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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

. A matrix of full row rank is in Hermite normal
form 1f 1t has the form [B O] where B 1s
nonsingular, lower triangular, nonnegative matrix,
in which each row has a unique maximum entry
located on the main diagonal.

Elementary column operations:
I.  Exchanging two columns
[I.  Multiplying a column by -1

III. Adding an integral multiple of one column to another
column



Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

THEOREM 4.1: Each rational matrix of full row rank can be

brought into Hermite normal form by a series of elementary
column operations.

Proof: Let A be a rational matrix of full row rank. WLOG, A is integral.

Suppose we have transformed A, by elementary column operations, to
the form [C D}Where B is lower triangular with positive diagonal.

Using elementary column operations, modify D so that its first row
(0,,-..,0,,) is nonnegative, the sum 0,, +...+ 9,,is as small as possible.
Assume that 0,, 20,, =...2>0,,. Then 9,,> 0 since A has full row rank.
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4.1. THE HERMITE NORMAL FORM

Moremore, if 6,,> 0, by subtracting the second column of D from the first
column of D, the first row will have smaller sum, contradicting our
assumption. Hence, 0,,=---=0,,=0, and we have obtained a larger lower
triangular matrix.

By repeating this procedure, the matrix A finally will be transformed into
[B 0] with B=( ﬁij)lower triangular with positive diagonal. Next:

fori=2,...,n (order of B), for j=1,...,i - 1, add an integer multiple of the i-th
column of B so that the (i, j)-th entry of B is nonnegative and less than ..
After these elementary column operations, the matrix is in Hermite normal

form.
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4.1. THE HERMITE NORMAL FORM

Corollary 4.1a. Let A be a rational matrix and let b be a rational column
vector. Then the system Ax = b has an integral solution x < yb 1s an
integer for each rational row vector y for which yA is integral.

Proof : If x and yA are integral vectors and Ax = b, then yb = yAx is an
integer. Suppose yb is an integer whenever yA is intgral. Then Ax = b has

1
a (possibly fractional) solution (if not, then yA =0 and yb = > for some

rational vector y). Assume that the rows of A are linearly independent.
Both sides of < are invariant under elementary column operations.
So by THM 4.1 assume that A is in Hermite normal form [B 0].
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4.1. THE HERMITE NORMAL FORM

Since B'[B 0] =[/ 0] is an integral matrix, it follows from
our assumption that also B™'b is an integral vector.

, B'b B'b) .
Since [B O] 0 = b the vector x = 0 1S an

integral solution for Ax = b.
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4.1. THE HERMITE NORMAL FORM

A subset A of R" is called an (additive) group if:
10 € A
() if x,y € A then x+y € A and -x € A.

The group is said to be generated by a,,...,a  if
A={Aa ++Aa, A, A, e}

The group is called a lattice if it can be generated by linearly independent

vectors. These vectors are called a basis for the lattice.
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Corollary 4.1b.If a,,...,a,, are rational vectors, then the group generated

by a,,...,a, 1s a lattice, 1.e, 1s generated by linearly independent vectors.

Proof : Assume that q,,...,a, span all space. (Otherwise we could apply

a linear transformation to a lower dimensional space.) Let A be the matrix
with columns q,,...,a, (so A has full row rank). Let [B 0] be the Hermite
normal form of A. Then the columns of B are linearly independent vectors

generating the same group as a,,...,a

mo



Theory of lattices and linear diophantine equations
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If a,,...,a, are rational vectors we can speak of the lattice generated

by a,,...,a,,.

Given a rational matrix A, Corollary 4.1a gives necessary and sufficient
conditions for being an element of the lattice A generated by the

columns of A.

Corollary 4.1a implies that if A has full row rank, with Hermite normal

form [B 0] (B lower triangular), then b belongs to A <> B™'b is integral.
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4.1. THE HERMITE NORMAL FORM

Corollary 4.1c. Let A be an integral m X n — matrix of full row rank.
Then the following are equivalent:
(1) the g.c.d. of the subdeterminants of A of order m is 1;
(11) the system Ax = b has an integral solution x, for each integral vector b;

(111) for each vector y, if yA is integral then y is integral.

