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PART II: Lattices and linear
diophantine equations

By: Sandra Gregov
746 Combinatorial Optimization
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

• A matrix of full row rank is in Hermite normal
form if it has the form [B 0] where B is
nonsingular, lower triangular, nonnegative matrix,
in which each row has a unique maximum entry
located on the main diagonal.

• Elementary column operations:
I. Exchanging two columns
II. Multiplying a column by -1
III. Adding an integral multiple of one column to another

column
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

THEOREM 4.1: Each rational matrix of full row rank can be
brought into Hermite normal form by a series of elementary
column operations.

 

Proof: Let A be a rational matrix of full row rank. WLOG, A is integral. 

Suppose we have transformed A, by elementary column operations, to

the form 
B 0

C D

!

"
#

$

%
&where B is lower triangular with positive diagonal.

Using elementary column operations, modify D so that its first row  

('11,…,'1k ) is nonnegative, the sum '11 +…+ '1kis as small as possible.

Assume that '11 ( '12 (… ( '1k . Then '11 > 0 since A has full row rank. 
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

 

Moremore, if !12 > 0, by subtracting the second column of D from the first

column of D, the first row will have smaller sum, contradicting our

assumption. Hence,  !12 =!=!1k=0, and we have obtained a larger lower

triangular matrix.

By repeating this procedure, the matrix A finally will be transformed into

[B 0] with B= "ij( ) lower triangular with positive diagonal. Next: 

for i = 2,...,n (order of B), for j = 1,...,i -1, add an integer multiple of the i-th

column of B so that the (i, j)-th entry of B is nonnegative and less than "ii .

After these elementary column operations, the matrix is in Hermite normal

form.
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

Corollary 4.1a. Let A be a rational matrix and let b be a rational column

vector. Then the system Ax = b has an integral solution x !  yb is an

integer for each rational row vector y for which yA is integral.

Proof :  If x and yA are integral vectors and Ax = b, then yb = yAx is an

integer.  Suppose yb is an integer whenever yA is intgral. Then Ax = b has

a (possibly fractional) solution (if not, then yA = 0 and yb =
1

2
 for some

rational vector y). Assume that the rows of A are linearly independent.

Both sides of !  are invariant under elementary column operations.

So by THM 4.1 assume that A is in Hermite normal form [B 0]. 
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

Since B-1[B 0] = [I  0] is an integral matrix, it follows from

our assumption that also  B-1
b is an integral vector.

Since B 0[ ]
B

!1
b

0

"

#$
%

&'
= b  the vector x :=

B
!1
b

0

"

#$
%

&'
 is an

integral solution for Ax = b.
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

 

A subset ! of !n  is called an (additive) group if:

(i) 0 "  !

(ii) if x, y "! then x+y "! and -x "!.

The group is said to be generated  by a1,…,a
m

 if

!= #1a1 +"+ #
m
a
m

| #1,…,#
m
"#{ }.

The group is called a lattice if it can be generated by linearly independent

vectors. These vectors are called a basis for the lattice.
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

Corollary 4.1b. If a1,…,am  are rational vectors, then the group generated

by a1,…,am  is a lattice, i.e, is generated by linearly independent vectors.

Proof :  Assume that a1,…,am  span all space. (Otherwise we could apply

a linear transformation to a lower dimensional space.) Let A be the matrix

with columns a1,…,am  (so A has full row rank). Let [B 0] be the Hermite

normal form of A. Then the columns of B are linearly independent vectors

generating the same group as a1,…,am .
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

If a1,…,a
m

 are rational vectors we can speak of the lattice generated

by a1,…,a
m

.  

Given a rational matrix A, Corollary 4.1a gives necessary and sufficient

conditions for being an element of the lattice ! generated by the

columns of A.

Corollary 4.1a implies that if A has full row rank, with Hermite normal

form [B 0] (B lower triangular), then b belongs to ! " B
-1
b is integral.
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Theory of lattices and linear diophantine equations
4.1. THE HERMITE NORMAL FORM

 

Corollary 4.1c. Let A be an integral m ! n " matrix of full row rank.

