PART II: Lattices and linear diophantine equations

By: Sandra Gregov

746 Combinatorial Optimization
A matrix of full row rank is in *Hermite normal form* if it has the form \([B \ 0]\) where \(B\) is nonsingular, lower triangular, nonnegative matrix, in which each row has a unique maximum entry located on the main diagonal.

Elementary column operations:

1. Exchanging two columns
2. Multiplying a column by -1
3. Adding an integral multiple of one column to another column
THEOREM 4.1: Each rational matrix of full row rank can be brought into Hermite normal form by a series of elementary column operations.

Proof: Let A be a rational matrix of full row rank. WLOG, A is integral. Suppose we have transformed A, by elementary column operations, to the form \[
\begin{bmatrix}
B & 0 \\
C & D
\end{bmatrix}
\]
where B is lower triangular with positive diagonal.

Using elementary column operations, modify D so that its first row \((\delta_{11}, \ldots, \delta_{1k})\) is nonnegative, the sum \(\delta_{11} + \ldots + \delta_{1k}\) is as small as possible. Assume that \(\delta_{11} \geq \delta_{12} \geq \ldots \geq \delta_{1k}\). Then \(\delta_{11} > 0\) since A has full row rank.
Moremore, if $\delta_{12} > 0$, by subtracting the second column of D from the first column of D, the first row will have smaller sum, contradicting our assumption. Hence, $\delta_{12} = \cdots = \delta_{1k} = 0$, and we have obtained a larger lower triangular matrix.

By repeating this procedure, the matrix A finally will be transformed into $[B \ 0]$ with $B = (\beta_{ij})$ lower triangular with positive diagonal. Next:

- for $i = 2, \ldots, n$ (order of B), for $j = 1, \ldots, i - 1$, add an integer multiple of the i-th column of B so that the (i, j)-th entry of B is nonnegative and less than β_{ii}.

After these elementary column operations, the matrix is in Hermite normal form.
Corollary 4.1a. Let A be a rational matrix and let b be a rational column vector. Then the system $Ax = b$ has an integral solution $x \iff yb$ is an integer for each rational row vector y for which yA is integral.

Proof: If x and yA are integral vectors and $Ax = b$, then $yb = yAx$ is an integer. Suppose yb is an integer whenever yA is integral. Then $Ax = b$ has a (possibly fractional) solution (if not, then $yA = 0$ and $yb = \frac{1}{2}$ for some rational vector y). Assume that the rows of A are linearly independent. Both sides of \iff are invariant under elementary column operations. So by THM 4.1 assume that A is in Hermite normal form $[B 0]$.
Since $B^{-1}[B \ 0] = [I \ 0]$ is an integral matrix, it follows from our assumption that also $B^{-1}b$ is an integral vector.

Since $[B \ 0] \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = b$ the vector $x := \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ is an integral solution for $Ax = b$.
A subset Λ of \mathbb{R}^n is called an (additive) group if:

(i) $0 \in \Lambda$

(ii) if $x, y \in \Lambda$ then $x+y \in \Lambda$ and $-x \in \Lambda$.

The group is said to be generated by a_1, \ldots, a_m if

$$\Lambda = \{ \lambda_1 a_1 + \cdots + \lambda_m a_m \mid \lambda_1, \ldots, \lambda_m \in \mathbb{Z} \}.$$

The group is called a lattice if it can be generated by linearly independent vectors. These vectors are called a basis for the lattice.
Corollary 4.1b. If a_1,\ldots,a_m are rational vectors, then the group generated by a_1,\ldots,a_m is a lattice, i.e, is generated by linearly independent vectors.

Proof : Assume that a_1,\ldots,a_m span all space. (Otherwise we could apply a linear transformation to a lower dimensional space.) Let A be the matrix with columns a_1,\ldots,a_m (so A has full row rank). Let $[B \ 0]$ be the Hermite normal form of A. Then the columns of B are linearly independent vectors generating the same group as a_1,\ldots,a_m.
If \(a_1, \ldots, a_m \) are rational vectors we can speak of the lattice generated by \(a_1, \ldots, a_m \).

Given a rational matrix \(A \), Corollary 4.1a gives necessary and sufficient conditions for being an element of the lattice \(\Lambda \) generated by the columns of \(A \).

Corollary 4.1a implies that if \(A \) has full row rank, with Hermite normal form \([B \ 0]\) (\(B \) lower triangular), then \(b \) belongs to \(\Lambda \iff B^{-1}b \) is integral.
Corollary 4.1c. Let A be an integral $m \times n$ – matrix of full row rank.

