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ABSTRACT

A lattice (d, k)-polytope is the convex hull of a set of points in Rd whose

coordinates are integers ranging between 0 and k. We consider the small-

est possible distance ε(d, k) between two disjoint lattice (d, k)-polytopes.

We propose an algebraic model for this distance and derive from it an

explicit formula for ε(2, k). Our model also allows for the computation of

previously intractable values of ε(d, k). In particular, we compute ε(3, k)

when 4 ≤ k ≤ 8, ε(4, k) when 2 ≤ k ≤ 3, and ε(6, 1).

1. Introduction

The smallest possible distance between two disjoint lattice (d, k)-polytopes—

convex hulls of sets of points with integer coordinates in [0, k]d—is a natural

quantity in discrete geometry. This quantity, which we refer to as ε(d, k) in the

sequel, is connected to the complexity of algorithms such as the linear mini-

mization formulation by Gábor Braun, Sebastian Pokutta, and Robert Weis-

mantel [4] of the von Neumann alternating projections algorithm [11]. It is also
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related to several notions that appear in optimization. For instance, the fa-

cial distance of a polytope P , studied by Javier Peña and Daniel Rodriguez [9]

and by David Gutman and Javier Peña [6, 8], is the smallest possible distance

between a face F of P and the convex hull of the vertices of P that are not

contained in F . The vertex-facet distance of a polytope P , considered by Amir

Beck and Shimrit Shtern [2], is the smallest possible distance between the affine

hull of a facet F of P and a vertex of P that does not belong to F . The smallest

possible vertex-facet distance of a lattice (d, 1)-simplex has been estimated by

Noga Alon and Văn Vũ [1]. Another such notion is the pyramidal width of a

finite set of points, investigated by Simon Lacoste-Julien and Martin Jaggi [7]

and by Luis Rademacher and Chang Shu [10], which coincides with the facial

distance of the convex hull of these points [9]. Gábor Braun, Alejandro Carder-

era, Cyrille Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and

Sebastian Pokutta provide a comprehensive overview of these notions in [3].

Lower and upper bounds on ε(d, k) that are almost matching as d goes to

infinity and a number of properties of this quantity as a function of d and k have

been established by Shmuel Onn, Sebastian Pokutta, and two of the authors

in [5]. The values of ε(2, k) when 1 ≤ k ≤ 6, of ε(3, k) when 1 ≤ k ≤ 3, of

ε(4, 1), and of ε(5, 1) have been computed as a consequence of these properties

and are reported in [5] (see also the non-bolded entries in Table 1).

An algebraic model that allows for the computation of previously intractable

values of ε(d, k) is developed in Section 2. More precisely, ε(d, k) is bounded

by the smallest non-zero value of a certain algebraic fraction over a subset of

the lattice points contained in the hypercube [−k, k]d
2

. Using this model, we

provide the following formula for ε(2, k) in Section 3.

Theorem 1.1: If k is greater than 1, then

ε(2, k) =
1√

(k − 1)2 + k2
.

Finally, we show in Section 4 how the subset of the lattice points in [−k, k]d
2

over which the minimization is performed can be reduced, and discuss the com-

putational efficiency of the resulting strategy. This makes it possible to de-

termine values of ε(d, k) whose computation was previously intractable. Using

this strategy, we compute ε(3, k) when 4 ≤ k ≤ 8, ε(4, k) when 2 ≤ k ≤ 3, and

ε(6, 1). These values of ε(d, k) are the inverse of the numbers shown in bold in
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d
k

1 2 3 4 5 6 7 8

3
√

6 5
√

2
√

299 5
√
42
√
2870

√
6466 5

√
510

√
22826

4 3
√

2 2
√
113 11

√
71

5
√

58

6
√
202

Table 1. The known values of 1/ε(d, k) when d is at least 3.

Table 1. In addition, for each of the obtained values of ε(d, k), we provide an

explicit pair of lattice (d, k)-polytopes whose distance is precisely ε(d, k). We

shall refer to such a pair of polytopes as kissing polytopes.

