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Geometry of Sparsity-Inducing Norms

Jean-Philippe Chancelier∗, Michel De Lara∗,
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January 13, 2025

Abstract

Sparse optimization seeks an optimal solution with few nonzero entries. To achieve
this, it is common to add to the criterion a penalty term proportional to the ℓ1-norm,
which is recognized as the archetype of sparsity-inducing norms. In this approach, the
number of nonzero entries is not controlled a priori. By contrast, in this paper, we
focus on finding an optimal solution with at most k nonzero coordinates (or for short,
k-sparse vectors), where k is a given sparsity level (or “sparsity budget”). For this
purpose, we study the class of generalized k-support norms that arise from a given
source norm. When added as a penalty term, we provide conditions under which such
generalized k-support norms promote k-sparse solutions. The result follows from an
analysis of the exposed faces of closed convex sets generated by k-sparse vectors, and
of how primal support identification can be deduced from dual information. Finally,
we study some of the geometric properties of the unit balls for the k-support norms
and their dual norms when the source norm belongs to the family of ℓp-norms.

Keywords: sparsity, ℓ0 pseudonorm, orthant-monotonicity, top-k norm, k-support norm
2020 Mathematics Subject Classification (MSC2020): 49N15 90C25 52A05 52A21

1 Introduction

In 1996, Tibshirani [27] proposed least-square regression with an ℓ1-norm penalty to achieve
sparsity in least-square optimization. Figure 1 is the replica of [27, Figure 2], which provides
insight regarding why corresponding optimal solutions are sparse (we copy the comments
of [27, Figure 2] with additional precisions in brackets [· · · ]):

∗CERMICS, École nationale des ponts et chaussées, IP Paris, France
†McMaster University, Hamilton, Ontario, Canada
‡Université Paris 13, Villetaneuse, France
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“The elliptical contours of this function [quadratic criterion] are shown by the
full curves in Fig. 2(a); they are centred at the OLS [optimal least-square] esti-
mates; the constraint region [ℓ1-ball in dimension 2] is the rotated square. The
lasso solution is the first place that the contours touch the square, and this will
sometimes occur at a corner, corresponding to a zero coefficient. The picture for
ridge regression is shown in Fig. 2(b): there are no corners for the contours to
hit and hence zero solutions will rarely result.”

Figure 1: Replica of [27, Figure 2]

Thus, as the kinks of the ℓ1-ball are located at sparse points, it is common to say that the
ℓ1-norm is sparsity-inducing. Figure 2 shows two examples of unit balls with kinks located
at sparse points. Both of them arise from norms that are studied in the sequel.
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Figure 2: Two examples of unit balls with kinks located at sparse points

A natural question that arises from the comments of [27, Figure 2] is: What could be
mathematical conditions for inducing sparsity?

Going beyond least-square regression with an ℓ1-norm penalty, one can consider opti-
mization problems of the form minx∈Rd

(
f(x) + γ||x||

)
, where f : Rd → R is a smooth convex
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function, γ > 0 and ||·|| is a norm with unit ball B. This is the approach taken in the
papers [2, 18], where the terminology “sparsity-inducing norm” has been introduced. As all
functions take finite values — and as ||·|| is the support function σB⊙ of the polar set B⊙ —
a solution x♯ of the above problem is characterized by the Fermat rule

0 ∈ ∇f(x♯) + γ∂σB⊙(x♯) ,

where ∂σB⊙(x♯) is the face F⊥(B
⊙, x♯) of B⊙ exposed by x♯. Thus, the optimality condition

reads
−∇f(x♯) ∈ γF⊥(B

⊙, x♯)

and, by polarity [11, Theorem 5.1], this is equivalent to

x♯

||x♯||
∈ F⊥(B,−∇f(x♯)) .

One could say that the considered norm is sparsity-inducing if information about the
support of x♯ could be obtained from information about the exposed faces F⊥(B,−∇f(x♯))
of the unit ball B for that norm. This is the approach that we consider in this paper. More
precisely, we analyze the exposed faces of some special convex sets, and in particular of the
unit balls of certain norms, and relate them to sparsity.

Our work is related to different trends in the literature. As said above, the terminology
“sparsity-inducing norm” has been introduced in the papers [2, 18], which focus on algorith-
mic issues, whereas we focus on geometric aspects. In particular, we study how the gradient
— at a solution, of the original smooth function to be minimized — provides relevant (dual)
information about the sparsity of the (primal) solution. Sparsity is also examined for the
solutions of undetermined linear systems, and we emphasize the three papers [5, 8, 4]. The
paper [5] studies the solutions of an undetermined linear system in the context of compressed
sensing; it provides a sufficient property of the sensing matrix, the restricted isometry prop-
erty, which ensures that the minimal ℓ1-norm solution coincides with the sparse solution.
In [8], it is explained how to design so-called “atomic norms” which promote sparsity, but
with respect to a given (compact) atomic set. [8] stresses that it is “the favorable facial
structure of the atomic norm ball that makes the atomic norm a suitable convex heuristic
to recover simple models” The norms that we present in Sect. 3 are atomic norms where the
atomic set is especially designed to provide solutions with an a priori given “sparsity budget”
(number of nonzero entries bounded above by a given integer); we focus on the geometric
description of the facial structure of the unit balls of these special atomic norms.. As said
above, we study in particular how a gradient provides relevant (dual) information about
sparsity of the (primal) solution. By contrast, [8] focuses more on measuring the Gaussian
width of the tangent cones as a way to to achieve more or less sparsity. The paper [4] also
stresses the role of faces in identifying solutions of undetermined linear systems that can be
expressed as convex combinations of a small number of atoms. Where [4] studies faces, we
focus on exposed faces and on how dual information is related to sparsity of a primal solution.
Let us mention three more works. The question of decomposing a vector as a convex conical
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combination of elementary atoms has been studied in [11], with a special role given to the
so-called alignment, that is, to normal cones and exposed faces. Our approach intersects
that of [11], but with a focus on the classic sparsity along coordinate axis and with the goal
to describe the geometry of some unit balls [7]. In [10], the focus is put on stratifying the
primal space. Then, an optimal primal-dual pair (x♯,∇f(x♯)) can provide information on the
strata to which x♯ belongs. General regularizers (and not only norms) are studied. Convex
structured sparsity with norms is the object of [22], but there is no focus on how normal
cones and exposed faces relate to sparsity.

To summarize, to the difference with the literature mentioned above, we focus on sparsity-
inducing norms that promote solutions within an a priori “sparsity budget” by using dual
information.

The paper is organized as follows. In Sect. 2, after providing background on sparsity and
on faces of closed convex sets, we state our main result: we characterize the faces of closed
convex sets whose extreme points are k-sparse, from which we deduce support identification.
In Sect. 3, we characterize the faces of the unit ball of k-support norms, from which we
deduce support identification. Then, we provide dual conditions under which the primal
optimal solution of a minimization problem, penalized by a k-support norm, is k-sparse. In
the cases of orthant-monotonic and orthant-strictly monotonic source norms, we obtain a
characterization of the intersection of the k-sparse vectors with the faces of the k-support
norm. Sect. 4 deals with the geometric aspects of the face and cone lattices of the unit balls
of top-(q,k) norm and (p,k)-support norms, that is, with the ℓp as source norms.

2 Face characterization and support identification

In §2.1, we provide background on sparsity and on faces of closed convex sets. In §2.2, we
state our main result: we characterize the faces of closed convex sets whose extreme points
are k-sparse, from which we deduce support identification. Proofs are given in §2.3.

2.1 Background on sparsity and on faces of closed convex sets

We consider the finite-dimensional real Euclidean vector space Rd equipped with the scalar
product ⟨ | ⟩.

