now bound the size of a sum and a product of rational numbers.
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PROPOSITION 3.3: If a is a vector from Q¢, then

d d
(12) size (Z ai> <2 Z size(a;)

i=1

and

d d
(13) size (n ai> < Z size(a;).

Proof. First recall that the logarithm of a product of numbers is the sum of the
logarithms of these numbers. Moreover, the ceiling of a sum of numbers is at
most the sum of the ceilings of these numbers. The inequality immediately
follows from these two properties. Let us now prove (|12]).

Consider a vector a contained in Q?. There exist two relatively prime integers
« and B such that the later is positive and

d

Z «
a; = —

=1 B

For any integer i satisfying 1 < i < d, further denote by ~; and d; the two
relatively prime integers such that (5Z- is positive and
T
% 52 .

With these notations,

d
(14) i _ @
2577

?

and, as a consequence,

(15)

:&

d
5 < n6+1
i=1

=1

Now observe that

(16)

d
Vi
X5 Z\% \1_[(1%\+1)~
i=1 "t i=1
If follows from , , and that

d

(17) ol < [T (1l + 1) (3 + 1),

i=1
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Finally, observe that

size(cg) + [log(2|a])] + [log(2]8])].

As a consequence,

size(i ) + [log || + [log |B].

As the ceiling of a sum is at most the sum of the ceilings of the summands,
combining this with and proves the proposition. |

Proposition allows to bound the size of a scalar product.
PROPOSITION 3.4: If a and b are two vectors from Q?, then
size(a-b) < 2size(a) + 2size(b).

Proof. Consider two two vectors a and b in Q. By Proposition

size(a-b) < 2 Z size(a;b;) < 2 Z size(a;) + 2 Z size(b

Since the size of a vector coincides with the sum of the sizes of its coordinates,
this immediately results in the desired inequality. ]

The following proposition whose proof is straightforward provides the smallest
possible positive rational number with a given size.

PROPOSITION 3.5: If x is a positive rational number, then
4 25ize(z)
gimem STS T

We can now state our lower bound on the distance of P and ) when these

polytopes are rational, in terms of their binary encoding input data length. In
the statement of the following theorem and its proof, we denote

v(P, Q) = max{v(P),v(Q)}.
and

SO(Pa Q) = max{go(P), LP(Q)}

THEOREM 3.6: If P and @) are disjoint rational polytopes, then

8
d(P7 Q) 2 24V(P,Q)(2d)4
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and

8
dP.Q) > sm e

Proof. In this proof, we consider the vectors w® to w” as well as the matrices
M and M; to M, that have been associated to P and ) at the beginning of
Section [2} Recall that the vectors w® to w” are obtained by subtracting from
one another two vertices of P, two vertices of (), or a vertex of P and a vertex
of Q). As a consequence, it follows from the first inequality in the statement of
Proposition that for every integer 7 satisfying 0 < ¢ < r,

size(w') < 2v(P, Q).

In turn, for any two integers ¢ and j satisfying 0 < ¢ < j < r, it follows from
Proposition [3.4] that the size of w®-w’ can be bounded as

size(w'w’) < 4v(P,Q)
and by Theorem [3.2
size(det(M)) < 8r°v(P,Q).
In addition, the same inequality holds when replacing M by any of the ma-
trices M7 to M,. Now consider the vector

a = det(M)w® — Z det(M;)w'
i=1

and observe that a; is the scalar product between the vector from R"*! whose
coordinates are det(M) and det(M7) to det(M,.) with the one whose coordinates
are wY and —w} to —w!. Therefore, by Proposition
size(a) < 2d(8r? + 1)(r + 1)v(P, Q)
and
size(w’-a) < 4(d(8r* + 1)(r + 1) + 1)v(P, Q).

Now recall that r is at most d — 1. Hence,
(18) size(a) < 16d*v(P, Q)
and

size(w”-a) < 32d*v(P, Q).
In turn, according to Lemma [2.1| and Proposition [3.5

4
(19) d(P7 Q) 2 232d4l/(P,Q) HaH :
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Now, by , Propositions and yield
264d4u(P,Q)
4
Combining with and using Theorem completes the proof. |

(20) Jal? <

4. Upper bounds

In this section, & is fixed and we further consider two positive integers o and §.
Our aim is to build two lattice (6(c + 1), k)-polytopes P and @ such that

Voo
(k(6— 1))
when 0 is at least 4 (see Theorem [4.5). Before we build P and @, let us state
and prove the main result of the section, which is a consequence of .