From the Hermite normal form theorem, for any rational system Ax = b with

at least one integral solution there exist integral vectors x,, x,,..., x, such that
{x1Ax =b;x integral} = {x ;+A,x, + -+ A x, | A,,..., A, € Z}

where x,,..., x, are linearly independent and ¢ = (# of columns of A) - rank(A).
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4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Theorem 4.2.L et A and A' be rational matrices of full row rank, with
Hermite normal forms [ B O] and [ B' 0], respectively. Then the columns

of A generate the same lattice as those of A' if and only if B= B".

In other words, two lattices are equal < their respective matrices have

the same Hermite normal form.
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Proof : Sufficiency: The columns of B and A generate the same lattice,
and similarly for B' and A'.

Necessity: Suppose the columns of A and those of A' generate the same
lattice A. Then the same holds for B and B' (by elementary column
operations from A & A"). Denote B =:(f3;) and B'=:(8",).

Suppose B # B' and choose [, # ', with i as small as possible.

WLOG, B, > B';. Letb, and b, be the j-th column of B and B".

12
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4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Then b, € A and b'j € A, and hence b, — b'j € A. This implies that

b, - b'j 1s an integral linear combination of the columns of B. By the choice
of 1, the vector b, — b'j has zeros in the first (i-1) positions. Hence, as B is
lower triangular, b, — b'j 1s an integral linear combination of columns
indexed i,...n. So B, — B, is an integral multiple of f3,. However, this
contradicts the fact that 0 < ‘ B, — ,B'l.j‘ < B. (since ifi=j,then 0 < B'. < 3. ,
and if j<i, then0 <, < 3, and 0< B', < B'; < ;).
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4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Corollary 4.2a. Every rational matrix of full row rank has a unique

Hermite normal form.

NOTE : It B,,...., B, are the diagonal entries of Hermite normal
form of [B 0] of A, then for each j = 1,...,m the product §3,,,..., i 1S

equal to the g.c.d. of the subdeterminants of order j of the first j rows

of A (this g.c.d. is invariant under elementary column operations).

= the main diagonal of the HNF is unique
= size of HNF is polynomially bounded by the size of the original matrix
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4.3. UNIMODULAR MATRICES

Definition : Let U be nonsingular matrix. Then U is called unimodular

if U 1s integral and has determinant *1.

Theorem 4.3. The following are equivalent for a nonsingular rational
matrix U of order n:
(1) U 1s unimodular;
(i) U is unimodular;
(iii) the lattice generated by the columns of U is Z";
(iv) U has the identity matrix as its Hermite normal form:;

(v) U comes from the identity matrix by elementary column operations.
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4.3. UNIMODULAR MATRICES

Corollary 4.3a. Let A and A' be nonsingular matrices. Then TFAE:
(1) the columns of A and of A' generate the same lattice;

(i1) A' comes from A by elementary column operations;

(iii) A'= AU for some unimodular matrix U (A™'A' is unimodular);
Corollary 4.3b. For each rational matrix A of full row rank there is a

unimodular matrix U such that AU is the HNF of A. If A is nonsingular,

U is unique.
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4.3. UNIMODULAR MATRICES

Example. Consider the following matrices A, B, and U. Then BU is

Hermite decomposition of A.

1 2 3 1 0 0 1 2 3
A=[3 2 0|, B=|0 1 0|, U=|-3 2 0
1 0 0 45 6 2 3 -3

U encodes the composite effect of the elementary column operations on A

needed to bring A into normal form.



Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

The Euclidean determines the g.c.d. of two positive rational

numbers o and f.

1. Replace o by OC—L%J,B and 3 by ,B—[%Joc :

2. Repeat until one of them 1s 0.

3. The nonzero among them is the g.c.d. of the original & and S.

Example: o =18, f=27; find g.c.d {18,27}
18—0x27=18

27—-1x18=9

I18—2%X9=0= g.cd {18,27}=09.
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5.1 THE EUCLIDEAN ALGORITHM

FACTS: (i) g.cd {o, B} =g.c.d {(x-[%J B, B} and
(1) g.cd {a, 0} =q.
Proof of (i) : Define a—{%J B =r. Let d be any common divisor of

o and B. So d|a and d|B. Then r = a—t%Jﬁ is a multiple of d.

Thus, any common divisor of ¢ and f3 is also a common divisor of

r= Oc—lk%Jﬁ and S.

19



Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

Linear Diophantine Equation
e find integers ¥ and € such that yo+&B=n, with ¢, 8 both

rational integers

Theorem : Suppose a,3,1 are integers. Then yo+£B=n has an integer
solution if and only if g.c.d{c,B} divides 7.