Then the following are equivalent:

   (i) the g.c.d. of the subdeterminants of A of order m is 1;

  (ii) the system Ax = b has an integral solution x, for each integral vector b;

 (iii) for each vector y, if yA is integral then y is integral.

From the Hermite normal form theorem, for any rational system Ax = b with

at least one integral solution there exist integral vectors x0 ,  x1,…,  xt  such that

            x | Ax = b; x integral{ } = x 0+#1x1 +!+ #t xt | #1,…,#t $"{ }
where x1,…,  xt  are linearly independent and t = (# of  columns of  A) - rank(A).
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Theory of lattices and linear diophantine equations
4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Theorem 4.2. Let A and A '  be rational matrices of full row rank, with

Hermite normal forms [B 0] and [B '  0], respectively. Then the columns

of A generate the same lattice as those of A '  if and only if B = B '.

In other words, two lattices are equal !  their respective matrices have

the same Hermite normal form.
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Theory of lattices and linear diophantine equations
4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Proof : Sufficiency: The columns of B and A generate the same lattice,

and similarly for B' and A'.

Necessity: Suppose the columns of A and those of A' generate the same

lattice !. Then the same holds for B and B' (by elementary column

operations from A & A'). Denote B =: ("ij ) and B ' =: (" 'ij ).

Suppose B # B '  and choose "ij # " 'ij with i as small as possible. 

WLOG, "ii $ " 'ii .  Let b j  and b j

'  be the j-th column of B and B'.
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Theory of lattices and linear diophantine equations
4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

Then b j !" and b j

'  !", and hence b j #  b j

'  !". This implies that

b j #  b j

'  is an integral linear combination of the columns of B. By the choice

of i, the vector b j #  b j

'  has zeros in the first (i-1) positions. Hence, as B is

lower triangular, b j #  b j

'  is an integral linear combination of columns

indexed i,...n. So $
ij
# $ '

ij
is an integral  multiple of $

ii
. However, this

contradicts the fact that 0 < $
ij
# $ '

ij
< $

ii
 (since if i=j, then 0 < $ '

ii
< $

ii
 ,

and if j<i, then 0 % $
ij
< $

ii
 and  0< $ '

ij
< $ '

ii
% $

ii
 ).
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Theory of lattices and linear diophantine equations
4.2. UNIQUENESS OF THE HERMITE NORMAL FORM

 

Corollary 4.2a. Every rational matrix of full row rank has a unique

Hermite normal form.

NOTE :  If !11,…, !mm  are the diagonal entries of Hermite normal

form of [B 0] of A, then for each j = 1,...,m the product !11,…, ! jj  is

equal to the g.c.d. of the subdeterminants of order j of the first j rows

of A ( this g.c.d. is invariant under elementary column operations).

" the main diagonal of the HNF is unique

" size of HNF is polynomially bounded by the size of the original matrix 
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Theory of lattices and linear diophantine equations
4.3. UNIMODULAR MATRICES

 

Definition :  Let U be nonsingular matrix. Then U is called unimodular

if U is integral and has determinant ±1.

Theorem 4.3. The following are equivalent for a nonsingular rational 

matrix U of order n:

  (i) U is unimodular;

 (ii) U-1  is unimodular;

(iii) the lattice generated by the columns of U is !n;

(iv) U has the identity matrix as its Hermite normal form;

 (v) U comes from the identity matrix by elementary column operations.
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Theory of lattices and linear diophantine equations
4.3. UNIMODULAR MATRICES

Corollary 4.3a.  Let A and A' be nonsingular matrices. Then TFAE:

  (i) the columns of A and of A' generate the same lattice;

 (ii) A' comes from A by elementary column operations;

(iii) A ' = AU  for some unimodular matrix U (A!1A'  is unimodular);

Corollary 4.3b.  For each rational matrix A of full row rank there is a

unimodular matrix U such that AU is the HNF of A. If A is nonsingular,

U is unique.
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Theory of lattices and linear diophantine equations
4.3. UNIMODULAR MATRICES

Example.  Consider the following matrices A,  B, and U.  Then BU  is

Hermite decomposition of A.