(21) d(P,Q) <

THEOREM 4.1: Consider a number « in ]0,1[. For any large enough d, there
exist two disjoint lattice (d, k)-polytopes P and @Q such that

1

d(P7Q) < W.

Proof. Let 3 be a number in the interval |, 1[. Assume that

(22) d>87T7
and denote
o= [d'BJ and
(23)
5 { d J
o+1

Observe that o is at least 1. In addition, it follows from that
d=>4d® + 4

and as a consequence, ¢ is at least 4.
As announced above (see also Theorem below), under these conditions on
o and 4, there exist two lattice (§(o + 1), k)-polytopes P and @ such that

Vo
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However, by , d is at least (o + 1)d. Therefore, P and @ are also lattice
(d, k)-polytopes. Moreover, replacing o and ¢ in the right-hand side of by
their expressions as functions of d and [ yields

1) | it |

kldﬁj([ﬁJ—l)ldﬁj'

Now observe that the right-hand side of behaves like
Vd
(e
as d goes to infinity. Since « is less than [,
Vd 1
kdﬁ‘d(l—ﬁ)dﬂ < kdud(l—a)du
when d is large enough. Hence, the right-hand side of is less than

1
fd* d(1—a)d>

(25) d(P,Q) <

for any large enough d, as desired. ]

It should be noted that, taking « equal to 1/2 in the statement of Theorem 4.1
results in Theorem |1.2 From now we denote 6(o + 1) by d. Let us proceed to
building the two announced lattice (d, k)-polytopes P and Q.

Denote by a the vector from Z°*! whose coordinate i is

a; = (k‘(l — (5))7;_1.
A vector Z in R? can be built from any vector z in R“*! by taking
T; = Ty

for every integer ¢ where r = [(i — 1)/ + 1. Equivalently,

T = (331,...,.2317332,...,3}2,...,$0+1,...,$g+1).
— Y —
0 times  § times 4 times

Denote by P the convex hull of the lattice points x contained in [0, k]¢ that
satisfy a-x = 0. Likewise, denote by @ the convex hull the lattice points = in
[0, k]¢ such that @-z = 1. In order to prove that P and @ satisfy the inequality
, we will exhibit a point in P and a point in () whose distance is at most
the right-hand side of this inequality.
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Consider the (o + 1)x (o + 1) matrix

0 A A A
o B C --- C
Mp=|0 0 B :
o
| 0 O 0 B |
where
A=(6—-1)k/s,
B =1/, and
C=A+B.

Recall that we identify the points from R *! to the vector of their coordinates.
In particular, the columns of Mp are points from R7*!.

PROPOSITION 4.2: If x is a column of Mp, then T belongs to P.

Proof. Let = be the column ¢ of M,. Observe that, if ¢ is equal to 1, then
a-T = 0 and in particular, T belongs to P. Now assume that ¢ is at least 2 and
consider an integer s such that 1 < s < §. Denote by u® the lattice point in
[0, k]¢ whose coordinates are given by

kif1<j
ui=+< lifd<j

6(i—1)and ((j — 1) mod 6) + 1 # s,

<
<diand ((j—1) mod §) +1 = s, and

0 otherwise.

Note that u® is a point in P because a-u® = 0. As the barycenter of the points
u® when s ranges from 1 to § is precisely T this proves the proposition. |

Now consider the (o + 1)x (0 + 1) matrix Mg obtained from Mp by adding
1/4 to all the entries of the first row:

(B C C - C]
0O B C - C
Mg=|0 0 B
Do ) e
L 00 -~ 0 B

PROPOSITION 4.3: If  is a column of Mg, then T belongs to Q.
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Proof. Let x be the column ¢ of Mg. Consider an integer s such that 1 < s <9
and denote by v’ the lattice point in [0, k]¢ whose coordinates are

kif 1<j<6(i—1)and ((j—1) mod d) +1#s,
vi =< 1if1<j<diand ((j—1) modd) +1=s,and
0 otherwise.