Background on sparsity

We use the notation Jj, kK = {j, j + 1, . . . , k − 1, k} for any pair of integers such that j ≤ k.
Let d be a natural number. Denoting by |K| the cardinality of a subset K ⊂ J1, dK, we
define, for any vector x in Rd, the support of x by

supp(x) =
{
j ∈ J1, dK : xj ̸= 0

}
⊂ J1, dK , (1a)
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and the ℓ0 pseudonorm of x by the number of nonzero components, that is, by

ℓ0(x) = |supp(x)| . (1b)

This defines the ℓ0 pseudonorm function ℓ0 : Rd → J0, dK. For any k in J1, dK, we denote
its level sets, made of all the vectors with at most k nonzero coordinates by

ℓ≤k
0 = {x ∈ Rd : ℓ0(x) ≤ k} (2a)

The vectors in ℓ≤k
0 will be called k-sparse vectors. For any subsetK of J1, dK, we introduce

the subspace RK of Rd made of vectors whose components vanish outside of K as

RK =
{
x ∈ Rd : xj = 0 , ∀j ̸∈ K

}
(2b)

with the convention that R∅ = {0}. Using
⋃

|K|≤k as a shorthand for
⋃

K⊂J1,dK,|K|≤k, we get

ℓ≤k
0 =

⋃
|K|≤k

RK . (2c)

We denote by πK : Rd → RK the orthogonal projection mapping ; for any vector x in
Rd, the coordinates of the vector πKx ∈ RK coincide with those of x, except for the ones
whose indices range outside of K that are equal to zero. It is easily seen that the orthogonal
projection mapping πK is self-adjoint (or self-dual), that is,

⟨πKx | y⟩ = ⟨x | πKy⟩ = ⟨πKx | πKy⟩ , ∀x ∈ Rd , ∀y ∈ Rd . (3)

Background on faces of closed convex sets

For any subset X ⊂ Rd, the expression

σX(y) = sup
x∈X

⟨x | y⟩ , ∀y ∈ Rd (4)

defines a map σX : Rd → R called the support function1 of the subset X. The (negative)
polar set X⊙ of the subset X ⊂ Rd is the closed convex set

X⊙ =
{
y ∈ Rd : ⟨x, y⟩ ≤ 1 , ∀x ∈ X

}
= {σX ≤ 1} . (5)

The face of a nonempty closed convex subset C of Rd exposed by a dual vector y in Rd is

F⊥(C, y) = argmax
x∈C

⟨x | y⟩ , (6)

and the normal cone N(C, x) of C at a primal vector x ∈ C is defined by the conjugacy
relation

x ∈ C and y ∈ N(C, x) ⇐⇒ x ∈ F⊥(C, y) . (7)

1Note that the support function has nothing to do with the support of a vector.
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2.2 Convex sets with k-sparse extreme points

As discussed in the introduction, the intuition behind [27, Figure 2] is that the unit ball of a
sparsity-inducing norm should have extreme points (vertices) precisely at k-sparse vectors.
One way to enforce this is to select a suitable subset of k-sparse vectors, and then take the
convex closure. Theorem 1 characterizes the faces of this convex closure.

Theorem 1 (Characterization of faces) Let k ∈ J1, dK be a natural number and X ⊂ Rd

be a (primal) nonempty set. We set

Xk =
⋃

|K|≤k

πK(X) . (8)

Let y ∈ Rd be a (dual) vector. We set

K♯
X,k(y) = argmax

K⊂J1,dK
|K|≤k

σcoX(πKy) , (9)

which is such that ∅ ≠ K♯
X,k(y) ⊂

{
K ⊂ J1, dK, |K| ≤ k

}
⊂ 2J1,dK. Then, we have that the

set Xk is made of k-sparse vectors, that is,

Xk ⊂ ℓ≤k
0 , (10)

and the faces of coXk are related to the faces of coX by

Xk ∩ F⊥
(
coXk, y

)
=

{
πK♯

(
X ∩ F⊥(coX, πK♯y)

)
: K♯ ∈ K♯

X,k(y)
}
, (11)

and by

F⊥
(
coXk, y

)
= co

{
πK♯

(
X ∩ F⊥(coX, πK♯y)

)
: K♯ ∈ K♯

X,k(y)
}
. (12)

By construction, the extreme points of coXk are contained in Xk, while Xk itself is a subset
of

⋃
|K|≤k RK = ℓ≤k

0 (see Equation (10)), hence is made of k-sparse vectors.

Corollary 2 (Support identification) Under the assumptions of Theorem 1,

x ∈ Xk ∩ F⊥(coXk, y) =⇒ supp(x) ∈ K♯
X,k(y) , (13)

x ∈ F⊥(coXk, y) =⇒ supp(x) ⊂
⋃

K♯∈K♯
X,k(y)

K♯ . (14)

2.3 Proofs of Theorem 1 and Corollary 2

We begin the section by proving the following preparatory lemma.
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Lemma 3 Consider a (primal) nonempty subset X of Rd. For any (dual) vector y contained
in Rd and any subset K of J1, dK, we have that

argmax
x∈πK(X)

⟨x | y⟩ = πK

(
argmax

z∈X
⟨z | πKy⟩

)
(15)

and that
max

x∈πK(X)
⟨x | y⟩ = σcoX(πKy) . (16)

Proof. We prove (15) by establishing two opposite inclusions. On the one hand, the inclusion

argmax
x∈πK(X)

⟨x | y⟩ ⊂ πK

(
argmax

z∈X
⟨z | πKy⟩

)
holds true as a consequence of the following sequence of equivalences and implications:

x♯ ∈ argmax
x∈πK(X)

⟨x | y⟩ ⇐⇒ x♯ ∈ πK(X) and ⟨x♯ | y⟩ ≥ ⟨x | y⟩ , ∀x ∈ πK(X)

⇐⇒ x♯ ∈ πK(X) and ⟨x♯ | y⟩ ≥ ⟨πKz | y⟩ , ∀z ∈ X
(by definition of πK(X))

=⇒ x♯ ∈ πK(X) and ⟨πKx♯ | y⟩ ≥ ⟨πKz | y⟩ , ∀z ∈ X

because x♯ ∈ πK(X) belongs to the image of the orthogonal projection πK , hence x♯ = πKx♯,

=⇒ x♯ ∈ πK(X) and ⟨x♯ | πKy⟩ ≥ ⟨z | πKy⟩ , ∀z ∈ X
(as the orthogonal projection πK is self-adjoint, see (3))

=⇒ x♯ ∈ πK(X) and x♯ ∈ argmax
z∈X

⟨z | πKy⟩

=⇒ x♯ ∈ πK(X) and πKx♯ ∈ πK

(
argmax

z∈X
⟨z | πKy⟩

)
=⇒ x♯ ∈ πK(X) and x♯ ∈ πK

(
argmax

z∈X
⟨z | πKy⟩

)
(as x♯ = πKx♯.)

On the other hand, the inclusion

πK

(
argmax

z∈X
⟨z | πKy⟩

)
⊂ argmax

x∈πK(X)
⟨x | y⟩

holds true as a consequence of the following equivalences and implications:

x♯ ∈ πK

(
argmax

z∈X
⟨z | πKy⟩

)
⇐⇒ ∃z♯ ∈ argmax

z∈X
⟨z | πKy⟩ and x♯ = πKz♯

⇐⇒ x♯ = πKz♯ where z♯ ∈ X and ⟨z♯ | πKy⟩ ≥ ⟨z | πKy⟩ , ∀z ∈ X

⇐⇒ x♯ = πKz♯ where z♯ ∈ X and ⟨πKz♯ | y⟩ ≥ ⟨πKz | y⟩ , ∀z ∈ X
(as the orthogonal projection πK is self-adjoint, see (3))

=⇒ x♯ ∈ πK(X) and ⟨x♯ | y⟩ ≥ ⟨x | y⟩ , ∀x ∈ πK(X)

=⇒ x♯ = πKx♯ ∈ πK(X) and ⟨x♯ | y⟩ ≥ ⟨x | y⟩ , ∀x ∈ πK(X)
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because x♯ ∈ πK(X) belongs to the image of the orthogonal projection πK , hence x♯ = πKx♯,

=⇒ x♯ ∈ argmax
x∈πK(X)

⟨x | y⟩ (by definition of argmaxx∈πK(X)⟨x | y⟩.)