2. A least squares model for polytope distance

Let us consider two disjoint lattice (d, k)-simplices P and Q whose affine hulls

are disjoint. Denote by p0 to pn the vertices of P and by q0 to qm the vertices of

Q where n and m denote the dimension of P and Q, respectively. The distance

of P and Q is the smallest possible value of

(1)

∥∥∥∥∥
n∑
i=0

λip
i −

m∑
i=0

µiq
i

∥∥∥∥∥
2

where λ0 to λn and µ0 to µm are two sets of non-negative numbers that each

sum to 1. The constraint that each of these sets of numbers sum to 1 can be

replaced by expressing λ0 and µ0 as

(2)


λ0 = 1−

n∑
i=1

λi

µ0 = 1−
m∑
i=1

µi

and substituting them in (1) by these expressions. As a consequence,

d(P,Q)2 = min
λ∈∆n
µ∈∆m

fP,Q(λ, µ)
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where

(3) fP,Q(λ, µ) =

∥∥∥∥∥p0 − q0 +

n∑
i=1

λi
(
pi − p0

)
−

m∑
i=1

µi
(
qi − q0

)∥∥∥∥∥
2

and ∆j denotes the j-dimensional simplex

∆j =

{
x ∈ [0,+∞[j :

j∑
i=1

xi ≤ 1

}
.

We will consider fP,Q as a function from Rn×Rm to [0,+∞[. Note that this

function depends on the ordering of the vertices of P and Q but this ordering

will not play a role in the sequel, and we assume that a prescribed ordering has

been fixed for the vertices of each pair of polytopes P and Q.

Relaxing the constraint that λ and µ should be contained in ∆n and ∆m

provides a lower bound on d(P,Q) of the form

(4) d(P,Q)2 ≥ min
λ∈Rn

µ∈Rm

fP,Q(λ, µ).

Note that the right-hand side of (4) is the distance between the affine hull of

P and the affine hull of Q. In particular, the accuracy of this bound is related

to how close the distance of P and Q is to the distance of their affine hulls.

Now consider the d×(d− 1) matrix

(5) A =


p1

1 − p0
1 · · · pn1 − p0

1 q1
1 − q0

1 · · · qm1 − q0
1

...
...

...
...

p1
d − p0

d · · · pnd − p0
d q1

d − q0
d · · · qmd − q0

d


and the vector

(6) b = q0 − p0.

It will be important to keep in mind that A and b depend on P and Q.

Observe that, with these notations, (3) can be rewritten into

(7) fP,Q(λ, µ) = ‖Aχ− b‖2

where χ is the vector such that

(8) χt =
[
λ1, · · · , λn,−µ1, · · · ,−µm

]
.
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Remark 2.1: According to (7), fP,Q(λ, µ) is the sum of the squares of the coor-

dinates of Aχ−b. In particular, negating both a row of A and the corresponding

coefficient of b will not change the value of that function either. Likewise, negat-

ing a column of A and the corresponding row of χ will not change the value of

fP,Q(λ, µ). As a consequence, the right-hand side of (4) does not change when

a subset of the columns of A are negated or a subset of its rows are negated

together with the corresponding coefficients of b.

Let us now give an expression for the right-hand side of (4).

Lemma 2.2: fP,Q admits a unique minimum over Rn×Rm if and only if AtA is

non-singular. Moreover, in that case,

(9) min
λ∈Rn

µ∈Rm

fP,Q(λ, µ) =
∥∥A(AtA)−1Atb− b

∥∥2
.

Proof. The minimum of fP,Q is reached at a pair (λ, µ) from Rn×Rm such that

all the partial derivatives of fP,Q simultaneously vanish, that is when

∂fP,Q
∂λi

(λ, µ) = 0

for all i satisfying 1 ≤ i ≤ n and

∂fP,Q
∂µi

(λ, µ) = 0

for all i satisfying 1 ≤ i ≤ m. Since fP,Q is a quadratic function of λ and µ,

its partial derivatives are linear. In other words, finding the minimum of fP,Q

over Rn×Rm amounts to solve a least squares problem. In particular setting to

0 all of these partial derivatives results in the system of linear equalities

(10) AtAχ = Atb.

Since fP,Q is a convex quadratic function, the solutions of (10) correspond

bijectively via (8) with the pairs (λ, µ) such that fP,Q is minimal. It immediately

follows that fP,Q admits a unique minimum over Rn×Rm if and only if AtA is

non-singular. Moreover, in that case, the unique solution of (10) is

χ = (AtA)−1Atb

and substituting this expression of χ in (7) completes the proof.
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According to (4), Lemma 2.2 provides a lower bound on d(P,Q) in the case

when AtA is non-singular. The following remark provides a necessary and

sufficient condition on (AtA)−1Atb for this bound to be sharp.