By construction, a@-v° = 1 and v* is a point in ). The proposition then follows
from the observation that Z is the barycenter of the points v! to v°. ]

For any integer ¢ such that 0 < 7 < o, we denote the column ¢ + 1 of the
matrix Mp by p’ and the column i + 1 of Mg by ¢'.
Assume that § is at least 3 and consider the points

e (k5 — 1)) —1 o N0
(26)  p= (1 -1 1) (ko = 1))">p 2 kG—1) "

i=1

and

(27)q_<k(5—1)+1 g (HE-1) -1 >q0+ia(1+(—1)i)i

KO—1) (kG —1)—1) (kG — 1)) 2 -1y

where

(k=8 =) (k=8

(k(1—2¢)) —1

These points are defined as linear combinations of the columns of Mp and

Mg. If § is at least 4, they are convex combinations of these columns.

PROPOSITION 4.4: If § is at least 4, then p and q are convex combinations of
the columns of Mp and Mg, respectively.

Proof. It suffices to show that the coefficients in the right-hand sides of the
equations and are non-negative and sum to 1. Assume that § is at
least 4. In that case, 6 is non-zero and its inverse is

1 1 1
(28) iy o (k(a 1)+ W)

Since o is positive,

1

29 —
” Cieys

<1
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It follows from and that 1/6 and therefore 6 are positive numbers.
Hence, all the coefficients in the right-hand sides of and are non-
negative, except possibly for the coefficient of p° in and the coefficient of

¢° in (27). However, observe that implies

1 1 1
b e (460 )

and, as a consequence,

(kG- + 1) (k(5—1)"
(k(6—1)) —1 '

It follows that the coefficient of p° in the right-hand side of is at least

E(0—1)+1
NCTEENLCEN)

This expression is positive when k(6 — 1) is greater than 2. Hence, the co-
efficient of p° in the right-hand side of is positive when k is at least 4.
Likewise, the coefficient of ¢° in the right-hand side of is at least

1 E(6—1)+1

Fo-1)  Re-D - kG- 1)

which is positive as well when k(6 — 1) is greater than 2. Now observe that
i 1 B (k(6—1)) -1
Ske-1)  FE-1D-1)EE-1)

Therefore, the coefficients in the right-hand side of sum to 1 and the
coefficients in the right-hand side of to

k(6 —1)
k(5 —

o
1 (k(1—9))

+1,
1) :

[ea

Finally, observe that
(k(1-2¢)) -1 1

o 0
;1 (k(1 - 5))i (k=0 1) (k1 —08)) k1 -0)
Hence, the coefficients in the right-hand side of also sum to 1. |

We are now ready to bound the distance between P and Q.
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THEOREM 4.5: If § is at least 4, then

Voo
(0= 1))"

Proof. According to Propositions [£.2] [4-3] and [£:4] the points p and g are con-
tained in P and @), respectively. Therefore,

d(P,Q) < d(p,q).

d(P,Q) <

Now observe that, by construction,
d(p.q) = Vod(p, q)-

Hence, it suffices to show that

Vo
dp.q) S ————7-
k(6 —1))
By and , the first coordinate of ¢ — p is
k(6—-1)+1 (k(6—1)) —1

BIPTTSRG 1) T sk - 1) — D) (kG- 1))

0 < 1 E6—1)+1 0
5 kG—1) 9 2 (k(1—0))"

However, since
i 1 _ (k(s—1)) -1
S (ke-1) (RE-1-1)HG-1))

and

q

0 _ 1

i=1 (k(l - 5))i  k(1-9)
the first coordinate of ¢ — p is equal to 0. According to and again, for
any integer j satisfying 1 < j < o,

f1j+1*pj+1=1 b A+k(571)+1 ZJ: b
O (k(1-9))’ O G (k-0
However,
¢ 1 1— (k1 -0))"’
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and as a consequence,
0 k(S —1)+1
S(k(1=0))" k(1 - 5)(1 — (k(1 - 5))”)

This quantity can be bounded as

dj+1 — Pj+1 =

1 - 1
G- ((kG-1) ~1) T (k@ -1))

lgj — pjl <

and therefore,

Vo
dp,q) < 77
(k(6 - 1))
as desired. |

Theorem [I.1] can be rewritten in terms of the binary encoding input data
length of P and ). Indeed, observe that, setting k to 1, v(P) and v(Q) are
both bounded by 4d as the coordinates of the vertices of P and () are equal
to 0 or to 1 and the sizes of these two numbers are 2 and 3. Hence v(P,Q) is
at most 4d as well and (P, Q) at most 16d> by Theorem Therefore, we
immediately obtain the following from Theorem

THEOREM 4.6: For any number « in 0,1[ there exist two disjoint rational
polytopes P and ) with arbitrarily large v(P, Q) and ¢(P, Q) such that

1
d(P,Q) < —
Jp.q)\ )
4
and
d(P,Q) < !