Finally (16) holds true because, as the orthogonal projection πK is self-adjoint (see (3)),

max
x∈πK(X)

⟨x | y⟩ = max
z∈X

⟨πKz | y⟩ = max
z∈X

⟨z | πKy⟩ = σcoX(πKy) ,

by definition (4) and the well-known property σX = σcoX of the support function σX . 2

2.3.1 Proof of Theorem 1

Proof. Consider a number k in J1, dK, a (primal) nonempty subset X of Rd, and a (dual) vector y
in Rd. First observe that

∅ ≠ K♯
X,k(y) ⊂

{
K ⊂ J1, dK, |K| ≤ k

}
⊂ 2J1,dK.

Second, Equation (10) follows from the definition (8) of Xk as by (2c),

Xk =
⋃

|K|≤k

πK(X) ⊂
⋃

|K|≤k

RK = ℓ≤k
0

Third, we prove (11). We have that

x♯ ∈ Xk ∩ F⊥(coXk, y) ⇐⇒ x♯ ∈ argmax
x∈Xk

⟨x | y⟩

as F⊥(coXk, y) = argmaxx∈coXk
⟨x | y⟩ and maxx∈Xk

⟨x | y⟩ = maxx∈coXk
⟨x | y⟩,

⇐⇒ x♯ ∈ Xk and ⟨x♯ | y⟩ = max
x∈

⋃
|K|≤k πK(X)

⟨x | y⟩

using the definition (8) ofXk and where, in all this proof, the subscript |K| ≤ k has to be understood
as K ⊂ J1, dK, |K| ≤ k,

⇐⇒ x♯ ∈ Xk and ⟨x♯ | y⟩ = max
|K|≤k

max
x∈πK(X)

⟨x | y⟩

⇐⇒ x♯ ∈ Xk and there exists K♯ ⊂ J1, dK , |K♯| ≤ k such that

x♯ ∈ πK♯(X) and ⟨x♯ | y⟩ = max
|K|≤k

max
x∈πK(X)

⟨x | y⟩

8



because, by definition (8) of Xk, x
♯ ∈

⋃
|K|≤k πK(X), hence there exists K♯ ⊂ J1, dK with |K♯| ≤ k

such that x♯ ∈ πK♯(X),

⇐⇒ x♯ ∈ Xk and there exists K♯ ⊂ J1, dK , |K♯| ≤ k such that

x♯ ∈ πK♯(X) and ⟨x♯ | y⟩ = max
|K|≤k

max
x∈πK(X)

⟨x | y⟩

and K♯ ∈ argmax
|K|≤k

max
x∈πK(X)

⟨x | y⟩

(by definition of argmax|K|≤k maxx∈πK(X)⟨x | y⟩)

⇐⇒ x♯ ∈ Xk and there exists K♯ ∈ argmax
|K|≤k

max
x∈πK(X)

⟨x | y⟩ such that

x♯ ∈ πK♯(X) and ⟨x♯ | y⟩ = max
x∈π

K♯ (X)
⟨x | y⟩

because K♯ ∈ argmax|K|≤k maxx∈πK(X)⟨x | y⟩ and by definition of argmax|K|≤k maxx∈πK(X)⟨x | y⟩,

⇐⇒ there exists K♯ ∈ argmax
|K|≤k

max
x∈πK(X)

⟨x | y⟩

such that x♯ ∈ argmax
x∈π

K♯ (X)
⟨x | y⟩

because x♯ ∈ argmaxx∈π
K♯ (X)⟨x | y⟩ implies that x♯ ∈ πK♯(X), hence that x♯ ∈ Xk, by Definition (8)

of Xk,

⇐⇒ there exists K♯ ∈ argmax
|K|≤k

max
x∈πK(X)

⟨x | y⟩

such that x♯ ∈ πK♯

(
argmax

z∈X
⟨z | πK♯y⟩

)
, (by (15))

⇐⇒ there exists K♯ ∈ argmax
|K|≤k

σcoX(πKy)

(as maxx∈πK(X)⟨x | y⟩ = σcoX(πKy) by (16))

such that x♯ ∈ πK♯

(
X ∩ F⊥(coX,πK♯y)

)
as argmaxz∈X⟨z | πK♯y⟩ = X∩F⊥(coX,πK♯y) by definition (6) of the exposed face F⊥(coX,πK♯y),

⇐⇒ x♯ ∈
{
πK♯

(
X ∩ F⊥(coX,πK♯y)

)
: K♯ ∈ K♯

X,k(y)
}
.

(by using the notation (9) K♯
X,k(y) = argmax|K|≤k σcoX(πKy))

Thus, we have proven the equality (11).

We now prove Equation (12) which can be rewritten as

F⊥
(
coXk, y

)
= coF̂ where F̂ =

{
πK♯

(
X ∩ F⊥(coX,πK♯y)

)
: K♯ ∈ K♯

X,k(y)
}

is the right-hand side term in equality (11), which now writes Xk ∩ F⊥
(
coXk, y

)
= F̂ .
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First, we have that F⊥
(
coXk, y

)
⊃ Xk ∩ F⊥

(
coXk, y

)
= F̂ , where the last equality is Equa-

tion (11). An exposed face is closed convex. Thus, coF̂ ⊂ F⊥(coXk, y). Similarly, since F⊥(coXk, y)

is exposed, an extreme point e of F⊥(coXk, y) is also an extreme point of coXk. Thus, it is also

contained in Xk. Using Xk ∩ F⊥
(
coXk, y

)
= F̂ (new form of Equation (11)), we get that e ∈ F̂ .

Thus, as F̂ contains all the extreme points of F⊥(coXk, y) and a convex set is the convex hull

of its extreme points, we obtain that F⊥(coXk, y) ⊂ coF̂ . Third, from coF̂ ⊂ F⊥(coXk, y) and

F⊥(coXk, y) ⊂ coF̂ , we conclude that F⊥(coXk, y) = coF̂ , finally giving Equation (12). 2

2.3.2 Proof of Corollary 2

Proof. The implication (13) is a consequence of (11). Indeed, as

πK♯

(
X ∩ F⊥(coX,πK♯y)

)
⊂ RK♯ ,

the support of any point x in Xk ∩ F⊥(coXk, y) is included in one of the subsets K♯ contained in

K♯
X,k(y) by (11).

Implication (13) can be interpreted as follows: since x ∈ Xk, it follows from (8) that

x ∈
⋃

|K|≤k

RK

and since x belongs to F⊥(coXk, y), we can be more precise and obtain from (11) that

x ∈ πK♯

(
X ∩ F⊥(coX,πK♯y)

)
.

As a consequence, x belongs to RK♯ or, equivalently, supp(x) is a subset of K♯; the possible sup-

ports of x are the K♯ ∈ K♯
X,k(y), determined by the dual vector y by means of (9).

Implication (14) is a direct consequence of (12). Indeed, as any x in F⊥(coXk, y) can be expressed

as a convex combination of elements of RK♯ , with K♯ in K♯
X,k(y), the support of x is necessarily a

subset of ⋃
K♯∈K♯

X,k(y)

K♯

as desired. 2

3 The case of generalized top-k and k-support norms

In §3.1, we provide background on generalized top-k and k-support dual norms. In §3.2, we
apply Theorem 1 with (primal) set the unit ball of a norm, and obtain thus face charac-
terization and support identification with k-support norms. In §3.3, we recall the notion of
orthant-monotonic norm and, in this case, we obtain a characterization of the intersection
of the k-sparse vectors with the faces of the k-support norm. Finally, in §3.4, we recall the
notion of orthant-strictly monotonic norm and, in this case, we obtain a simpler characteri-
zation of the intersection of the k-sparse vectors with the faces of the k-support norm.
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3.1 Background on generalized top-k and k-support norms

We provide background on generalized top-k and k-support dual norms that are constructed
by means of a source norm [6]. In the following, the symbol ⋆ in the superscript indicates
that the generalized k-support dual norm ||·||⊤⋆⋆,(k) is the dual norm of the generalized top-k

dual norm ||y||⊤⋆,(k) and, thus, is a norm on the primal space. To stress the point, we use x

for a primal vector, like in ||x||⊤⋆⋆,(k), and y for a dual vector, like in ||y||⊤⋆,(k).