Remark 2.3: Recall that the minimum of fP,Q over Rn×Rm is the distance

between the affine hulls of P and Q. Therefore, if AtA is non-singular, then

according to (7), (8), and Lemma 2.2, the first n coordinates of

χ = (AtA)−1Atb

provide an affine combination p? of the vertices of P and its last m coordinates

an affine combination q? of the vertices of Q such that

d(p?, q?) = d
(
aff(P ), aff(Q)

)
.

In particular, if the first n coefficients of χ are all non-negative and sum to

at most 1 while its last m coefficients are all non-positive and sum to at least

−1, then p? belongs to P and q? to Q. In that case, the distance of P and Q

coincides with the distance of their affine hulls. Otherwise the distance of P

and Q is strictly greater than the distance of their affine hulls.

We shall now focus on certain pairs of simplices whose distance is precisely

ε(d, k). The following is proven in [5] (see Theorem 5.2 therein).

Theorem 2.4: There exist two lattice (d, k)-polytopes P and Q such that

(i) d(P,Q) is equal to ε(d, k),

(ii) both P and Q are simplices,

(iii) dim(P ) + dim(Q) is equal to d− 1, and

(iv) the affine hulls of P and Q are disjoint.

We shall prove that when P and Q satisfy the assertions (i) to (iv) in the

statement of Theorem 2.4, fP,Q admits a unique minimum over Rn×Rm as a

consequence of two results from [5]. The first of these results states that

(11) d(P,Q) ≥ ε
(
dim(P ∪Q), k

)
(see Lemma 4.3 in [5]) and the second that, when k is fixed, ε(d, k) is a strictly

decreasing function of d (see Theorem 5.1 in [5]).

Proposition 2.5: If P and Q satisfy the assertions (i) to (iv) in the statement

of Theorem 2.4, then fP,Q has a unique minimum over Rn×Rm.
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Proof. Denote by aff(P ) and aff(Q) the affine hulls of P and Q, respectively.

Consider a point p? in aff(P ) and a point q? in aff(Q) such that

(12)
∥∥q? − p?∥∥ = d

(
aff(P ), aff(Q)

)
.

By the above discussion, the pair (p?, q?) corresponds to a point (λ?, µ?)

in Rn×Rm where fP,Q reaches its minimum. Assume that fP,Q also reaches its

minimum at a point (λ
?
, µ?) in Rn×Rm different from (λ?, µ?). By construction,

(λ
?
, µ?) then provides the coefficients of an affine combination p? of p0 to pn

and of an affine combination q? of q0 to qm such that

(13)
∥∥q? − p?∥∥ = d

(
aff(P ), aff(Q)

)
.

Since p? and p? are both contained in aff(P ), so is their midpoint. Likewise,

the midpoint of q? and q? is contained in aff(Q). Hence,

(14) d
(
aff(P ), aff(Q)

)
≤
∥∥∥∥q? + q?

2
− p? + p?

2

∥∥∥∥.

However, by the triangle inequality,

(15)

∥∥∥∥q? + q?

2
− p? + p?

2

∥∥∥∥≤ 1

2

∥∥q? − p?∥∥+
1

2

∥∥q? − p?∥∥
with equality if and only if q?−p? is a multiple of q?−p? by a positive coefficient

or one of these vectors is equal to 0. Under the assumption that assertion (iv)

from the statement of Theorem 2.4 holds, these vectors are both non-zero.

Hence, q? − p? is a multiple of q? − p? by a positive coefficient and according

to (12) and (13), these vectors must therefore be equal. It immediately follows

that the vectors p? − p? and q? − q? also coincide.

Now recall that (λ?, µ?) and (λ
?
, µ?) are different. As a consequence, so are

the pairs (p?, q?) and (p?, q?). Since the vectors p? − p? and q? − q? coincide

they must therefore be non-zero. Hence, the translates of aff(P ) and of aff(Q)

through the origin of Rd intersect in a non-zero vector and the dimension of

their union must be less than dim(P ) + dim(Q). As a consequence

dim(P ∪Q) ≤ dim(P ) + dim(Q).