5. Special cases

From now on, €(d, k) denotes the smallest possible distance between two dis-
joint lattice (d, k)-polytopes. In this section, we focus on certain relevant special
cases. The upper bounds stated in Section 4| imply that e(d, k) decreases expo-
nentially fast with d but these bounds only hold when d is large enough. We
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will prove a different bound that holds for all d at least 2, according to which
e(d, 1) is at most inverse linear as a function of d. We shall see in Section [6] that
this bound on &(d, 1) is tight when d is equal to 2 or 3.

LEMMA 5.1: For any d at least 2,

ld 1) € ——— .
d(d—1)

Proof. Let P be the diagonal of the hypercube [0,1]¢ that is incident to the
origin of R?. Denote by @ the (d — 2)-dimensional simplex whose vertices are
the points = of R? whose one of the first d — 1 coordinates is equal to 1 and
whose all other coordinates are equal to 0. Note that P and @ are disjoint as
the only point of P whose last coordinate is equal to 0 is the origin of R<.

The point p of R? whose all coordinates are equal to 1/d belongs to P. The
centroid of () is the point ¢ whose last coordinate is 0 and whose other coordi-
nates are all equal to 1/(d — 1). Since

d(p,q) = m7

this proves the lemma. |

1,‘4:0

Figure 2. The construction of Lemma 5.1 when d is equal to 4.
The cube at the top is the facet of the hypercube [0, 1]* made
up of the points = such that z4 = 0 and the cube at the bottom
is the opposite facet of [0, 1]%.
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We complement Lemma by showing that (d, k) is at most inverse linear
as a function of d and as a function of k for all d and k at least 2.

LEMMA 5.2: For any k and d at least 2,

1

Proof. Let P denote the point of R? whose all coordinates are equal to 1. Denote
by @ the (d — 1)-dimensional simplex whose vertices are the origin of R% and
the points whose one of the first d — 1 coordinates is equal to kK — 1 and whose
all other coordinates are equal to k. Now consider the point ¢ such that

k
(d—1)k2 + ((d—1)k —1)

¢ =1-

when 1 <i<d—1and
(d—1)k—1
(d—1)k2 + ((d— Dk —1)*

ga =1+

This point is the convex combination of the vertices of () where the coefficient
of the origin is 1 — ¢g4/k and the coefficient of all the other vertices of @ is
qa/(k(d —1)). The distance of P and q is

1

d(P,q) = .
! \/(d— k2 + ((d— Dk — 1)

It suffices to observe that
1 1

<
\/(d k24 ((d-1k—1)* (@7 DR

when k£ > 2 in order to complete the proof. ]

Let us now turn our attention to the case when the dimensions of P and @
are fixed independently on the dimension of the ambient space as, for example
when P and @ are two line segments that live in a higher dimensional space.

We recall that the dimension of a non-necessarily convex subset of R is
defined as the dimension of its affine hull.

LEMMA 5.3: For any two disjoint lattice (d, k)-polytopes P and @Q,

d(P,Q) = e(dim(P U Q), k).
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Proof. The proof is by induction on d — dim(P u Q). If this quantity is equal
to 0, then the result is immediate. Let us assume that d is greater than the
dimension of P U Q. In that case, there exists an hyperplane H of R? that
contains P and Q. Identify R%! with the subspace of R? spanned by the first
d — 1 coordinates. We can assume that the vectors orthogonal to H do not
belong to R?~! by, if needed using an adequate permutation of the coordinates
of R?. Now consider the orthogonal projection 7 : R — R9~!. Since the
vectors orthogonal to H do not belong to R4~1, the restriction of = to H is a
bijection between H and R4~!. Moreover, 7(Z% H) is a subset of Z9~!. Hence,
m(P) and 7(Q) are two disjoint lattice (d — 1, k)-polytopes and the dimension
of m(P) u m(Q) coincides with the dimension of P u Q. In particular,

d—1—dim(r(P)un(Q)) =d—dim(PuQ)—1.
By induction,
30)  d(x(P),7(Q)) = 5<dim(7r(P) U w(Q)),k) — e(dim(P U Q), k).

Finally observe that the distance between two points in H is always at least
the distance between their images by 7. Therefore,

d(P,Q) = d(n(P),7(Q))
and combining this with proves the lemma. |

We will see in Section@ that (3, 1) is equal to 1/4/6 (see for instance Table
and that this distance is achieved between a diagonal of the cube [0,1]® and a
diagonal of one of its square faces. An immediate consequence of Lemma [5.3]is
that this holds independently on the dimension of the ambient space.