Definition 4 Let ||·|| be a norm on Rd, that we call the source norm, with unit ball B. The
unit ball B⋆ of the dual norm ||·||⋆ is the polar set of B, that is, B⋆ = B⊙. For any k ∈ J1, dK,
and using sup|K|≤k as a shorthand for supK⊂J1,dK,|K|≤k, we call

(i) generalized top-k dual norm the norm [6, Eq. (10)]

||y||⊤⋆,(k) = sup
|K|≤k

||

k-sparse
projection
on RK︷ ︸︸ ︷
πK(y) ||⋆︸ ︷︷ ︸

exploring all
k-sparse projections

, ∀y ∈ Rd , (17)

whose unit ball is

B⊤
⋆,(k) =

{
y ∈ Rd : ||y||⊤⋆,(k) ≤ 1

}
=

⋂
|K|≤k

π−1
K (RK ∩B⋆)︸ ︷︷ ︸

cylinder

, (18)

hence is an intersection of cylinders,

(ii) generalized k-support dual norm the corresponding dual norm (of the generalized top-k
dual norm) [6, Eq. (11)]

||·||⊤⋆⋆,(k) =
(
||·||⊤⋆,(k)

)
⋆
, (19)

whose unit ball is

B⊤⋆
⋆,(k) =

{
x ∈ Rd : ||x||⊤⋆⋆,(k) ≤ 1

}
= co

( ⋃
|K|≤k

πK(B)
)
= co

( ⋃
|K|≤k

πK(S)
)
, (20)

and unit sphere is denoted by S⊤⋆
(k).

3.2 Face characterization and support identification

Here, we apply the result of Theorem 1 with (primal) set the unit ball of a norm.

Proposition 5 Let ||·|| be a norm on Rd, that we call the source norm, with unit ball B.
For any k ∈ J1, dK and any dual vector y ∈ Rd, we have that( ⋃

|K|≤k

πK(B)
)
∩ F⊥

(
B⊤⋆

⋆,(k), y
)
=

{
πK♯

(
F⊥(B, πK♯y)

)
: K♯ ∈ argmax

|K|≤k

||πKy||⋆
}
, (21)

11



and the faces of B⊤⋆
⋆,(k) are related to the faces of B by

F⊥(B
⊤⋆
⋆,(k), y) = co

{
πK♯

(
F⊥(B, πK♯y)

)
: K♯ ∈ argmax

|K|≤k

||πKy||⋆
}
. (22)

Proof. The proof results from Theorem 1 with X = B, Xk =
⋃

|K|≤k πK(X) =
⋃

|K|≤k πK(B)
in (8), and

K♯
X,k(y) = argmax

K⊂J1,dK
|K|≤k

σB(πKy) = argmax
K⊂J1,dK
|K|≤k

σcoX(πKy) = argmax
|K|≤k

||πKy||⋆

in (9), as σB is the dual norm ||·||⋆. Then, Equation (11) gives Equation (12), and Equation (21)

gives Equation (22), where we use the expression (20) of B⊤⋆
⋆,(k) = co

(⋃
|K|≤k πK(B)

)
. 2

We deduce support identification.

Theorem 6 Let f : Rd → R be a smooth convex function, and γ > 0. Let ||·|| be a
norm on Rd. For given sparsity threshold k ∈ J1, dK, we consider the generalized top-k
dual norm ||·||⊤⋆⋆,(k) (see Definition 4). Then, an optimal solution x♯ of

min
x∈Rd

(
f(x) + γ||x||⊤⋆⋆,(k)

)
(23a)

has support

supp(x♯) ⊂
⋃

K♯∈argmax|K|≤k

||πK(−∇f(x♯))||⋆

K♯ . (23b)

As a consequence, if

argmax
|K|≤k

||πK(−∇f(x♯))||⋆ = K♯ is unique , (24a)

then supp(x♯) ⊂ K♯ with |K♯| ≤ k , (24b)

so that the optimal solution x♯ is k-sparse.

Proof. We have that

x♯ ∈ argmin
x∈Rd

(
f(x) + γ||x||⊤⋆⋆,(k)

)
⇐⇒ x♯ ∈ argmin

x∈Rd

(
f(x) + γσB⊤

⋆,(k)

)
(by (18))

⇐⇒ 0 ∈ ∂
(
f + γσB⊤

⋆,(k)

)
(x♯) (by the Fermat rule)

⇐⇒ 0 ∈ ∂f(x♯) + γ∂σB⊤
⋆,(k)

(x♯)

12



by [3, Corollary 16.48], as both functions are proper convex lsc, and domf = Rd,

⇐⇒ 0 ∈ ∇f(x♯) + γ∂σB⊤
⋆,(k)

(x♯) (by [3, Proposition 17.31 (i)])

⇐⇒ 0 ∈ ∇f(x♯) + γF⊥(B
⊤
⋆,(k), x

♯)

as the subdifferential of a support function is the support function of the corresponding face, see
for instance [26, Theorem 1.7.2], [25, Corollary 8.25],

⇐⇒ −∇f(x♯) ∈ γF⊥(B
⊤
⋆,(k), x

♯)

⇐⇒

either x♯ = 0 , −∇f(0) ∈ B⊤
⋆,(k)

or x♯ ̸= 0 , x♯

||x♯||⊤⋆⋆,(k)
∈ F⊥(B

⊤⋆
⋆,(k),−∇f(x♯))

(by polarity [11, Theorem 5.1])

=⇒


either x♯ = 0 , supp(x♯) = ∅
or x♯ ̸= 0 , supp(x♯) ⊂

⋃
K♯∈argmax|K|≤k

||πK(−∇f(x♯))||⋆

K♯ (by (14))

Thus, we have proven (23b). Equation (24) follows trivially.

2

Corollary 7 Let f : Rd → R be a smooth convex function, γ > 0 and ||·||1 be the ℓ1-norm.
An optimal solution x♯ of

min
x∈Rd

(
f(x) + γ||x||1

)
(25a)

has support
supp(x♯) ⊂ argmax

j∈J1,dK
|∇jf(x

♯)| . (25b)

Proof. If ||·|| is the ℓ1-norm ||·||1 on Rd, then the generalized top-k dual norm ||·||⊤⋆⋆,(k) is also the

ℓ1-norm ||·||1, for any k ∈ J1, dK (see Table 1). Then, we apply Theorem 6 in the case k = 1, and

we get (23b), which is exactly (25b) as
⋃

K♯∈argmax|K|≤1

||πK(−∇f(x♯))||⋆

K♯ = argmaxj∈J1,dK|∇jf(x
♯)|. 2

3.3 The orthant-monotonic case

The notion of orthant-monotonic norm2 has been introduced in [16, 17] and an equivalent
characterization is provided in [7, Item 7 in Proposition 4]. A norm ||·|| is orthant-monotonic
if and only if it is increasing with the coordinate subspaces, in the sense that ||xJ || ≤ ||xK ||
for any x ∈ Rd and any two subsets J and K of J1, dK satisfying J ⊂ K. In fact, this is
equivalent to ||xJ || ≤ ||x|| for any vector x in Rd and any subset J of J1, dK.

2A norm is orthant-monotonic if and only if it is monotonic in every orthant, see [16, Lemma 2.12], hence
the name.
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Proposition 8 Let ||·|| be a (source) norm on Rd, with unit ball B. For given sparsity
threshold k ∈ J1, dK, we consider the generalized top-k dual norm ||·||⊤⋆⋆,(k) (see Definition 4).

If the source norm ||·|| is orthant-monotonic, then for any nonzero dual vector y ∈ Rd \ {0},
we have that

ℓ≤k
0 ∩ F⊥

(
B⊤⋆

⋆,(k), y
)
=

{
πK♯

(
F⊥(B, πK♯y)

)
: K♯ ∈ K♯

X,k(y)
}
, (26)

and the faces of B⊤⋆
⋆,(k) are related to the faces of B by (22).

To the difference of (21), the left-hand side of (26) is exactly the intersection of the level
set ℓ≤k

0 of the ℓ0 pseudonorm with the exposed face F⊥
(
B⊤⋆

⋆,(k), y
)
, whereas it was the intersec-

tion of a subset of the level set ℓ≤k
0 of the ℓ0 pseudonorm with the exposed face F⊥

(
B⊤⋆

⋆,(k), y
)

in the left-hand side of (21).