      A =

1 2 3

-3 2 0

1 0 0

!

"

#
#
#

$

%

&
&
&

,       B =

1 0 0

0 1 0

4 5 6

!

"

#
#
#

$

%

&
&
&

,       U =

1 2 3

'3 2 0

2 '3 '3

!

"

#
#
#

$

%

&
&
&

U  encodes the composite effect of the elementary column operations on A

needed to bring A into normal form.
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

The Euclidean determines the g.c.d. of two positive rational

numbers !  and ". 

1. Replace !  by !- !
"

#
$#

%
&%
"  and "  by "-

"
!

#
$#

%
&%
!  .

2. Repeat until one of them is 0.

3. The nonzero among them is the g.c.d. of the original !  and ". 

Example :  ! = 18,  " = 27;    find g.c.d  {18,27}

18 ' 0 ( 27 = 18

27 '1(18 = 9

18 ' 2 ( 9 = 0 ) g.c.d  {18,27} = 9.
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

FACTS :  (i) g.c.d  {!,  "} =g.c.d  {!- !
"

#
$#

%
&%
",  "}  and 

                (ii) g.c.d  {!,  0} =!.

Proof  of  (i) :  Define !- !
"

#
$#

%
&%
" = r.  Let d  be any common divisor of

!  and ".  So d !  and d ".  Then r = !- !
"

#
$#

%
&%
"  is a multiple of d. 

Thus, any common divisor of !  and "  is also a common divisor of

r = !- !
"

#
$#

%
&%
"   and ".
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

Linear  Diophantine Equation

•  find integers !  and "  such that !#+"$=%, with #, $  both

rational integers

Theorem :  Suppose #,$,% are integers. Then !#+"$=% has an integer

solution if and only if g.c.d{#,$} divides %.

Proof: ( & )  Since g.c.d{#,$} divides #, $, it must divide !#+"$  for any

integer ! ,".  Thus is divides %.

( ' ) g.c.d{#,$}=#x + $y,    x,y integers.  If g.c.d{#,$} divides %, ( an %'

such that %' ) g.c.d{#,$}=%' ) (#x + $y) = % '(#x) +% '($y). This implies that

! = % 'x and "=% 'y is a solution of !#+"$=%.
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

Linear  Diophantine Equation

•  find integers !  and "  such that !#+"$=g.c.d{#,$}, with #, $  both

rational integers

Method :

!  determine a series of 3 x 2 matrices where

      A0 :=

# $

1 0

0 1

%

&

'
'
'

(

)

*
*
*

       Ak :=

# k $k

! k +k

"k ,k

%

&

'
'
'

(

)

*
*
*
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

!  RULE to find Ak+1  from Ak :

       (i) if k is even and !
k
> 0, substract 

"
k

!
k

#
$#

%
&%

 times the 2nd  column

        of Ak  from the 1st;

   

     (ii) if k is odd and "
k
> 0, substract 

!
k

"
k

#
$#

%
&%

 times the 1st  column

        of Ak  from the 2nd .

     

!  Repeat for k = 0,1,2,...,N ,    "N = 0 or !N = 0.
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

Example :    !=15, "=6

A0 =

15 6

1 0

0 1

#

$

%
%
%

&

'

(
(
(

        k=0, "0 = 6 > 0,  so 
!0

"0

%
$%

(
'(
= 15

6
%
$

(
' = 2

A1 =

3 6

1 0

)2 1

#

$

%
%
%

&

'

(
(
(

        k=1, !1 = 3 > 0,  so 
"1

!1

%
$%

(
'(
= 6

3
%
$

(
' = 2

A2 =

3 0

1 )2

)2 5

#

$

%
%
%

&

'

