SWFR ENG 4TE3 (6TE3) COMP SCI 4TE3 (6TE3) Continuous Optimization Algorithm

Conjugate gradient

Computing and Software McMaster University

Conjugate directions:

Generalization of orthogonality

Let A be an $n \times n$ symmetric PD matrix.

We consider the strictly convex quadratic function

$$q(x) = \frac{1}{2}x^T A x - b^T x.$$

Definition 1. The directions (vectors) $s^1, \dots, s^k \in \mathbb{R}^n$ are conjugate (*A*-orthogonal) directions if $(s^i)^T A s^j = 0$ for all $1 \le i \ne j \le k$.

(Conjugate \equiv orthogonal if A = I.)

Theorem 1. Let \mathcal{L} be a linear subspace, $\mathcal{H}_1 := y^1 + \mathcal{L}$ and $\mathcal{H}_2 := y^2 + \mathcal{L}$ be two parallel affine spaces, and let x^1 and x^2 be the minimizers of q(x) over \mathcal{H}_1 and \mathcal{H}_2 , respectively. Then for every $s \in \mathcal{L}$, $(x^2 - x^1)$ and s are conjugate w.r.t. A.

Theorem 2. Let $s^1, \dots, s^k \in \mathbb{R}^n$ be conjugate directions w.r.t. A. Let x^1 be given and let $x^{i+1} := \operatorname{argmin} q(x^i + \lambda s^i), i = 1, \dots, k$.

Then x^{k+1} minimizes q(x) on the affine space $\mathcal{H} = x^1 + \mathcal{L}(s^1, \cdots, s^k)$.

Proof of the Theorems

Proof of Theorem 1

 $x^{1} + \lambda s \in \mathcal{H}_{1} \Rightarrow q(x^{1} + \lambda s) \geq q(x^{1}) \Rightarrow s^{T} \nabla q(x^{1}) = 0$ $x^{2} + \lambda s \in \mathcal{H}_{2} \Rightarrow q(x^{2} + \lambda s) \geq q(x^{2}) \Rightarrow s^{T} \nabla q(x^{2}) = 0$

This implies $s^T (\nabla q(x^2) - \nabla q(x^1)) = s^T A(x^1 - x^2) = 0.$

Proof of Theorem 2

One has to show that $\nabla q(x^{k+1}) \perp \mathcal{L}(s^1, \cdots, s^k)$, i.e. $\nabla q(x^{k+1}) \perp s^1, \cdots, s^k$. $x^{i+1} := x^i + \lambda^i s^i \qquad i = 1, \cdots, k$

where λ^i indicates the line-minimum, thus

$$x^{k+1} := x^1 + \lambda^1 s^1 + \dots + \lambda^k s^k = x^i + \lambda^i s^i + \dots + \lambda^k s^k$$

Due to exact line-search we have $\nabla q(x^{i+1})^T s^i = 0$. Using $\nabla q(x) = Ax - b$ we get

$$\nabla q(x^{k+1}) := \nabla q(x^i + \lambda^i s^i) + \sum_{\substack{j=i+1\\k}}^k \lambda^j A s^j.$$
$$(s^i)^T \nabla q(x^{k+1}) := (s^i)^T \nabla q(x^{i+1}) + \sum_{\substack{j=i+1\\j=i+1}}^k \lambda^j (s^i)^T A s^j.$$

Hence $(s^i)^T \nabla q(x^{k+1}) = 0.$

Conjugate directions without using gradient

minimize
$$q(x) = \frac{1}{2}x^T A x - b^T x$$
.

Let s^1, \dots, s^n be linearly independent directions; and x^1 be an initial point, A is symmetric PD.

Cycle 1. Let
$$z^1 = x^1$$
 and
 $z^{i+1} := \operatorname{argmin} q(z^i + \lambda s^i)$ $i = 1, \dots, n$.
 $x^2 = \operatorname{argmin} q(z^{n+1} + \lambda t^1)$, where $t^1 = z^{n+1} - x^1$.
Let $s^i = s^{i+1}$, $i = 1, \dots, n-1$ and $s^n = t^1$.
Cycle 2. Let $z^1 = x^2$ and
 $z^{i+1} := \operatorname{argmin} q(z^i + \lambda s^i)$ $i = 1, \dots, n$.
 $x^3 = \operatorname{argmin} q(z^{n+1} + \lambda t^2)$ with $t^2 = z^{n+1} - x^2$.
Then due to Thm 1. t^1 and t^2 are conjugate.
Let $s^i = s^{i+1}$, $i = 1, \dots, n-1$ and $s^n = t^2$.
Cycle k. Let $z^1 = x^k$ and
 $z^{i+1} := \operatorname{argmin} q(z^i + \lambda s^i)$ $i = 1, \dots, n$.
 $x^{k+1} = \operatorname{argmin} q(z^{n+1} + \lambda t^k)$ with $t^k = z^{n+1} - x^k$.
Then due to Thm 1. t^1, \dots, t^k are conjugate.
Let $s^i = s^{i+1}$, $i = 1, \dots, n-1$ and $s^n = t^k$.