Proof. The assumptions of Proposition 5 are satisfied. Thus, the equality (21) holds true. The
right-hand sides of (21) and of (26) are identical. By comparing the left-hand side of (21) — namely,⋃

|K|≤k πK(B) ∩ F⊥(B
⊤⋆
⋆,(k), y) — with the left-hand side of (26) — namely, ℓ≤k

0 ∩ F⊥(B
⊤⋆
⋆,(k), y) —

we conclude that proving (26) amounts to showing that⋃
|K|≤k

πK(B) ∩ F⊥(B
⊤⋆
⋆,(k), y) = ℓ≤k

0 ∩ F⊥(B
⊤⋆
⋆,(k), y) .

We prove the equality by two opposite inclusions.
On the one hand, we have that⋃

|K|≤k

πK(B) ∩ F⊥(B
⊤⋆
⋆,(k), y) ⊂

⋃
|K|≤k

RK ∩ F⊥(B
⊤⋆
⋆,(k), y)

(as πK(B) ⊂ RK for all K, by definition of the orthogonal projection mapping πK)

= ℓ≤k
0 ∩ F⊥(B

⊤⋆
⋆,(k), y) . (by (2c))

On the other hand, we prove the reverse inclusion ℓ≤k
0 ∩F⊥(B

⊤⋆
⋆,(k), y) ⊂

⋃
|K|≤k πK(B)∩F⊥(B

⊤⋆
⋆,(k), y).

Indeed, for any nonzero dual vector y ∈ Rd \ {0}, we have that

ℓ≤k
0 ∩ F⊥(B

⊤⋆
⋆,(k), y) = ℓ≤k

0 ∩ S⊤⋆
⋆,(k) ∩ F⊥(B

⊤⋆
⋆,(k), y) (because F⊥(B

⊤⋆
⋆,(k), y) ⊂ S⊤⋆

⋆,(k) as y ̸= 0)

= ℓ≤k
0 ∩ S⊤⋆

⋆,(d) ∩ F⊥(B
⊤⋆
⋆,(k), y)

by [7, Equation (37) in Proposition 20], giving ℓ≤k
0 ∩ S⊤⋆

⋆,(k) = ℓ≤k
0 ∩ S⊤⋆

⋆,(d) using the property that

||·|| is orthant-monotonic,

= ℓ≤k
0 ∩ S ∩ F⊥(B

⊤⋆
⋆,(k), y)
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by [7, Item 2 in Proposition 13], giving ||·||⊤⋆⋆,(d) = ||·|| using the property that ||·|| is orthant-monotonic,

=
⋃

|K|≤k

RK ∩ S ∩ F⊥(B
⊤⋆
⋆,(k), y) (as ℓ≤k

0 =
⋃

|K|≤k RK by (2c))

⊂
⋃

|K|≤k

πK(S) ∩ F⊥(B
⊤⋆
⋆,(k), y)

(as RK ∩ S ⊂ πK(S), by definition of the orthogonal projection mapping πK)

⊂
⋃

|K|≤k

πK(B) ∩ F⊥(B
⊤⋆
⋆,(k), y) . (as πK(S) ⊂ πK(B))

This ends the proof. 2

3.4 The orthant-strictly monotonic case

The notion of orthant-strictly monotonic norm has been introduced in [7, Definition 5].
A norm ||·|| is orthant-strictly monotonic if and only if, for all x, x′ in Rd, we have

(
|x| <

|x′| and x ◦ x′ ≥ 0 ⇒ ||x|| < ||x′||
)
. An equivalent characterization is provided in [7, Item 3 in

Proposition 6]. A norm ||·|| is orthant-strictly monotonic if and only if it is strictly increasing
with the coordinate subspaces, in the sense that3, for any x ∈ Rd and any J ⊊ K ⊂ J1, dK, we
have xJ ̸= xK ⇒ ||xJ || < ||xK ||. An orthant-strictly monotonic norm is orthant-monotonic.

Proposition 9 Let ||·|| be a (source) norm on Rd, with unit ball B. For given sparsity
threshold k ∈ J1, dK, we consider the generalized top-k dual norm ||·||⊤⋆⋆,(k) (see Definition 4).
If the source norm ||·|| is orthant-strictly monotonic, then for any nonzero dual vector y ∈
Rd \ {0}, we have that

ℓ≤k
0 ∩ F⊥

(
B⊤⋆

⋆,(k), y
)
=

{
F⊥(B, πK♯y) : K♯ ∈ K♯

X,k(y)
}
, (27)

and the faces of B⊤⋆
⋆,(k) are related to the faces of B by

F⊥(B
⊤⋆
⋆,(k), y) = co

{
F⊥(B, πK♯y) : K♯ ∈ argmax

|K|≤k

||πKy||⋆
}
. (28)

To the difference of the right-hand sides of (21), (22), and (26), there is no projection
πK♯

(
F⊥(B, πK♯y)

)
, but just F⊥(B, πK♯y) in the right-hand sides of (27) and (28).

Proof. An orthant-strictly monotonic norm is orthant-monotonic, the assumptions of Proposi-
tion 8 hold true. Thus, Equation (26) holds true and hence, to prove (27), it suffices to show that
πK♯

(
F⊥(B, πK♯y)

)
= F⊥(B, πK♯y).

First, notice that, for any K♯ ∈ argmax|K|≤k||πKy||⋆, we have that ||πK♯y||⋆ > 0. Indeed, on

3By J ⊊ K, we mean that J ⊂ K and J ̸= K.
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the contrary, we would have that max|K|≤k||πKy||⋆ = 0, hence that πKy = 0 for any K with
|K| ≤ k. As k ≥ 1, this would imply that y = 0.

Second, we have that

x ∈ F⊥(B, πK♯y) ⇐⇒ ⟨x | πK♯y⟩ = max
z∈B

⟨z | πK♯y⟩ and x ∈ B

(by definition (6) of the exposed face F⊥(B, πK♯y))

⇐⇒ ⟨x | πK♯y⟩ = ||πK♯y||⋆ and x ∈ B (by definition of the dual norm ||·||⋆)
⇐⇒ ⟨x | πK♯y⟩ = ||x||||πK♯y||⋆ and ||x|| = 1

⇐⇒ ⟨πK♯x | πK♯y⟩ = ||x||||πK♯y||⋆ and ||x|| = 1
(as the orthogonal projection πK is self-adjoint (see (3)))

=⇒ ||πK♯x||||πK♯y||⋆ ≥ ⟨πK♯x | πK♯y⟩ = ||x||||πK♯y||⋆ (by polar inequality)

=⇒ ||πK♯x|| ≥ ||x|| (since ||πK♯y||⋆ > 0)

=⇒ ||πK♯x|| = ||x||

because the norm ||·|| is orthant-strictly monotonic, hence orthant-monotonic, hence ||πK♯x|| ≤ ||x||

=⇒ πK♯x = x ,

because the norm ||·|| is orthant-strictly monotonic hence, if we had πK♯x ̸= x, we would conclude
that ||πK♯x|| < ||x||.

We conclude that πK♯

(
F⊥(B, πK♯y)

)
= F⊥(B, πK♯y). 2

4 Geometry of the top-(q,k) and (p,k)-support norms

This section is devoted to the geometric analysis of the face and cone lattices of the unit balls
of top-(q,k) norm and (p,k)-support norms. In §4.1, we recall the definition of the ℓp-norms,
and then of top-(q,k) norm and (p,k)-support norms. In §4.2, we study the case where p is
equal to +∞. In §4.3, we study the case where 1 < p < +∞. We shall also see in §4.1 that
these norms do not depend on k when p is equal to 1.

4.1 The top-(q,k) norm and (p,k)-support norms

For any p in [1,+∞[ and x in Rd, let us recall that the ℓp-norm of x is

∥x∥p =
( d∑

i=1

|xi|p
) 1

p
,

and that its ℓ∞-norm is
∥x∥∞ = max

i∈J1,dK
|xi| .

For any p in [1,+∞], we denote by Bp and Sp the unit ball and the unit sphere for the
ℓp-norm. When the source norm is the ℓp-norm,
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◦ the corresponding generalized k-support dual norm
(
∥·∥p

)⊤⋆
⋆,(k)

is the (p,k)-support norm

denoted by ∥·∥⊤⋆p,k, with unit ball B⊤⋆
p,k and unit sphere S⊤⋆

p,k,

◦ the corresponding generalized top-k dual norm
(
∥·∥p

)⊤
⋆,(k)

is the top-(q,k) norm denoted

by ∥·∥⊤q,k, where 1/p+ 1/q = 1, with unit ball B⊤
q,k and unit sphere S⊤

q,k.