Then the following are equivalent:

(i) the g.c.d. of the subdeterminants of A of order m is 1;
(ii) the system $Ax = b$ has an integral solution x, for each integral vector b;
(iii) for each vector y, if yA is integral then y is integral.

From the Hermite normal form theorem, for any rational system $Ax = b$ with at least one integral solution there exist integral vectors x_0, x_1, \ldots, x_t such that

$$\{x \mid Ax = b; x \text{ integral}\} = \{x_0 + \lambda_1 x_1 + \cdots + \lambda_t x_t \mid \lambda_1, \ldots, \lambda_t \in \mathbb{Z}\}$$

where x_1, \ldots, x_t are linearly independent and $t = (\# \text{ of columns of } A) - \text{rank}(A)$.
Theorem 4.2. Let A and A' be rational matrices of full row rank, with Hermite normal forms $[B \ 0]$ and $[B' \ 0]$, respectively. Then the columns of A generate the same lattice as those of A' if and only if $B = B'$.

In other words, two lattices are equal \iff their respective matrices have the same Hermite normal form.
Proof: Sufficiency: The columns of B and A generate the same lattice, and similarly for B' and A'.

Necessity: Suppose the columns of A and those of A' generate the same lattice \(\Lambda \). Then the same holds for B and B' (by elementary column operations from A & A'). Denote \(B =: (\beta_{ij}) \) and \(B' =: (\beta'_{ij}) \).

Suppose \(B \neq B' \) and choose \(\beta_{ij} \neq \beta'_{ij} \) with \(i \) as small as possible.

WLOG, \(\beta_{ii} \geq \beta'_{ii} \). Let \(b_j \) and \(b'_j \) be the j-th column of B and B'.
Then $b_j \in \Lambda$ and $b'_j \in \Lambda$, and hence $b_j - b'_j \in \Lambda$. This implies that $b_j - b'_j$ is an integral linear combination of the columns of B. By the choice of i, the vector $b_j - b'_j$ has zeros in the first $(i-1)$ positions. Hence, as B is lower triangular, $b_j - b'_j$ is an integral linear combination of columns indexed $i,...n$. So $\beta_{ij} - \beta'_{ij}$ is an integral multiple of β_{ii}. However, this contradicts the fact that $0 < |\beta_{ij} - \beta'_{ij}| < \beta_{ii}$ (since if $i=j$, then $0 < \beta'_{ii} < \beta_{ii}$, and if $j<i$, then $0 \leq \beta_{ij} < \beta_{ii}$ and $0 < \beta'_{ij} < \beta'_{ii} \leq \beta_{ii}$).
Corollary 4.2a. Every rational matrix of full row rank has a unique Hermite normal form.

NOTE: If $\beta_{11}, \ldots, \beta_{mm}$ are the diagonal entries of Hermite normal form of $[B \ 0]$ of A, then for each $j = 1, \ldots, m$ the product $\beta_{11}, \ldots, \beta_{jj}$ is equal to the g.c.d. of the subdeterminants of order j of the first j rows of A (this g.c.d. is invariant under elementary column operations).

\[\Rightarrow \text{the main diagonal of the HNF is unique} \]
\[\Rightarrow \text{size of HNF is polynomially bounded by the size of the original matrix} \]
Definition: Let U be nonsingular matrix. Then U is called *unimodular* if U is integral and has determinant ± 1.

Theorem 4.3. The following are equivalent for a nonsingular rational matrix U of order n:

(i) U is unimodular;

(ii) U^{-1} is unimodular;

(iii) the lattice generated by the columns of U is \mathbb{Z}^n;

(iv) U has the identity matrix as its Hermite normal form;

(v) U comes from the identity matrix by elementary column operations.
Corollary 4.3a. Let A and A' be nonsingular matrices. Then TFAE:

(i) the columns of A and of A' generate the same lattice;
(ii) A' comes from A by elementary column operations;
(iii) $A' = AU$ for some unimodular matrix U ($A^{-1}A'$ is unimodular);

Corollary 4.3b. For each rational matrix A of full row rank there is a unimodular matrix U such that AU is the HNF of A. If A is nonsingular, U is unique.
Example. Consider the following matrices A, B, and U. Then BU is Hermite decomposition of A.

\[
A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 5 & 6 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & 0 \\ 2 & -3 & -3 \end{bmatrix}
\]

U encodes the composite effect of the elementary column operations on A needed to bring A into normal form.
5.1 THE EUCLIDEAN ALGORITHM

The Euclidean determines the g.c.d. of two positive rational numbers α and β.