Powell's algorithm - II

Conjugate directions without using gradient

minimize
$$q(x) = \frac{1}{2}x^T A x - b^T x$$
.

Cycle *n*. Let
$$z^1 = x^n$$
 and
 $z^{i+1} := \arg \min q(z^i + \lambda s^i)$ $i = 1, \dots, n$.
 $x^{n+1} = \arg \min q(z^{n+1} + \lambda t^n)$ with $t^n = z^{n+1} - x^n$.
Then due to Thm 1. $t^1, \dots t^n$ are conjugate.
Let $s^i = s^{i+1}$, $i = 1, \dots, n-1$ and $s^n = t^n$.
Thus $s^1, \dots s^n$ are conjugate.
Cycle $n + 1$. Let $z^1 = x^n$ and
 $z^{i+1} := \arg \min q(z^i + \lambda s^i)$ $i = 1, \dots, n$,
then due to Thm 2 $x^* = z^{n+1}$ is the minimizer of $q(x)$.

Observe: Without any gradient information we were able to find the exact minimum of a strictly convex quadratic function in a finite number of steps. For this at most $(n + 1)^2$ line-searches are needed. We also need to store n direction vectors.

Conjugate gradient method

minimize
$$q(x) = \frac{1}{2}x^T A x - b^T x$$
.

Let x_1 be an initial point, A is symmetric PD.

- **Step 1.** Let $s_1 = -\nabla q(x_1)$ and $x_2 := \arg \min q(x_1 + \lambda s_1)$.
- **Step** k. Let x_k , $\nabla q(x_k)$ and s_1, \dots, s_{k-1} conjugate directions be given. First we find s_k in the space of the negative gradient and the previous directions:

$$s_k := -\nabla q(x_k) + \beta_k^1 s_1 + \dots + \beta_k^{k-1} s_{k-1}.$$

 s_k should be conjugate to s_1, \dots, s_{k-1} . Therefore there holds $s_i^T A s_k = 0$, which implies:

$$\beta_k^i = \frac{\nabla q(x_k)^T A s_i}{s_i^T A s_i}$$

Then $x_{k+1} := \arg \min q(x_k + \lambda s_k)$.

With a bit of analysis we show $\beta_k^i = 0$ if i < k - 1, thus $s_k = -g_k + \beta_k^{k-1} s_{k-1}$, where $g_k = \nabla q(x_k)$.

Fletcher and Reeves - II

Calculating the coefficients β_k^i

$$\beta_k^i = \frac{g_k^T A s_i}{s_i^T A s_i}.$$

Observe that

$$g_{i+1} - g_i = A(x_{i+1} - x_i) = \lambda_i A s_i$$

thus

$$\beta_k^i = \frac{g_k^T(g_{i+1} - g_i)}{s_i^T(g_{i+1} - g_i)}.$$

Note $g_k^T g_i = 0$ if i < k, because

$$g_{i} := -s_{i} + \beta_{i}^{1} s_{1} + \dots + \beta_{i}^{i-1} s_{i-1}$$
$$g_{k}^{T} g_{i} := -g_{k}^{T} s_{i} + \beta_{i}^{1} g_{k}^{T} s_{1} + \dots + \beta_{i}^{i-1} g_{k}^{T} s_{i-1} = 0$$

because $g_k \perp s_1, \cdots s_{k-1}$, by using Theorem 2. Similarly, $g_i^T g_i = -g_i^T s_i$, thus

$$\beta_k^i = \begin{cases} 0 & \text{if } i < k-1, \\ \frac{g_k^T g_k}{-s_{k-1}^T g_{k-1}} = \frac{\|g_k\|^2}{\|g_{k-1}\|^2} & \text{if } i = k-1. \end{cases}$$

Fletcher and Reeves - III

Calculating the coefficients β_k^i

Thus the direction s^k is given by

$$s_k = -g_k + \frac{\|g_k\|^2}{\|g_{k-1}\|^2} s_{k-1},$$

Only the previous direction has to be stored and to minimize q(x) at most n line-searches are needed.