Proof: (=) Since g.c.d{c,B} divides ¢, B, it must divide yo+€&f for any
integer v,€. Thus is divides .

(&) gcd{o,B}=ax+ By, x,yintegers. If g.c.d{e,B} divides n,3 an 7
such that ' x g.c.d{c,B}=n'%X (ax + By) =n'(cxx)+ n'(By). This implies that
y =1n'x and £€=1n'"y is a solution of ya+&B=n.
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5.1 THE EUCLIDEAN ALGORITHM

Linear Diophantine Equation
e find integers ¥ and € such that yo+¢B=g.c.d{a,B}, with ¢, 8 both

rational integers

Method :
> determine a series of 3 X 2 matrices where
o P o, B
A, =1 0 A =y, 0,

0 1 S
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> RULE to find A, ,, from A, :

(i) if k is even and 3, > 0, substract {0{% J times the 2™ column
k

of A, from the 1%;

(ii) if k is odd and o, > 0, substract V% J times the 1* column
k

of A, from the 2",

> Repeat for k =0,1,2,...,N, ay=0or B, =0.
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5.1 THE EUCLIDEAN ALGORITHM

Example: o=15, =6

15 6

A,=|1 0| k=0,8,=6>0, SOL“%OJ:ijzz
_O 1_
S

A=|1 0 k=1,a1:3>0,so{%1J:L%J:2
__2 1_
-

A=l 1 = B, =0. so0 g.c.d{o,B} =7v,a+¢,
5 s 3=(DA5)+(=2)(6)
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5.1 THE EUCLIDEAN ALGORITHM

> if B, =0 and a #0, then o is g.c.d of & and 3 since
the g.c.d. of upper row of A, does not change with the iterations
and o= g.c.d {o,0}

> if o =0 and B #0, then B=g.c.d {a, 5}

> find integers y and € with ya+&fB=g.c.d{a,[}

> (1,-o,-B)A, =(0,0) and (1,-o,-B)A, =(0,0) (elem. col. operations)

24



Algorithms for linear diophantine equations
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> yo+ep=ao,

5ka+z.:kﬁ = ﬁk
> if B, =0,a, #0
Yo+ € B =0, =gcd{o,p}

Oy +Eyp=0

> Similarly, if &r, =0, 8 #0
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5.1 THE EUCLIDEAN ALGORITHM

SOME NOTES :

> 'O‘k5k + :Bkyk - ﬁ
O‘kgk - ﬁkgk =

> Yka - 6k8k =1

> forallk, y, 21,{, =21, and 6, <0,¢, <O0.
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5.1 THE EUCLIDEAN ALGORITHM

Theorem 5.1. The Euclidean algorithm is polynomial-time method, i.e.,
polynomial in the size of the input.

Proof : o Assume that o and 3 are natural numbers.

o All matrices A, have nonnegative integers in 1™ row.
o Each iterations reduces «, or B, by a factor of at least 2.
o Recall that the length of an integer n as input is the # of bits,
1.e., log, n+O(1)
o After at most | log,o |+| log,B |+1 iterations, either o, =0 or 3, =0.
o Each iteration consists of elementary arithmetic operations, thus
taking polynomial time.

o .. the sizes of the numbers are polynomially bounded by the sizes
of o and .

21
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5.1 THE EUCLIDEAN ALGORITHM

Corollary 5.1a. A linear diophantine equation with rational coefficients

can be solved in polynomial time.

Proof : Let a,{,+---+0 (. =f be a rational linear diophantine equation.
Algorithm : Case n=1: trivial. Letn >2. Find «',v, € with Euclidean
alg. satistying: o'=g.cd{a,,o,} =0,y +o,E, V,E:integers.
Solve the linear diophantine equation in (n-1) variables:

() OC'C"I' a3C3+'”+anCn=,B°
If (*) has no integral solution, then neither does the original equation.
If (*) has an integral solution {',(,...,¢ then ¢, =y",{, =&, C,,....C
gives an integral solution to the original equation.

This defines a polynomial algorithm.
28
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5.2 SIZES & GOOD CHARACTERIZATIONS

Theorem 5.2. The Hermite normal form [B 0] of a rational matrix of full
row rank has size polynomially bounded by the size of A. Moreover, there
exists a unimodular matrix U with AU=[B 0] such that the size of U is

polynomially bounded by the size of A.