1. Replace α by $\alpha - \left\lfloor \frac{\alpha}{\beta} \right\rfloor \beta$ and β by $\beta - \left\lfloor \frac{\beta}{\alpha} \right\rfloor \alpha$.

2. Repeat until one of them is 0.

3. The nonzero among them is the g.c.d. of the original α and β.

Example: $\alpha = 18$, $\beta = 27$; find g.c.d. $\{18, 27\}$

$18 - 0 \times 27 = 18$

$27 - 1 \times 18 = 9$

$18 - 2 \times 9 = 0 \Rightarrow$ g.c.d. $\{18, 27\} = 9$.
FACTS: (i) \(g.c.d \{\alpha, \beta\} = g.c.d \{\alpha - \frac{\alpha}{\beta} \beta, \beta\} \) and
(ii) \(g.c.d \{\alpha, 0\} = \alpha. \)

Proof of (i): Define \(\alpha - \frac{\alpha}{\beta} \beta = r. \) Let \(d \) be any common divisor of \(\alpha \) and \(\beta. \) So \(d | \alpha \) and \(d | \beta. \) Then \(r = \alpha - \frac{\alpha}{\beta} \beta \) is a multiple of \(d. \) Thus, any common divisor of \(\alpha \) and \(\beta \) is also a common divisor of \(r = \alpha - \frac{\alpha}{\beta} \beta \) and \(\beta. \)
Linear Diophantine Equation

• find integers γ and ε such that γα+εβ=η, with α, β both rational integers

Theorem : Suppose α,β,η are integers. Then γα+εβ=η has an integer solution if and only if g.c.d{α,β} divides η.

Proof: (⇒) Since g.c.d{α,β} divides α, β, it must divide γα+εβ for any integer γ, ε. Thus is divides η.

(⇐) g.c.d{α,β}=αx + βy, x,y integers. If g.c.d{α,β} divides η, ∃ an η' such that η'×g.c.d{α,β}=η'×(αx + βy) = η'(αx) + η'(βy). This implies that γ = η'x and ε=η'y is a solution of γα+εβ=η.
Linear Diophantine Equation

• find integers \(\gamma \) and \(\varepsilon \) such that \(\gamma \alpha + \varepsilon \beta = \text{g.c.d}\{\alpha, \beta\} \), with \(\alpha, \beta \) both rational integers

Method:

▷ determine a series of 3 x 2 matrices where

\[
A_0 := \begin{bmatrix} \alpha & \beta \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A_k := \begin{bmatrix} \alpha_k & \beta_k \\ \gamma_k & \delta_k \\ \varepsilon_k & \zeta_k \end{bmatrix}
\]
RULE to find A_{k+1} from A_k:

(i) if k is even and $\beta_k > 0$, subtract $\left[\frac{\alpha_k}{\beta_k} \right]$ times the 2nd column of A_k from the 1st;

(ii) if k is odd and $\alpha_k > 0$, subtract $\left[\frac{\beta_k}{\alpha_k} \right]$ times the 1st column of A_k from the 2nd.

Repeat for $k = 0, 1, 2, ..., N$, $\alpha_N = 0$ or $\beta_N = 0$.
Example: \(\alpha=15, \beta=6 \)

\[
A_0 = \begin{bmatrix} 15 & 6 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\(k=0, \beta_0 = 6 > 0, \text{ so } \begin{bmatrix} \alpha_0/\beta_0 \end{bmatrix} = \begin{bmatrix} 15/6 \end{bmatrix} = 2 \)

\[
A_1 = \begin{bmatrix} 3 & 6 \\ 1 & 0 \\ -2 & 1 \end{bmatrix}
\]

\(k=1, \alpha_1 = 3 > 0, \text{ so } \begin{bmatrix} \beta_1/\alpha_1 \end{bmatrix} = \begin{bmatrix} 6/3 \end{bmatrix} = 2 \)

\[
A_2 = \begin{bmatrix} 3 & 0 \\ 1 & -2 \\ -2 & 5 \end{bmatrix}
\]

\(\beta_2 = 0, \text{ so } \text{g.c.d}\{\alpha,\beta\} = \gamma_2 \alpha + \epsilon_2 \beta \)

\(3 = (1)(15) + (-2)(6) \)
5.1 THE EUCLIDEAN ALGORITHM

- if $\beta_N = 0$ and $\alpha_N \neq 0$, then α_N is g.c.d of α and β since the g.c.d. of upper row of A_k does not change with the iterations and $\alpha_N = \text{g.c.d} \{\alpha_N, 0\}$