THEOREM 5.4: The smallest possible distance between two disjoint line seg-
ments whose vertices belong to {0,1}% is 1/4/6.

6. Computational aspects

In this section, we are interested in computing the explicit value of e(d, k), the
smallest between two disjoint lattice (d, k)-polytopes. A brute-force strategy is
to enumerate all possible pairs of disjoint lattice (d, k)-polytopes. Let us give
some properties of that allow to reduce the search space.

By its definition, (d, k) is a non-increasing function of d for all fixed k. We
can prove the following stronger statement.
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THEOREM 6.1: £(d, k) is a decreasing function of d for all fixed k.

Proof. Let us identify R4! with the subspace of R? spanned by the first d — 1
coordinates. Consider two lattice (d—1, k)-polytopes P and @ such that d(P, Q)
is equal to £(d — 1, k). Now consider the map ¢ : R¥~! — R? such that ¢(z) is
the point of R¢ obtained from x by changing its last coordinate to 1.

Now consider the lattice (d, k)-polytope

Q' = conv(¢(P) U Q).

Denote by p and ¢ a point in P and a point in () whose distance is equal to
e(d — 1,k). By construction, both ¢ and ¢(p) belong to @’. Now consider a
number A in the interval [0, 1] and denote by ¢ the squared distance between
the points p and A¢(p) + (1 — A)g. It should be noted that ¢ coincides with
d(p,q)? when X is equal to 0. Observe that

§=(1-XN>2d(p,q)* + N\

Differentiating this equality with respect to A yields
06
oA

Note that this derivative is negative for all A close enough to 0. In particular,

= 2)\<1 + d(p, q)z) —2d(p,q)*.

one can find a value of A such that § is less than d(p,q)%. As § is the squared
distance between p and a point in @Q’, this show that

d(P,Q') < d(p,q)

Since the right-hand side of this inequality is equal to e(d — 1, k) and its left
hand side is at least e(d, k), this proves the lemma. i

By the following theorem, in order to compute £(d, k) using brute force enu-
meration of all possible pairs of lattice (d, k)-polytopes, one only needs to con-
sider pairs of disjoint simplices whose dimensions sum to d — 1.

THEOREM 6.2: There exist two lattice (d, k)-polytopes P and @ such that

(i) d(P,Q) is equal to e(d, k),

(ii) both P and Q are simplices,
(iii) dim(P) + dim(Q) is equal to d — 1, and
(iv) the affine hulls of P and @ are disjoint.
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Proof. Consider two disjoint lattice (d, k)-polytopes P and @ such that d(P, Q)
is equal to £(d, k). Among all possible such pairs of polytopes, we choose P
and @ in such a way that their number of vertices sum to the smallest possible
number. We shall prove that a consequence of this choice is that P and @Q
satisfy assertions (ii) and (iii) in the statement of the lemma.

Consider a point p in P and a point ¢ in @) such that d(p, q) is equal to d(P, Q).
By Carathéodory’s theorem, p is a convex combination of a set Sp of at most
dim(P) + 1 affinely independent vertices of P. Moreover, we can choose Sp
in such a way that all the points it contains have a positive coefficient in that
convex combination. Equivalently, p lies in the relative interior of conv(Sp).
In that case, e(d, k) is achieved as the distance between conv(Sp) and Q. It
then follows from the above choice for P and @ that Sp must is precisely the
vertex set of P. As a consequence, P is a simplex that contains p in its relative
interior. By the same argument, @ is a simplex a well and ¢ lies in its relative
interior which proves assertion (ii).

Let us now turn our attention to assertion (iii). First observe that if dim(P)+
dim(Q) is less than d — 1, then dim(P U Q) is at most d — 1 and by Lemma[5.3]
d(P,Q) = e(d — 1, k), which would contradict Theorem because d(P, Q) is
equal to £(d, k). This shows that dim(P) + dim(Q) is at least d — 1. Let us now
show that the opposite inequality holds.