For any p and q in [1,+∞] such that 1/p+ 1/q = 1, we have

∥·∥⊤p,k = σB⊤⋆
q,k

, B⊤
p,k =

(
B⊤⋆

q,k

)⊙
and ∥·∥⊤⋆q,k = σB⊤

p,k
, B⊤⋆

q,k =
(
B⊤

p,k

)⊙
. (29)

The norms obtained when p varies from 1 to +∞ are summarized in Table 1. The
top-(1,k) and top-(2,k) norms arise in various contexts under different names, see [14] and
references therein. They are called the vector k-norm in [28, Sect. 2], the largest k-norm or
CVaR norm for the ℓ∞-norm in [15, Sect. 1], the 2-k-symmetric gauge norm in [21], and the
Ky Fan vector norm for the ℓ2-norm in [22]. Similarly, the (2,k)-support norm is referred to
as k-support norm in [1]. The (p,k)-support norm for p ∈ [1,∞] is defined in [20, Definition
21] where it is showed that the dual norm of the top-(p,k) norm is the (q,k)-support norm,
where 1/p + 1/q = 1. Therefore, the generalized k-support dual norm is the (p,k)-support
norm (denoted by ∥·∥⊤⋆p,k) when the source norm ||·|| is the ℓp-norm ∥·∥p.

Let us briefly discuss the cases when p is equal to 1 or to +∞. When p is equal to 1, it
follows from the definition that B⊤⋆

p,k is the cross-polytope B1 independently on k and that

its polar B⊤
q,k coincides with the unit hypercube B∞. When p is equal to +∞, the balls B⊤⋆

p,k

and B⊤
q,k form two families of polytopes that interpolate between the cross-polytope and the

hypercube [9], as illustrated in Figures 3 and 4 when d is equal to 3.
If we apply the result of Proposition 8 to the orthant-monotonic norm ℓ∞, we obtain a

characterization of ℓ≤k
0 ∩F⊥(B

⊤⋆
∞,k, y) in terms of the sets πK

(
S∞ ∩ F⊥(B∞, πKy)

)
for certain

subsets K of J1, dK. If we apply the result of Proposition 9 to the orthant-strictly monotonic
norms ℓp, where p belongs to [1,∞[, we obtain a characterization of ℓ≤k

0 ∩ F⊥(B
⊤⋆
p,k, y) in

terms of the sets Sp ∩ F⊥(Bp, πKy) for certain subsets K of J1, dK.

4.2 The case when p is equal to +∞
When the source norm is the ℓ∞-norm, the corresponding row of Table 1 tells us that we
should study the unit balls of top-(1,k) norms and (∞,k)-support norms. This results in
families of polytopes whose geometry and combinatorics have been studied in [9]. In this
section, we review these families of polytopes. Following the notation of Coxeter, denote by
γd the d-dimensional hypercube [−1, 1]d and by βd the cross-polytope whose vertices are the
centers of the facets of γd. Note that these two polytopes are related by polarity. It follows
from [9, Equations (1.2) and (1.3)] that, for every k in J1, dK,

B⊤
1,k = co

(
βd ∪

1

k
γd

)
and B⊤⋆

∞,k = kβd ∩ γd . (30)
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source norm ||·|| ||·||⊤⋆,(k), k ∈ J1, dK ||·||⊤⋆⋆,(k), k ∈ J1, dK
∥·∥p top-(q,k) norm (p,k)-support norm

∥y∥⊤q,k ∥x∥⊤⋆p,k
∥y∥⊤q,k =

(∑k
l=1|yν(l)|q

) 1
q no analytic expression

∥y∥⊤q,1 = ∥y∥∞ ∥x∥⊤⋆p,1 = ∥x∥1
∥·∥1 top-(∞,k) norm (1,k)-support norm

ℓ∞-norm ℓ1-norm

∥y∥⊤∞,k = ∥y∥∞, ∀k ∈ J1, dK ∥x∥⊤⋆1,k = ∥x∥1, ∀k ∈ J1, dK
∥·∥2 top-(2,k) norm (2,k)-support norm

∥y∥⊤2,k =
√∑k

l=1|yν(l)|2 ∥x∥⊤⋆2,k no analytic expression

(computation [1, Prop. 2.1])

∥y∥⊤2,1 = ∥y∥∞ ∥x∥⊤⋆2,1 = ∥x∥1
∥·∥∞ top-(1,k) norm (∞,k)-support norm

∥y∥⊤1,k =
∑k

l=1|yν(l)| ∥x∥⊤⋆∞,k = max{∥x∥1
k

, ∥x∥∞}

∥y∥⊤1,1 = ∥y∥∞ ∥x∥⊤⋆∞,1 = ∥x∥1

Table 1: Examples of generalized top-k and k-support dual norms generated by the ℓp source
norms ||·|| = ∥·∥p for p ∈ [1,∞], where 1/p+ 1/q = 1. For y ∈ Rd, ν denotes a permutation
of J1, dK such that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.

x3

x2

x1

x3

x2

x1

Figure 3: Unit balls B⊤⋆
∞,1 (left) and B⊤

1,1 (right) when d = 3
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x3

x2x1

x1 + x2 + x3

x3

x2

x1

Figure 4: Unit balls B⊤⋆
∞,2 (left) and B⊤

1,2 (right) when d = 3

When k is equal to 1, B⊤
1,k coincides with the hypercube γd and B⊤⋆

∞,k with the cross-

polytope βd. When k is equal to d, the opposite holds: B⊤
1,k coincides with the cross-polytope

βd and B⊤⋆
∞,k with the hypercube γd. In particular these two families interpolate between

the hypercube and the cross-polytope and, as pointed out in [9], B⊤
1,k and B⊤⋆

∞,k are related
by polarity for all k in J1, dK and not just when k is equal to 1 or d. Note that in [9] the
parameter k is allowed to take any (possibly non integral) value in the interval [1, d]. In
dimension 3, these two polytopes are shown on Figure 3 when k is equal to 1 and in Figure 4
when k is equal to 2. Theorem 2.1 from [9] can be rephrased as follows.

Theorem 10 The facets of B⊤
1,k are precisely the sets of the form

co

(
F⊥(βd, y) ∪

1

k
F⊥(γd, y)

)
(31)

where y is a vector in {−1, 0, 1}d with exactly k nonzero coordinates.

Observe that (31) is precisely F⊥(B
⊤
1,k, y). As noted in [9], for any vector y in {−1, 0, 1}d,

the affine hulls of F⊥(βd, y) and F⊥(γd, y) are orthogonal subspaces of Rd. More precisely,
if we denote by k the number of nonzero coordinates of y, hence k = ℓ0(y), then the two
polytopes F⊥(βd, y) and F⊥(γd, y)/k intersect in a single point that belongs to the relative
interior of both of these polytopes. We then get, as an immediate consequence, the following
description of all the proper faces of B⊤

1,k from Theorem 10.

Corollary 11 The proper faces of B⊤
1,k are precisely the sets of the form

co

(
F ∪ 1

k
G

)
(32)

where, for some vector y in {−1, 0, 1}d with exactly k nonzero coordinates,

(i) F and G are exposed faces of F⊥(βd, y) and F⊥(γd, y), respectively,
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Figure 5: Unit balls B⊤⋆
2,2 (left) and B⊤

2,2 (right) when d = 3

(ii) F and G are not both empty,

(iii) F is equal to F⊥(βd, y) if and only if G is equal to F⊥(γd, y).

Corollary 11 completely describes the face lattice of B⊤
1,k (which is further enumerated

in [9]). Since B⊤⋆
∞,k is the polar of B⊤

1,k, the normal cones of B⊤⋆
∞,k are precisely the cones

spanned by the faces of B⊤
1,k and, as a consequence, Corollary 11 also describes the normal

fan of B⊤⋆
∞,k. By the duality between the face lattice of a polytope and its normal fan, one

then also recovers the face lattice of B⊤⋆
∞,k from that corollary and the normal fan of B⊤

1,k.