(
(
(

        "2 = 0,  so 
g.c.d{!,"} = * 2!++2"

                           3 = (1)(15) + ()2)(6)



24

Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

!  if !N = 0 and "N # 0,  then "N  is g.c.d of "  and !  since

    the g.c.d. of upper row of Ak  does not change with the iterations

    and "N = g.c.d {"N,0}

!  if  "N = 0 and !N # 0,  then !N = g.c.d {",!}

!  find integers $  and %  with $"+%!=g.c.d{",!}

!  (1,-",-!)A0 = (0,0) and (1,-",-!)Ak = (0,0)  (elem. col. operations)
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

!                                 ! k" + #k$ = " k

                                   %k" +&k$ = $k

!  if $N = 0,"N ' 0

                                   ! N" + #N$ = "N = g.c.d{",$}

                                   %N" +&N$ = 0

!  Similarly, if "N = 0,$N ' 0
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

SOME NOTES :

!                                 -!
k
"
k
+ #

k
$

k
= #

                                   !
k
%
k
& #

k
'
k
= !

!                                 $
k
%
k
& "

k
'
k
= 1

!  for all k, $
k
( 1,%

k
( 1,  and "

k
) 0,'

k
) 0.
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

Theorem 5.1.  The Euclidean algorithm is polynomial-time method, i.e.,

polynomial in the size of the input.

Proof :  !  Assume that !  and "  are natural numbers.

             !  All matrices Ak  have nonnegative integers in 1st  row.

             !  Each iterations reduces ! k  or "k  by a factor of at least 2.

             !  Recall that the length of an integer n as input is the # of bits, 

                 i.e., log2 n +O(1)

             !  After at most log2!#$ %&+ log2"#$ %&+1 iterations, either ! k =0 or "k = 0.

             !  Each iteration consists of elementary arithmetic operations, thus

                 taking polynomial time.

             !  '  the sizes of the numbers are polynomially bounded by the sizes

                 of !  and ".
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Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

 

Corollary 5.1a.  A linear diophantine equation with rational coefficients

can be solved in polynomial time.

Proof :  Let !1"1+!+!n"n =#  be a rational linear diophantine equation.

             Algorithm :  Case n=1: trivial.  Let n $ 2.  Find ! ',% ,&  with Euclidean

            alg. satisfying:     ! '=g.c.d.{!1,!2} = !1% +!2&,      % ,& : integers.

            Solve the linear diophantine equation in (n-1) variables:

                            (')       ! '" '+! 3"3+!+!n"n =#.

            If  (') has no integral solution, then neither does the original equation.

            If  (') has an integral solution " ',"3,...,"nthen "1 = %" ',"2 = &" ',"3,...,"n

            gives an integral solution to the original equation.

            This defines a polynomial algorithm.
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Algorithms for linear diophantine equations
5.2 SIZES & GOOD CHARACTERIZATIONS

Theorem 5.2.   The Hermite normal form [B 0] of a rational matrix of full

row rank has size polynomially bounded by the size of A.  Moreover, there

exists a unimodular matrix U with AU=[B 0] such that the size of U is

polynomially bounded by the size of A.

Proof :   - Assume A is integral (multiplying A by porduct of the denominators

of A, say ! ,  also multiplies the HNF of A by ! ).

-  Diagonal entries of B are divisors of subdeterminants of A (Sec. 4.2).

-  Each row of B has its max. entry on the diagonal of B

     " size of [B 0] is polynomially bounded by size of A.
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Algorithms for linear diophantine equations
5.2 SIZES & GOOD CHARACTERIZATIONS

Proof :   - Assume A=[A' A''] with A' nonsingular.

- Let HNF of 

                     
A' A''

0 I

!

"
#

$

%
&   is 

B 0

B' B''

!

"
#

$

%
&

for certain matrices B' and B''.

- Since the sizes of B, B', and B'' are polynomially bounded by the

size of A, the size of unimodular matrix

                       U:=
A' A''

0 I

!

"
#

$

%
&

-1
B 0

B' B''

!