- if $\alpha_N = 0$ and $\beta_N \neq 0$, then $\beta_N = \text{g.c.d} \{\alpha, \beta\}$

- find integers γ and ε with $\gamma \alpha + \varepsilon \beta = \text{g.c.d} \{\alpha, \beta\}$

- $(1, -\alpha, -\beta)A_0 = (0, 0)$ and $(1, -\alpha, -\beta)A_k = (0, 0)$ (elem. col. operations)
5.1 THE EUCLIDEAN ALGORITHM

\(\gamma_k \alpha + \varepsilon_k \beta = \alpha_k \)
\(\delta_k \alpha + \zeta_k \beta = \beta_k \)

\(\triangleright \) if \(\beta_N = 0, \alpha_N \neq 0 \)

\(\gamma_N \alpha + \varepsilon_N \beta = \alpha_N = \gcd\{\alpha, \beta\} \)
\(\delta_N \alpha + \zeta_N \beta = 0 \)

\(\triangleright \) Similarly, if \(\alpha_N = 0, \beta_N \neq 0 \)
Algorithms for linear diophantine equations
5.1 THE EUCLIDEAN ALGORITHM

SOME NOTES:

1. \(-\alpha_k \delta_k + \beta_k \gamma_k = \beta\)
2. \(\alpha_k \zeta_k - \beta_k \varepsilon_k = \alpha\)
3. \(\gamma_k \zeta_k - \delta_k \varepsilon_k = 1\)

4. for all \(k\), \(\gamma_k \geq 1, \zeta_k \geq 1\), and \(\delta_k \leq 0, \varepsilon_k \leq 0\).
Theorem 5.1. The Euclidean algorithm is polynomial-time method, i.e., polynomial in the size of the input.

Proof:
- Assume that α and β are natural numbers.
 - All matrices A_k have nonnegative integers in 1st row.
 - Each iteration reduces α_k or β_k by a factor of at least 2.
 - Recall that the length of an integer n as input is the # of bits, i.e., $\log_2 n + O(1)$
 - After at most $\lceil \log_2 \alpha \rceil + \lceil \log_2 \beta \rceil + 1$ iterations, either $\alpha_k = 0$ or $\beta_k = 0$.
 - Each iteration consists of elementary arithmetic operations, thus taking polynomial time.
 - \therefore the sizes of the numbers are polynomially bounded by the sizes of α and β.

Corollary 5.1a. A linear diophantine equation with rational coefficients can be solved in polynomial time.

Proof: Let $\alpha_1 \xi_1 + \cdots + \alpha_n \xi_n = \beta$ be a rational linear diophantine equation.

Algorithm: Case $n=1$: trivial. Let $n \geq 2$. Find $\alpha', \gamma, \epsilon$ with Euclidean alg. satisfying: $\alpha' = \gcd\{\alpha_1, \alpha_2\} = \alpha_1 \gamma + \alpha_2 \epsilon$, $\gamma, \epsilon : \text{integers}$.

Solve the linear diophantine equation in $(n-1)$ variables:

\[(*) \quad \alpha' \xi' + \alpha_3 \xi_3 + \cdots + \alpha_n \xi_n = \beta. \]

If $(*)$ has no integral solution, then neither does the original equation.

If $(*)$ has an integral solution $\xi', \xi_3, \ldots, \xi_n$ then $\xi_1 = \gamma \xi', \xi_2 = \epsilon \xi', \xi_3, \ldots, \xi_n$ gives an integral solution to the original equation.

This defines a polynomial algorithm.
Theorem 5.2. The Hermite normal form \([B \ 0]\) of a rational matrix of full row rank has size polynomially bounded by the size of \(A\). Moreover, there exists a unimodular matrix \(U\) with \(AU=[B \ 0]\) such that the size of \(U\) is polynomially bounded by the size of \(A\).

Proof: - Assume \(A\) is integral (multiplying \(A\) by product of the denominators of \(A\), say \(\kappa\), also multiplies the HNF of \(A\) by \(\kappa\)).