Polak-Ribière Method

For the nonlinear problem $\min_{x \in \mathbb{R}^n} f(x)$,

Linear Search might be inexact. FR-CG: $\beta_{k+1}^{FR} = \frac{||g_{k+1}||^2}{||g_k||^2}$;

Note that in case that f(x) is quadratic and the line search is exact, it holds $||g_{k+1}||^2 = g_{k+1}^T (g_{k+1} - g_k)$. Another choice is PR-CG where:

$$\beta_{k+1}^{PR} = \frac{g_{k+1}^T (g_{k+1} - g_k)}{\|g_k\|^2};$$

Numerical experience shows PR-CG is more robust and efficient.

Quasi-Newton Methods

Approximate the inverse Hessian

minimize
$$q(x) = \frac{1}{2}x^T A x - b^T x$$
.

Let x_1 be an initial point, A is symmetric PD.

For any two points x^k, x^{k+1} we have

$$\nabla q(x^{k+1}) - \nabla q(x^k) = Ax^{k+1} - b - (Ax^k - b) = A(x^{k+1} - x^k).$$

Let $y^k = \nabla q(x^{k+1}) - \nabla q(x^k)$ and $\sigma^k = x^{k+1} - x^k = \lambda^k s^k$, so we get:
 $\sigma^k = A^{-1}y^k$

We are going to approximate A^{-1} by a matrix H_k . The matrix H_k should behave like the inverse Hessian A^{-1} . The search direction is calculated by

$$s^k = -H_k \nabla q(x^k)$$
 and $x^{k+1} := \arg \min q(x^k + \lambda s^k)$

In the iterations the update $H_{k+1} = H_k + D_k$ will be used.

Quasi-Newton - II

Desired properties of the update

- **1. Symmetric and PD:** To guarantee a decreasing direction we need H_{k+1} to be symmetric and positive definite.
- **2.** Quasi-Newton (QN): Maintain the Newton property $\sigma^k = H_{k+1}y^k$.
- **3. Hereditary:** For all $1 \le i \le k \ \sigma^i = H_{k+1}y^i$.

Quasi-Newton - III

Choices for D_k

Symmetric rank-one (SR1) update:

$$D_k = \frac{(\sigma_k - H_k y_k)(\sigma_k - H_k y_k)^T}{(\sigma_k - H_k y_k)^T y_k}.$$

No guarantee to keep positive definiteness, need $(\sigma_k - H_k y_k)^T y_k > 0$.

Davidon-Fletcher-Powell (DFP) rank-2:

$$D_k = \frac{\sigma_k \sigma_k^T}{\sigma_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}$$

If H_k is positive definite, then so is H_{k+1} .

Consider now using approximations of A itself, denoted B_k , with

 $B_{k+1} = B_k + \Delta B_k.$

Broyden-Fletcher-Goldfarb-Shanno update:

$$\Delta B_k = \frac{y_k y_k^T}{\sigma_k^T y_k} - \frac{B_k \sigma_k \sigma_k^T B_k}{\sigma_k^T B_k \sigma_k}.$$

Taking its inverse,

$$D_k = \left(1 + \frac{y_k^T H_k y_k}{\sigma_k^T y_k}\right) \frac{\sigma_k \sigma_k^T}{\sigma_k^T y_k} - \frac{\sigma_k y_k^T H_k + H_k y_k \sigma_k^T}{\sigma_k^T y_k}$$

If B_k is positive definite, then so is B_{k+1} (same proof as for DFP).

QN Method - V

Broyden's family:

$$B_{k+1}(\phi) = (1 - \phi)B_{k+1}^{BFGS} + \phi B_{k+1}^{DFP}$$
$$= B_{k+1}^{BFGS} + \phi \sigma_k^T B_k \sigma_k w_k w_k^T$$

where

$$w_k = \frac{y_k}{\sigma_k^T y_k} - \frac{B_k \sigma_k}{\sigma_k^T B_k \sigma_k}.$$

and its inverse form

$$H_{k+1}(\theta) = (1-\theta)H_{k+1}^{DFP} + \theta H_{k+1}^{BFGS}$$
$$= H_{k+1}^{DFP} + \theta y_k^T H_k y_k v_k v_k^T$$

where

$$v_k = \frac{\sigma_k}{\sigma_k^T y_k} - \frac{H_k y_k}{y_k^T H_k y_k}.$$

If $\phi, \theta \geq 0$ then B_{k+1}, H_{k+1} remain positive definite.

In practice, BFGS has been found to be the most efficient update in Broyden's family.