4.3 The case when 1 < p < +∞
When the source norm is the ℓp-norm where 1 < p < +∞, the first row of Table 1 tells
us that we should study the unit balls of the top-(q,k) norm, with 1/p + 1/q = 1, and its
dual (p,k)-support norm. Thus, we will describe the exposed faces and the normal cones of
B⊤⋆

p,k. The exposed faces and normal cones of B⊤
p,k can then be recovered by polarity. The

balls B⊤⋆
2,2 and B⊤

2,2 are shown on Figure 5 when d is equal to 3. One can see that B⊤
2,2 is

the intersection of three cylinders colored yellow, orange, and red. By duality, B⊤⋆
2,2 has eight

triangular faces. While these triangular faces are exposed, their edges, shown as dotted lines,
are faces of B⊤⋆

2,2 that are not exposed.
The face of Bp exposed by a nonzero vector y from Rd can be recovered from the equality

case of Hölder’s inequality. Indeed, by this inequality,∣∣⟨z | y⟩∣∣ ≤ ∥y∥q (33)

for any point z in Bp with equality when

|zi|p = λ|yi|q (34)

for some nonnegative number λ and all integers i satisfying 1 ≤ i ≤ d, where

1

p
+

1

q
= 1 . (35)
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Now assume that z belongs to the face of Bp exposed by y. In that case, ∥z∥p is equal
to 1 and (33) must turn into an equality. In particular, there exists a nonnegative number
λ satisfying (34) for every i. The value of λ can be recovered by summing (34) over i:

λ =
1

∥y∥qq
. (36)

As a consequence, z must be the point such that, when yi is equal to 0 then so is zi and
when yi is nonzero, then zi is the number with the same sign than yi satisfying

|zi| =
(

|yi|
∥y∥q

)q/p

. (37)

Hence, the face of Bp exposed by y is made of just the point z. From now on, we shall denote
z by vp(y). Note that v2(y) and y are collinear, more precisely,

v2(y) =
y

∥y∥2
. (38)

We are now able to characterize the exposed faces of B⊤⋆
p,k.

Theorem 12 For any number p satisfying 1 < p < +∞, the face of B⊤⋆
p,k exposed by a given

nonzero vector y is the convex hull of all the points of the form vp(πK♯y) where

K♯ ∈ argmax
|K|≤k

∥πKy∥1 . (39)

Proof. Using Equation (28) for the orthant-strictly monotonic ℓp-norm, one obtains that

F⊥

(
B⊤⋆

p,k, y
)
= co

{
F⊥(Bp, πK♯y) : K♯ ∈ argmax

|K|≤k
∥πKy∥p

}
.

Consider any size k subset K♯ of J1, dK that belongs to argmax|K|≤k ∥πKy∥p. As seen in Equa-
tion (37), the face of Bp exposed by πK♯y is the vertex vp(πK♯y). Hence,

F⊥

(
B⊤⋆

p,k, y
)
= co

{
vp(πK♯y) : K♯ ∈ argmax

|K|≤k
∥πKy∥p

}
.

Finally, since the ℓp-norms are (strictly) monotonic,

argmax
|K|≤k

∥πKy∥p = argmax
|K|≤k

∥πKy∥1,

which completes the proof. 2

Let us first introduce some notation. Consider an integer k in J1, dK and a nonzero vector
y from Rd. Denote by mk(y) the largest number such that the set{

i ∈ J1, dK : |yi| ≥ mk(y)
}
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Figure 6: Portions of the normal fan of B⊤⋆
2,2 (left) and of B⊤

2,2 (right) when d = 3

contains at least k indices. In other words,

mk(y) = sup
{
λ ≥ 0 :

∣∣{i ∈ J1, dK : |yi| ≥ λ}
∣∣ ≥ k

}
.

We will refer by Lk(y) to the set of the indices i such that |yi| is greater than mk(y) and by
Lk(y) the set of the indices i such that |yi| is greater than or equal to mk(y):

Lk(y) =
{
i ∈ J1, dK : |yi| > mk(y)

}
, (40a)

Lk(y) =
{
i ∈ J1, dK : |yi| ≥ mk(y)

}
. (40b)

The following statement is an immediate consequence of these definitions.

Proposition 13 For any integer k in J1, dK and any nonzero vector y in Rd,

Lk(y) =
⋂
K♯

K♯

and
Lk(y) =

⋃
K♯

K♯

where the union and the intersection range over the elements K♯ of argmax|K|≤k ∥πKy∥1.

Using these notations, Theorem 12 allows to recover the description of the normal cones
of B⊤⋆

p,k given in [19, Proposition 23]. In our setting, the normal cone of B⊤⋆
p,k at one of its

exposed faces F refers to the closure of the set of the vectors y in Rd such that F is the face
of B⊤⋆

p,k exposed by y. The normal fans of B⊤⋆
2,2 and B⊤

2,2 are illustrated in Fig. 6 when d is
equal to 3. The figure only shows a portion of these fans but both can be reconstructed by
symmetry.
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Theorem 14 ([19, Proposition 23]) The normal cones of B⊤⋆
p,k at its exposed faces are

the sets of the form

cone
{
y ∈ Rd : πLk(z)

y = z, Lk(y) = Lk(z)
}
, (41)

where cone(X) denotes the closure of the cone spanned by X and z is a unit vector from Rd

such that z coincides with πLk(z)
z.

Proof. Consider a nonzero vector z in Rd and denote

G = F⊥

(
B⊤⋆

p,k, z
)
.

According to Theorem 12,

G = co
{
vp(πK♯z) : K♯ ∈ argmax

|K|≤k
∥πKz∥1

}
. (42)

It suffices to determine all the vectors y such that G is the face of B⊤⋆
p,k exposed by y. First observe

that a subset K♯ of J1, dK belongs to argmax|K|≤k ∥πKz∥1 if and only if

Lk(z) ⊂ K♯ ⊂ Lk(z) (43)

and either mk(z) is equal to 0 or K♯ has exactly k elements. In particular by Theorem 12,

G = F⊥

(
B⊤⋆

p,k, πLk(z)
z
)
, (44)

and we can assume, without loss of generality, that z coincides with πK♯z. We will treat two
separate cases depending on whether mk(z) is equal to 0 or not. First, if mk(z) is equal to 0,
then Lk(z) is equal to J1, dK and (41) just states that the normal cone of B⊤⋆

p,k at G is the half-line
spanned by z. However, in that case, Theorem 12 states that G is equal to {vp(z)}. Hence if y is
another nonzero vector such that G is the face of B⊤⋆

p,k exposed by y, the points vp(z) and vp(y)
must coincide, which implies that x and y are multiples of one another by a positive factor and
that the normal cone of B⊤⋆

p,k at G is the half-line spanned by z, as desired.
Now assume that mk(z) is not equal to 0 and consider a nonzero vector y such that G is the

face of B⊤⋆
p,k exposed by y. It follows from Theorem 12 that

G = co
{
vp(πK♯y) : K♯ ∈ argmax

|K|≤k
∥πKy∥1

}
. (45)

Consider a subset K♯ of J1, dK such that

K♯ ∈ argmax
|K|≤k

∥πKz∥1 .

Since mk(z) is not equal to 0, K♯ contains exactly k elements and |zi| is nonzero when i belongs
to K♯. By construction, a coordinate of vp(πK♯z) is nonzero if and only if the corresponding
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coordinate of πK♯z is nonzero. As a consequence, according to (42), vp(πK♯z) is the unique vertex
of G contained in RK♯ . It then follows from (45) that

argmax
|K|≤k

∥πKy∥1 = argmax
|K|≤k

∥πKz∥1 , (46)

and that, for every set K♯ contained in argmax|K|≤k ∥πKz∥1,

vp(πK♯y) = vp(πK♯z) . (47)

According to Proposition 13 and to (46), Lk(z) and Lk(y) coincide. Now recall that the normal
cones of Bp at its proper faces are half lines incident to the origin of Rd. Hence, according to (47),
there exists a positive number αK♯ such that

πK♯y = αK♯πK♯z .