Therefore, under the assumption that P and Q satisfy the assertion (iii) in

the statement of Theorem 2.4, it follows that P ∪ Q has dimension at most

d − 1. According to (11), this implies that the distance between P and Q is
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at least ε(d − 1, k). As a consequence, if the assertion (i) in the statement of

Theorem 2.4 holds for P and Q, then one obtains that

ε(d, k) ≥ ε(d− 1, k).

However, Theorem 5.1 in [5] states that ε(d, k) < ε(d− 1, k). By this contra-

diction, fP,Q has a unique minimum over Rn×Rm.

Combining Proposition 2.5, Lemma 2.2, and Theorem 2.4, one obtains a lower

bound on ε(d, k) from (4) of the form

(16) ε(d, k) ≥ min
P,Q

{∥∥A(AtA)−1Atb− b
∥∥}

where the minimum ranges over the pairs of lattice (d, k)-simplices P and Q

whose dimensions sum to d − 1, for which the matrix A obtained from (5) is

such that AtA is non-singular and the vector b obtained from (6) satisfies

A(AtA)−1Atb 6= b.

3. The 2-dimensional case

In this section, we give a formula for ε(2, k) using the model described in Sec-

tion 1. Consider two disjoint lattice (2, k)-polytopes P and Q that satisfy

assertions (i) to (iv) from the statement of Theorem 2.4. Since the dimensions

of P and Q sum to 1, one of these polytopes has dimension 0 and the other has

dimension 1. We assume without loss of generality that P is a line segment and

that Q is made of a single point by exchanging them if needed.

Let us first observe that according to (5) and (6),{
A = p1 − p0,

b = q0 − p0.

As a consequence, (16) simplifies into

ε(2, k) ≥ |(p
1
2 − p0

2)(q0
1 − p0

1)− (p1
1 − p0

1)(q0
2 − p0

2)|√
(p1

1 − p0
1)2 + (p1

2 − p0
2)2

It follows that ε(2, k) is at least the smallest possible value of

(17)
|x2x3 − x1x4|√

x2
1 + x2

2

over all the lattice points x contained in the hypercube [−k, k]4 such that neither

x2
1 + x2

2 nor x2x3 − x1x4 is equal to 0. We bound (17) as follows.
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Lemma 3.1: If k is greater than 1 then, for every lattice point x in [−k, k]4

such that x2
1 + x2

2 and x2x3 − x1x4 are both non-zero,

(18)
|x2x3 − x1x4|√

x2
1 + x2

2

≥ 1√
(k − 1)2 + k2

.

Proof. Consider a lattice point x in [−k, k]4 such that neither x2
1 + x2

2 nor

x2x3− x1x4 is equal to 0. We assume without loss of generality that x1 and x2

are non-negative thanks to the symmetries of [−k, k]4. We review two cases.

First assume that x1 and x2 coincide. In that case,

(19)
|x2x3 − x1x4|√

x2
1 + x2

2

=
|x3 − x4|√

2
.

Since x2x3−x1x4 is not equal to 0, x3 and x4 cannot coincide and the right-

hand side of (19) is at least 1/
√

2. As k is greater than 1,

1√
(k − 1)2 + k2

≤ 1√
2

and the lemma follows in this case.

Now assume that x1 and x2 are different. Since |x2x3 − x1x4| is at least 1,

(20)
|x2x3 − x1x4|√

x2
1 + x2

2

≥ 1√
x2

1 + x2
2

Recall that x1 and x2 are integers contained in [0, k]. Since they are different,

one of them is at most k − 1. As a consequence,

1√
x2

1 + x2
2

≥ 1√
(k − 1)2 + k2

and combining this with (20) completes the proof.

By Lemma 3.1, and the preceding discussion, ε(2, k) is at least the right-hand

side of (18) when k is at least 2. Theorem 1.1 states that this is sharp.

Proof of Theorem 1.1. It suffices to exhibit a lattice point P and a lattice seg-

ment Q contained in the square [0, k]2 such that

d(P,Q) =
1√

(k − 1)2 + k2
.

Such an example is provided by the point in [0, k]2 whose two coordinates

are equal to 1 and any of the two line segments that are incident to the origin
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P
Q

Figure 1. A pair of kissing lattice (2, 4)-polytopes.

and whose other vertex has coordinates k and k − 1. This point and this line

segment are represented in Figure 1 when k is equal to 4.