"
#

$

%
&

is polynomially bounded by the size of A

- AU = [A '  A '']U = [B 0]
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Algorithms for linear diophantine equations
5.2 SIZES & GOOD CHARACTERIZATIONS

Corollary 5.2a. If a rational system Ax=b has an integral solution,

it has one of size polynomially bounded by the sizes of A and b.

Corollary 5.2b. The following problem has a good characterization:

       given a rational matrix A and a rational vector b, does the system

       Ax = b have an integral solution?
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Algorithms for linear diophantine equations
5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

 

Polynomial algorithm to determine the HNF

Let A be an m ! n integral matrix of full row rank.

Let M be the absolute value of the determinant of an (arbitrary) submatrix A of

rank m.

The columns of A generate the same lattice as the columns of the martix:

                            A':= A

M

! 0

0 !

M

"

#

$
$
$
$

%

&

'
'
'
'
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Algorithms for linear diophantine equations
5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

 

!  HNF of A is the same as that of A', except for the last m columns

of the HNF of A'.

! Thus, it suffices to find the HNF of A'.

Method :  (1)  Add integral multiples of the last m columns of A' to the first

n columns of A' so that all components with be at least 0 or at most M.
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5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

 

(2) Suppose we have the matrix

                        (*)                     

B 0  0  

C

  

D

  

0 0

M 0

!

0

M

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

where B is lower triangular k ' k  matrix, C is an (m - k) ' k  matrix, D is an

(m - k) ' (n +1) matrix such that the first row of D is nonzero.
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5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

(3) Writing D=: ! ij( )
i=1,j=1

m-k n+1

:

if there are i " j with !1i # !1j >0, then:

    (i) subtract !1i /!1j
$% &'  times the jth  column of D from the ith  column

        of D;

   (ii) add integral multiples of the last m - k -1( )  columns of (() to the

        other colunms to bring all components between 0 and M.

(4) Repeat (i) and (ii) while the first row of D has more than one nonzero entry.

When D obtains exactly one nonzero entry, repeat for (k +1).
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Algorithms for linear diophantine equations
5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

(4) If k = m, then the matrix (!) is in the form [B 0] with B lower

triangular.

(5) HNF:   for i = 2,...n, do for j = 1,...,i -1, add an integral multiple of the

i
th  column of B to the j th column of B to get the (i, j)th  entry of B

nonnegative and less than "ij.

(6) Then the HNF is obtained by deleting the last m columns.
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Algorithms for linear diophantine equations
5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

 

Theorem 5.3.  The described mathod finds the HNF in polynomial

time.

Proof :   •  Executions on the matrix D is polynomially bounded by n

and log2M

• Procedure on first row of  D :   ! one more zero entry in the row or

! reduce the row by a factor of at least 2 (!1i "
!1i

!1 j

#

$#
%

&%
!1 j '

1

2
!1i )

(   after at most n log2 M  iterations, D has at most one nonzero entry in the

first row and k ) k +1

• Then k = m (B is upper triangular form) after at most mn log2 M  iterations,

we begin to transform [B 0] into HNF (  polynomial-time

• Thus, the algorithm is polynomially bounded
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Algorithms for linear diophantine equations
5.3 POLYNOMIAL ALGORITHMS FOR HNF & SYSTEMS

LINEAR DIOPHANTINE EQUATIONS

 

Corollary 5.3a.  Given a rational matrix A of full row rank, we can find

in polynomial time a unimodular matrix U such that AU is in HNF.

Corollary 5.3b. Given a system of rational linear equations, we can decide

if it has an integral solution, and if so, find one, in polynomial time.

Corollary 5.3c. Given a feasible system Ax=b of rational linear diophantine

equations, we can find in polynomial time integral vectors x0 , x1,...., xt  such

that

               {x | Ax = b;  x is integral}={x 0+!1x1 +!+ !
t
x
t
| !1,...,!t ""}

with x0 , x1,...., xt  linearly independent.