It remains to show that the value of αK♯ does not depend on K♯. Indeed, this will imply that up
to a positive multiplicative factor, πLk(z)

y coincides with z and results in the desired form (41) for

the normal cone of B⊤⋆
p,k at G. If Lk(z) is nonempty, this is immediate. Indeed,

αK♯ =
yi
zi

,

for any element i of Lk(z) and as a consequence, αK♯ does not depend on K♯. Therefore, assume
that Lk(z) is empty. In that case, zi is equal to mk(z) when i belongs to Lk(z), and equal to 0
otherwise. Moreover, the sets K♯ are precisely the size k subsets of Lk(z). If k is equal to 1, these
sets are all the singletons from Lk(z) and this implies that Lk(y) is also empty. Therefore yi is
equal to mk(y) when i belongs to Lk(y) which implies that αK♯ does not depend on K♯.

Finally assume that k is at least 2 and observe that, for any two nondisjoint size k subsets K♯

and K̃♯ of Lk(z), the values of αK♯ and α
K̃♯ necessarily coincide. As k is at least 2, the graph

whose vertices are the size k subsets of Lk(z) and whose edges connect two of them when they are

nondisjoint is connected, it follows that αK♯ does not depend on K♯. 2

By analogy with the polytopal case, the normal fan of B⊤⋆
p,k refers to the set N (B⊤⋆

p,k) of its
normal cones. It is a consequence of Theorem 14 that the normal cones, and therefore the
normal fan of B⊤⋆

p,k do not depend on p when 1 < p < +∞. Interestingly, Bp has the same
property: its normal cones are {0} and the half-lines incident to the origin independently on
p when 1 < p < +∞. We show that N (B⊤⋆

p,k) refines N (B⊤⋆
∞,k) in the sense of [29, Section 7].

Corollary 15 Every cone from N (B⊤⋆
p,k) is contained in a cone from N (B⊤⋆

∞,k).

Proof. Since the normal cones of B⊤⋆
p,k do not depend on p, it suffices to prove the statement when

p is equal to 2. Consider a cone C in N (B⊤⋆
2,k). If C is empty or equal to {0}, then this is immediate.

Assume that C is the normal cone of B⊤⋆
2,k at an exposed face which we will denote by F . According

to Theorem 14, there exists a nonzero vector z in Rd that coincides with πLk(z)
z such that

C = cone
{
y ∈ Rd : πLk(z)

y = z, Lk(y) = Lk(z)
}
. (48)
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Observe that if mk(z) is equal to 0, then Lk(z) is equal to J1, dK. In that case, C is the half-line
spanned by z and it is contained in a normal cone of B⊤⋆

∞,k. Therefore, we shall assume from now

on that mk(z) is positive. Consider a size k set K♯ such that Lk(z) ⊂ K♯ ⊂ Lk(z). Since mk(z) is
positive, zi is nonzero when i belongs to K♯. Denote by y the vector such that

yi =


−1 if zi < 0 and i ∈ K♯ ,

1 if zi > 0 and i ∈ K♯ ,

0 if i ̸∈ K♯ .

(49)

By construction, y has exactly k nonzero coordinates. Denote

F = co

(
F⊥(βd, y) ∪

1

k
F⊥(γd, y)

)
. (50)

According to Theorem 10, F is a facet of B⊤
1,k. We will show that C is contained in the cone spanned

by F . By polarity, this cone belongs toN (B⊤⋆
∞,k) and this will therefore prove the corollary. Consider

a vector x such that πLk(z)
x is equal to z and Lk(x) to Lk(z). It suffices to show that x belongs

to the cone spanned by F . Indeed, since that cone is closed, it follows from (48) that C must be
contained in it. Observe that x can be decomposed as

x = πK♯x+ πJ1,dK\K♯x . (51)

By construction, xi is equal to mk(z)yi when i belongs to K♯\Lk(z). Hence,

πK♯x = πLk(z)x−mk(z)πLk(z)y +mk(z)y . (52)

Since πLk(z)
x is equal to z and Lk(z) is a subset of Lk(z), the first term in the right-hand side is

equal to πLk(z)z. As a consequence x can be rewritten into x′ + x′′ where{
x′ = πLk(z)z −mk(z)πLk(z)y ,

x′′ = mk(z)y + πJ1,dK\K♯x .
(53)

Observe that x′ is contained in the cone spanned by F⊥(βd, y) and x′′ in the cone spanned by

F⊥(γd, y). Hence, x
′ + x′′ is contained in the cone spanned by F , as desired. 2

We recall that the hypersimplex δd,k is the convex hull of the vertices of [0, 1]d that have
exactly k nonzero coordinates. These polytopes appear in algebraic combinatorics [12, 13]
and in convex geometry [9, 23, 24]. By extension, we call hypersimplex any polytope that
coincides up to a bijective affine transformation, with the convex hull of such a subset of
vertices of the hypercube. It is observed in [9] that B⊤⋆

∞,k can be decomposed into a union of

hypersimplices with pairwise disjoint interiors and that the proper faces of B⊤⋆
∞,k are either

hypersimplices or isometric copies of B⊤⋆
∞,k, but for another ambient dimension than d. The

situation for B⊤⋆
p,k is different as all of its proper faces are hypersimplices.

Corollary 16 If 1 < p < +∞, then all the proper faces of B⊤⋆
p,k are hypersimplices.
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Proof. Consider a proper face F of B⊤⋆
p,k. Let us first assume that F is exposed by a vector y. If

mk(y) is equal to 0, then for every subset K♯ of J1, dK that belongs to argmax|K|≤k ∥πKy∥p,

πK♯y = y (54)

It then follows from Theorem 12 that F is the convex hull of a single point and therefore a 0-
dimensional hypersimplex. Let us now assume that mk(y) is positive.

Denote |Lk(y)\Lk(y)| by n and let us identify Rn with the subspace of Rd made up of the
points x such that xi is equal to 0 when i belongs to either Lk(y) or J1, dK\Lk(y). Denote by P the
orthogonal projection of F on Rn. It follows from Theorem 12 that P/mk(y) is, up to flipping the
signs of the coordinates, the convex hull of the points in {0, 1}d with exactly k − |Lk(y)| nonzero
coordinates, as desired.

Now assume that F is not an exposed face of B⊤⋆
p,k. In that case, F is a proper face of an exposed

face of B⊤⋆
p,k. Hence by the above, F is proper face of a hypersimplex. As all the proper faces of a

hypersimplex are lower-dimensional hypersimplices, this completes the proof. 2

5 Conclusion

Our original motivation was to identify a class of norms which, when added as a penalty
term, promote sparsity in an optimization problem, but within a given sparsity budget k. For
this purpose, we have studied in Sect. 2 the exposed faces of closed convex sets generated by
k-sparse vectors, hence whose extreme points are k-sparse. We also have deduced support
identification from dual information. Thus equipped, we have focused in Sect. 3 on the faces
of the unit balls of so-called generalized k-support norms, constructed from k-sparse vectors
and from a source norm. In the cases of orthant-monotonic and orthant-strictly monotonic
source norms, we have obtained a characterization of the intersection of the k-sparse vectors
with the faces of the k-support norm. Theorem 6 makes the link with our original motivation:
we have provided dual conditions under which the primal optimal solution of a minimization
problem, penalized by a k-support norm, is k-sparse. Going back to the original work of
Tibshirani [27], the intuition — behind proposing least-square regression with an ℓ1-norm
penalty to achieve sparsity — is that the kinks of the ℓ1-unit ball are located at sparse
points (see Figure 1). In Sect. 4, we have gone on in that direction by providing geometric
descriptions of the face and cone lattices of the unit balls of top-(q,k) norm and (p,k)-support
norms. By contrast with the ℓ1-unit ball, faces intersect in a subtle way, mixing kinks and
smoother parts, as illustrated by Figure 5 (left). So, guided by sparsity, we have moved in
this paper from optimization to the geometry of unit balls.
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Springer-Verlag, New York, second edition, 2017.

[4] C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, and P. Weiss. On repre-
senter theorems and convex regularization. SIAM Journal on Optimization, 29(2):1260–
1281, 2019.

[5] E. J. Candès. The restricted isometry property and its implications for compressed
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