Remark 3.2: The strategy exposed in this section in the 2-dimensional case can

be generalized to any higher dimension. In particular, a quotient similar to (17)

can be explicitly computed in any fixed dimension d that depends on a lattice

point x contained in the hypercube [−k, k]d
2

. The first d(d − 1) coordinates

of x are the entries of A and its last d coordinates are the coordinates of b.

The minimum of that quotient under the constraint that its numerator and

denominator are positive provides a lower bound on ε(d, k). For instance, when

d is equal to 3, the minimal value of the ratio

(21)
|x1(x6x8 − x5x9) + x2(x4x9 − x6x7) + x3(x5x7 − x4x8)|√

(x1x5 − x2x4)2 + (x1x6 − x3x4)2 + (x2x6 − x3x5)2

over all the lattice points x in [−k, k]9 such that the numerator and the denom-

inator of (21) are positive is a lower bound on ε(3, k). However, the expression

for this quotient gets complicated as the dimension increases and solving the

corresponding integer minimization problem becomes involved.

4. The computation of ε(d, k)

According to the discussion in Section 1, a lower bound on ε(d, k) can be ob-

tained by considering all the sets of d+1 pairwise distinct points from {0, . . . , k}d

and for each such set S, all the partitions of S into two subsets {p0, . . . , pn} and

{q0, . . . , qm} where n + m is equal to d − 1. For each such partition, one can
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build a matrix A and a vector b according to (5) and (6). The smallest possible

non-zero value of the right-hand side of (16) over all the obtained pairs (A, b)

such that AtA is non-singular will then be a lower bound on ε(d, k). However,

this strategy requires to consider

N = (2d+1 − 2)

(
(k + 1)d

d+ 1

)
pairs (A, b). Note that while this number would decrease to at best

2d+1 − 2

2dd!

(
(k + 1)d

d+ 1

)
if the enumeration could be performed up to the symmetries of the d-dimensional

hypercube. However, these symmetries are not all easy to handle in practice as

one still needs to enumerate all N pairs (A, b) just to check for them.

We adopt a different strategy in order to significantly decrease the search

space without having to handle symmetries. The main idea is to do the enu-

meration coordinate-wise in order to build a list L of the possible rows for the

pair (A, b) for each n and m that sum to d− 1 and such that n ≤ m, and then

building (A, b) back by selecting d pairwise different rows from L. By a row

of (A, b), we mean a vector r from Rd whose first d − 1 entries form a row of

A and whose last entry is the corresponding coordinate of b. Note that our

requirement that the rows of L selected to build a given pair (A, b) are pairwise

distinct is without loss of generality. Indeed, if two of these rows would coincide,

a pair of columns of AtA would be multiples of one another and that matrix

would then be singular. We shall see that the size of L does not depend on n

or m. As a consequence, this alternative strategy only considers⌊
d+ 1

2

⌋(
|L|
d

)
pairs (A, b). For each of these pairs such that AtA is non-singular, the right-

hand side of (16) is evaluated, and the smallest non-zero value obtained for

this quantity over all the considered pairs (A, b) is the desired lower bound on

ε(d, k). Note that the efficiency of this strategy depends on how large L is. Let

us get into more details about how we build L.

For a given pair of positive integers n and m that sum to d− 1, we generate

all the possible rows of the pair (A, b) as

(22)
(
x1 − x0, . . . , xn − x0, y1 − y0, . . . , ym − y0, y0 − x0

)
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where x is a point from {0, . . . , k}n, y is a point from {0, . . . , k}m such that x

and y are not both equal to 0, and x0 and y0 are two integers from {0, . . . , k}.
The list obtained from this procedure contains at most (k − 1)d+1 rows. It can

be reduced using the following property.

Proposition 4.1: Consider a d×(d − 1) matrix A with integer entries such

that AtA is non-singular and a vector b from Zd. If the pair (A, b) is obtained

by dividing each row of the pair (A, b) by the greatest common divisor of its

coordinates and by negating a subset of the resulting rows, then

(23)
∥∥A(AtA)−1Atb− b

∥∥ ≥ ∥∥A(A
t
A)−1A

t
b− b

∥∥
and the two sides of this inequality are either both zero or both positive.