- Diagonal entries of \(B\) are divisors of subdeterminants of \(A\) (Sec. 4.2).
- Each row of \(B\) has its max. entry on the diagonal of \(B\)
 \(\Rightarrow\) size of \([B \ 0]\) is polynomially bounded by size of \(A\).
Proof: - Assume $A=[A' \ A'']$ with A' nonsingular.
 - Let HNF of
 \[
 \begin{bmatrix}
 A' & A'' \\
 0 & I
 \end{bmatrix}
 \text{ is } \begin{bmatrix}
 B & 0 \\
 B' & B''
 \end{bmatrix}
 \]
 for certain matrices B' and B''.
 - Since the sizes of B, B', and B'' are polynomially bounded by the
 size of A, the size of unimodular matrix
 \[
 U:= \begin{bmatrix}
 A' & A'' \\
 0 & I
 \end{bmatrix}^{-1} \begin{bmatrix}
 B & 0 \\
 B' & B''
 \end{bmatrix}
 \]
 is polynomially bounded by the size of A
 - $AU = [A' \ A'']U = [B \ 0]$
Corollary 5.2a. If a rational system $Ax=b$ has an integral solution, it has one of size polynomially bounded by the sizes of A and b.

Corollary 5.2b. The following problem has a good characterization:

given a rational matrix A and a rational vector b, does the system $Ax = b$ have an integral solution?
Polynomial algorithm to determine the HNF
Let A be an $m \times n$ integral matrix of full row rank.
Let M be the absolute value of the determinant of an (arbitrary) submatrix A of rank m.
The columns of A generate the same lattice as the columns of the matrix:

$$A' := \begin{bmatrix} \begin{array}{c|ccc} M & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot \\ \cdot & \cdot & \cdot & M \end{array} \end{bmatrix}$$
HNF of A is the same as that of A', except for the last m columns of the HNF of A'.
Thus, it suffices to find the HNF of A'.

Method: (1) Add integral multiples of the last m columns of A' to the first n columns of A' so that all components with be at least 0 or at most M.
(2) Suppose we have the matrix

\[
\begin{bmatrix}
B & 0 & 0 \\
0 & 0 & 0 \\
0 & M & 0 \\
\vdots & & \\
C & D & 0 \\
\end{bmatrix}
\]

where \(B\) is lower triangular \(k \times k\) matrix, \(C\) is an \((m - k) \times k\) matrix, \(D\) is an \((m - k) \times (n + 1)\) matrix such that the first row of \(D\) is nonzero.
(3) Writing $D = \left(\delta_{ij} \right)_{i=1,j=1}^{m-k,n+1}$:

if there are $i \neq j$ with $\delta_{li} \geq \delta_{lj} > 0$, then:

(i) subtract $\left\lfloor \frac{\delta_{li}}{\delta_{lj}} \right\rfloor$ times the j^{th} column of D from the i^{th} column of D;

(ii) add integral multiples of the last $(m-k-1)$ columns of (*) to the other columns to bring all components between 0 and M.

(4) Repeat (i) and (ii) while the first row of D has more than one nonzero entry. When D obtains exactly one nonzero entry, repeat for $(k+1)$.
(4) If $k = m$, then the matrix (*) is in the form $[B \ 0]$ with B lower triangular.
(5) HNF: for $i = 2, \ldots, n$, do for $j = 1, \ldots, i - 1$, add an integral multiple of the i^{th} column of B to the j^{th} column of B to get the $(i, j)^{th}$ entry of B nonnegative and less than β_{ij}.
(6) Then the HNF is obtained by deleting the last m columns.
Theorem 5.3. The described method finds the HNF in polynomial time.

Proof: • Executions on the matrix D is polynomially bounded by \(n \) and \(\log_2 M \)

• Procedure on first row of D: ○ one more zero entry in the row or
○ reduce the row by a factor of at least 2 \((\delta_{1i} - \left[\frac{\delta_{1i}}{\delta_{1j}} \right] \delta_{1j} \leq \frac{1}{2} \delta_{1i}) \)

\[\Rightarrow \text{after at most } n \log_2 M \text{ iterations, D has at most one nonzero entry in the first row and } k \rightarrow k + 1 \]

• Then \(k = m \) (B is upper triangular form) after at most \(mn \log_2 M \) iterations, we begin to transform \([B 0]\) into HNF \(\Rightarrow \) polynomial-time

• Thus, the algorithm is polynomially bounded
Corollary 5.3a. Given a rational matrix A of full row rank, we can find in polynomial time a unimodular matrix U such that AU is in HNF.

Corollary 5.3b. Given a system of rational linear equations, we can decide if it has an integral solution, and if so, find one, in polynomial time.

Corollary 5.3c. Given a feasible system $Ax=b$ of rational linear diophantine equations, we can find in polynomial time integral vectors $x_0, x_1, ..., x_t$ such that

$$\{x \mid Ax = b; \ x \text{ is integral}\} = \{x_0 + \lambda_1 x_1 + \cdots + \lambda_t x_t \mid \lambda_1, ..., \lambda_t \in \mathbb{Z}\}$$

with $x_0, x_1, ..., x_t$ linearly independent.