Proof : - Assume A is integral (multiplying A by porduct of the denominators
of A, say Kk, also multiplies the HNF of A by «).

- Diagonal entries of B are divisors of subdeterminants of A (Sec. 4.2).
- Each row of B has its max. entry on the diagonal of B

= size of [B 0] is polynomially bounded by size of A.
29
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Proof : - Assume A=[A' A"] with A' nonsingular.

- Let HNF of
A A"l |B 0
18
0 1 B' B"

for certain matrices B' and B".
- Since the sizes of B, B', and B" are polynomially bounded by the

size of A, the size of unimodular matrix

A" A"T'TB 0
U:.=
0O I||B B"

is polynomially bounded by the size of A
-AU =[A" A"lU =[B 0]
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Corollary 5.2a. If a rational system Ax=Db has an integral solution,

it has one of size polynomially bounded by the sizes of A and b.
Corollary 5.2b. The following problem has a good characterization:

given a rational matrix A and a rational vector b, does the system

Ax = b have an integral solution?
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5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS
LINEAR DIOPHANTINE EQUATIONS

Polynomial algorithm to determine the HNF

Let A be an m X n integral matrix of full row rank.

Let M be the absolute value of the determinant of an (arbitrary) submatrix A of
rank m.

The columns of A generate the same lattice as the columns of the martix:

M

A=l A

32
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LINEAR DIOPHANTINE EQUATIONS

o HNF of A is the same as that of A', except for the last m columns
of the HNF of A'.

o Thus, it suffices to find the HNF of A'.

Method : (1) Add integral multiples of the last m columns of A' to the first

n columns of A' so that all components with be at least 0 or at most M.

33
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LINEAR DIOPHANTINE EQUATIONS

(2) Suppose we have the matrix

B| 0 0
0 0
- M 0
Cl D| 0
u M_

where B is lower triangular k X k matrix, C is an (m - k) X k matrix, D is an

(m - k)X (n+1) matrix such that the first row of D is nonzero.

34
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LINEAR DIOPHANTINE EQUATIONS

(3) Writing D=:(8, ) " :

i=1,j=1
if there are i # j with 0,; 2 6,,>0, then:

(i) subtract L511 /51jJ times the j* column of D from the i" column
of D;

(ii) add integral multiples of the last (m - k - 1) columns of (*) to the
other colunms to bring all components between 0 and M.

(4) Repeat (1) and (11) while the first row of D has more than one nonzero entry.

When D obtains exactly one nonzero entry, repeat for (k +1).
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5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS
LINEAR DIOPHANTINE EQUATIONS

(4) If k = m, then the matrix (*) is in the form [B 0] with B lower
triangular.
(5) HNF: fori=2,...n,do forj=1,...,i-1, add an integral multiple of the

i" column of B to the j™ column of B to get the (i, j)" entry of B

nonnegative and less than 3.

(6) Then the HNF is obtained by deleting the last m columns.
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LINEAR DIOPHANTINE EQUATIONS

Theorem 5.3. The described mathod finds the HNF in polynomial
time.

Proof : e Executions on the matrix D 1s polynomially bounded by n
and log, M

e Procedure on first row of D : oone more zero entry in the row or
1
o reduce the row by a factor of at least 2 (0,; — {% J61 ; < 5511.)
1

= after at most nlog, M iterations, D has at most one nonzero entry in the
first row and k = k+1

e Then k = m (B 1s upper triangular form) after at most mnlog, M iterations,
we begin to transform [B 0] into HNF = polynomial-time

e Thus, the algorithm is polynomially bounded
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5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS
LINEAR DIOPHANTINE EQUATIONS

Corollary 5.3a. Given a rational matrix A of full row rank, we can find

in polynomial time a unimodular matrix U such that AU 1s in HNF.

Corollary 5.3b. Given a system of rational linear equations, we can decide

if it has an integral solution, and if so, find one, in polynomial time.

Corollary 5.3c. Given a feasible system Ax=Db of rational linear diophantine
equations, we can find in polynomial time integral vectors x,, x,,...., X, such
that

{x| Ax = b; x is integral }={x ,+ A x, +---+ A x, | A,,...,. A, € Z}

with x,, x,,....,x, linearly independent.
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