Proof. Pick two non-negative integers n and m that sum to d − 1. Denote b

by q0. Likewise, denote by p1 to pn the first n columns of A and consider the

points q1 to qm from Zd such that q1− q0 to qm− q0 are the last m columns of

A. According to the construction described in Section 1,

(24)
∥∥A(AtA)−1Atb− b

∥∥2
= min

λ∈Rn

µ∈Rm

fP,Q(λ, µ)

where P is the convex hull of p0 to pn and Q that of q0 to qm. Further denote by

(A, b) the pair obtained by dividing each row of (A, b) by the greatest common

divisor of its coordinates and by negating a fixed (but otherwise arbitrary)

subset of the resulting rows. As above,

(25)
∥∥A(A

t
A)−1A

t
b− b

∥∥2
= min

λ∈Rn

µ∈Rm

fP,Q(λ, µ)

where P and Q are the convex hulls of the points p0 to pn and q0 to qm that

are extracted from (A, b) just as the points pi and qi are extracted from (A, b).

By construction, for any pair (λ, µ) of vectors in Rn×Rm,

(26)

d∑
j=1

(
−q0

j +

n∑
i=1

λip
i
j −

m∑
i=1

µi
(
qij − q0

j

))2

=

d∑
j=1

r2
j

(
−q0

j +

n∑
i=1

λip
i
j −

m∑
i=1

µi
(
qij − q0

j

))2

where r1 to rd the greatest common divisors of the rows of (A, b). Observe

that according to (3), the right-hand side of this equality is precisely fP,Q(λ, µ).
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Since the numbers r1 to rd are not less than 1, its right-hand side is at least

fP,Q(λ, µ) and it follows that, for every (λ, µ) in Rn×Rm,

fP,Q(λ, µ) ≥ fP,Q(λ, µ).

In turn, by (24) and (25), the desired inequality holds. It remains to show

that if the right-hand side of (23) is equal to 0, then so is its left-hand side.

Assume that the right-hand side of (23) is equal to 0. In that case, there exists

a pair (λ, µ) of vectors in Rn×Rm such that fP,Q(λ, µ) is equal to 0. According

to (3), fP,Q(λ, µ) is the squared norm of a vector and since it is equal to 0, all

of the coordinates of that vector must be equal to 0. In other words, for every

integer j satisfying 1 ≤ j ≤ d,

−q0
j +

n∑
i=1

λip
i
j −

m∑
i=1

µi
(
qij − q0

j

)
= 0

and it follows from (3) and (26) that fP,Q(λ, µ) must vanish. According to (24),

the left-hand side of (23) is then equal to 0, as desired.

By Proposition 4.1, we can assume that when several of the generated rows

are multiples of one another, only the one among them whose coordinates are

relatively prime and whose first non-zero coordinate is positive is included in

L. It should be observed that, before L is reduced as we have just described,

its size does not depend on n or m. As announced, this property still holds

once L has been reduced. Indeed, observe that the rows generated by (22) with

the same two points x and y and the same scalars x0 and y0 but with different

values of n and m can be recovered from one another by adding y0 − x0 to (or

d
k

1 2 3 4 5 6 7 8 9 10

3 6 24 72 144 288 432 720 1008 1440 1872

4 14 89 359 929 2189 4019 7469 11969

5 30 300 1620 5400 15120

6 62 965 6971

7 126 3024

Table 2. The number of rows in L as a function of d and k.
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subtracting this quantity from) certain of their coordinates. Hence, all of these

rows have the same greatest common divisor for their coordinates.

We report in Table 2 as a function of d and k the number of rows contained

in L after this procedure has been carried out. Note that, when k is equal to 1,

d to 3, n to 1, and m to 1, there are only 6 rows in L:

L =
{

(1, 0, 0), (0, 1, 0), (1,−1, 0), (0, 1,−1), (1, 1,−1), (1, 0,−1)
}

.

Twenty pairs (A, b) are generated from this list of rows. When k is equal to

3 and d to 4, the number of pairs (A, b) that have to be considered with the

approach outlined at the beginning of the section is

(25 − 2)

(
44

5

)
= 264 286 471 680

which would shrink down to

25 − 2

244!

(
44

5

)
= 688 246 020

if these pairs could be enumerated up to the symmetries of the hypercube.

However, there is no easy way to test for these symmetries without reviewing

all of the 264 286 471 680 pairs. With our approach, |L| is equal to 359 in that

case as shown in Table 2 and we only need to consider

2

(
359

4

)
= 1 361 176 502

pairs (A, b) in order to compute our lower bound on ε(4, 3).