By convexity, one can associate a positive number «, with each point in
Sp U Sg in such a way that these numbers collectively satisfy

Z AU = P,

uGSP

Zauzl,

ueSp
and the same equalities hold when Sp is replaced by Sg and p by q. Now
consider a vertex vp of P, a vertex vg of Q). As P and @ are simplices, the sets

Sp = {u —Up:iuUE Sp\{vp}}
and

So = {u —vg:iucE SQ\{UQ}}.
are linearly independent. Further observe that all the vectors they contain are
orthogonal to p — q. Hence, these vectors collectively span a linear subspace M
of R? of dimension at most d — 1. Assume for contradiction that the dimensions
of P and ) sum to at least d. In that case, the dimensions of the subspaces
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of M spanned by S% and by Sb also sum to at least d and the intersection of
these subspaces has dimension at least one. Let x be a non-zero point in that
intersection. This point can be expressed as a linear combination of S%: one
can associate each point u in Sp\{vp} with a number g, such that

Z Bu(u —vp) = z.
uESp\{Up}

As z is non-zero, the coefficients in the left-hand side of this equality cannot
all be equal to zero. For any u in Sp, denote v, = 8, when u # vp and

Yu = — Z ﬁu
uESp\{Up }

when u = vp. With these notations,

(31) Z Yu = 0

uGSp
and
(32) Z Vull = T.
uESp

Likewise, one can associate each point v in Sg with a number v, such that
and still hold when replacing Sp by Sg.

Now consider the number

)\—min{au:ueSPUSQ,'yu>0}
’YU

It follows from this choice for A\ that the point p — Az is still contained in
P because the coefficients of is decomposition into an affine combination of Sp
all remain non-negative. Likewise ¢ — Ax still belongs to (). Further observe
that the distance between p — Az and ¢ — Az is still equal to £(d, k). However,
also by our choice for A, at least one of the coefficients in the expression of
p— Az as a convex combination of Sp or in the expression of ¢ — Az as a convex
combination of Sg must vanish. In other words, ¢(d, k) is achieved by a pair of
disjoint lattice simplices whose combined number of vertices is less than that
of P and (). This contradicts the assumption that P and Q have the smallest
combined number of vertices among the pairs of disjoint lattice (d, k)-polytopes
whose distance is equal to (d, k), which proves assertion (iii).

Finally, in order to prove (iv), observe that the affine hulls of P and @ are
contained in two hyperplanes of R? orthogonal to p — ¢. These two hyperplanes
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Figure 3. Two line segments P and ) whose distance is equal
to £(3,k) when 1 < k < 3 (from left to right).

are disjoint because they are parallel and one of them contains p while the other
contains ¢. As a consequence, (iv) holds, as desired. |

Using Lemma one can compute £(d, k) by considering all the pairs of
lattice (d, k)-simplices whose dimensions sum to d — 1. This procedure can be
further sped up by doing the computation up to the symmetries of [0, k]¢. This
allowed to determine the values of ¢(d, k) reported in Table

Let us provide two lattice (d, k)-polytopes that achieve each of the values of
e(d, k) reported in that table. The smallest possible distance between disjoint
lattice (2, 1)-polytopes is achieved by the origin of R? and the diagonal of [0, 1]2
that doesn’t contain the origin. The smallest possible distance between disjoint
lattice (2, 2)-polytopes is achieved by the point (0,1) and the line segment with
vertices (0,0) and (1,2). For all the other values of k considered in Table
in the two dimensional case, £(2, k) is achieved by the point (1,1) and the line
segment with vertices (0,0) and (k — 1, k).

In three dimensions, line segments whose distance are £(3,1), €(3,2), and
€(3,3) are shown in Figure [3] As already mentioned, £(3,1) is achieved by a
diagonal of the cube [0, 1]? and a diagonal of a square face. In addition, the line

p k

1 2 3 4 5 6
2 V2 W5 V13 5 V41 V6l
3 V6 5v2 /299
4 32
5 /58

Table 1. A few values of 1/e(d, k).
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segment with vertices (0,0,0) and (1,2,2) is at distance £(3,2) of the segment
with vertices (0,1,2) and (2,2,1). Similarly, the line segment with vertices
(0,0,0) and (2,3, 3) is at distance £(3, 3) from the segment with vertices (0, 1, 2)
and (3,2,0). In four dimensions, £(4,1) is achieved between the diagonal of the
hypercube [0, 1]* incident to the origin and the triangle with vertices (0, 0,0, 1),
(0,1,1,0), and (1,0,1,0). In five dimensions, £(5,1) is achieved between the
diagonal of the hypercube [0,1]° incident to the origin and the tetrahedron
with vertices (0,0,0,1,1), (0,0,1,0,1), (0,1,1,1,0), and (1,1,0,0,0).
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