This strategy does not only provide a lower bound on ε(d, k) but also pairs

(A, b) that achieve this lower bound. Keeping track of the points x and y and of

the scalars x0 and y0 that are used to build each row in L according to (22), one

can recover two lattice (d, k)-polytopes P and Q such that the obtained lower

bound on ε(d, k) is precisely the distance of the affine hulls of P and Q. If the

distance between these affine hulls coincides with the distance between P and Q,

which can easily be checked from the pair (A, b) according to Remark 2.3, then

this lower bound is sharp. Interestingly, using this observation, all the lower

bounds on ε(d, k) that we have obtained using the presented computational

strategy have turned out to be the precise value of ε(d, k).

The known values of ε(d, k) are reported in Table 1 in the case when d is

at least 3. Recall that ε(2, k) is given by Theorem 1.1 for all k greater than

1. Moreover, ε(2, 1) is equal to 1/
√

2. The values shown in bold characters in
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P
Q

Figure 2. A pair of kissing lattice (3, 4)-polytopes.

the table are the ones that were obtained using the strategy described in this

section. The other values of ε(d, k) given in the table were previously obtained

in [5]. Let us now describe the polytopes P and Q that have been obtained in

each case whose distance is precisely ε(d, k).

If k is equal to 2, 4, 5, 6, 7, or 8, then ε(3, k) is achieved by the line segment

P with vertices (0, 0, 0) and (k − 1, k, k) and the line segment Q with vertices

(k, 1, 2) and (0, k, k − 1). These two line segments are shown in Figure 2 when

k is equal to 4. Note that in general, their distance is

(27) d(P,Q) =
1√

2(2k2 − 4k + 5)(2k2 − 2k + 1)

and it is tempting to ask whether ε(3, k) is equal to this value for every integer

k greater than 8. In any case, note that the right-hand side of (27) provides an

upper bound on ε(3, k) that decreases like 1/(2
√

2k2) as k goes to infinity. In

the remaining two cases, when k is equal to either 1 or 3, the line segments that

achieve ε(3, k) do not follow the pattern we have just described. Indeed, ε(3, 1)

is the distance between a diagonal P of the cube [0, 1]3 and a diagonal Q of

one of its square faces such that P and Q are disjoint (see also [5]) while ε(3, 3)

is the distance between the line segment with vertices (0, 0, 0) and (2, 3, 3) and

the line segment with vertices (3, 2, 0) and (0, 1, 2).

In the 4-dimensional case, the values of ε(4, k) reported in Table 1 are always

achieved by a line segment P and a triangle Q as follows. When k is equal
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to 1, the vertices of P are (0, 0, 0, 0) and (1, 1, 1, 1) while the vertices of Q are

(1, 0, 0, 0), (0, 1, 1, 0), and (0, 1, 0, 1). When k is greater than 1, the vertices of

P are (0, 0, 0, 0) and (1, 2, 1, 2) and those of Q are (2, 2, 1, 0), (0, 1, 0, 2), and

(0, 0, 2, 1). When k is equal to 3, the vertices of P are (0, 0, 1, 0) and (2, 3, 3, 3)

and the vertices of Q are (3, 0, 3, 2), (0, 2, 0, 3), and (0, 3, 3, 0).

The unique value of ε(5, k) reported in Table 1 is the one when k is equal

to 1. This value is the distance between the diagonal of the hypercube [0, 1]5

incident to the origin of R5 and the tetrahedron with vertices (1, 1, 0, 0, 0),

(0, 1, 0, 1, 1), (0, 0, 1, 0, 1), and (0, 0, 1, 1, 0). Finally, ε(6, k) is equal to the dis-

tance between the diagonal of the hypercube [0, 1]6 incident to the origin of

R6 and the 5-dimensional simplex with vertices (1, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1),

(0, 1, 1, 0, 1, 1), (0, 1, 0, 1, 0, 1), and (0, 1, 0, 1, 1, 0).

Remark 4.2: It is noteworthy that, while ε(2, k) can be guessed from the pairs

of kissing polytopes obtained for the first few values of k, this is not the case for

ε(d, k) when k is fixed. Even when k is equal to 1, the pairs of kissing polytopes

known for the first few values of d do not exhibit a clear pattern.
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