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Conjugate directions:

Generalization of orthogonality

Let A be an n x n symmetric PD matrix.

We consider the strictly convex quadratic function
1
q(x) = Ea:TAa: — bl

Definition 1. The directions (vectors) sl,--- s¥ € R" are conjugate
(A—orthogonal) directions if (s")1As) =0 for all 1 <i+# j<k.

(Conjugate=orthogonal if A =1.)
Theorem 1. Let £ be a linear subspace, H1 =yl +L and Ho := y2+ L
be two parallel affine spaces, and let z! and z2 be the minimizers of

q(x) over H1 and Ho, respectively. Then for every s € L,
(z2 — z1) and s are conjugate w.r.t. A.

Theorem 2. Let sl .- ,sk € R"™ be conjugate directions w.r.t. A. Let
1 be given and let z't1 :=argmin q(z*+ \s?), i=1,--- k.

Then zFT1 minimizes q(z) on the affine space H = z1 + £(st,- -, sF).



Proof of the Theorems

Proof of Theorem 1
st 4+ AseHy = q(zl 4+ 2s) > q(zl) = s'Vgzl) =0
224+ As € Ho = q(z24 Xs) > q(22) = s'Vq(x?) =0

This implies s (Vq(:cQ) — Vq(a:l)) = sl'A(z! — 22) = 0. L]

Proof of Theorem 2

One has to show that Vg(zFt1) L £(st, .- ,s%), ie. Vg(zFtl) L
1 k

S ) T ’S ) . . . .
it = gl N\l 1=1,--- k
where )¢ indicates the line-minimum, thus
o=t A st 4 A =t NS 4 NS
Due to exact line-search we have Vq(z't1)Ts? = 0.
Using Vg(x) = Ax — b we get .
Va(a*Th := v+ Ns) + Y M Asl.
j=it1
(s)IVge(a"th) == (DN Ive@thH + Y M(sHTAs

j=it1

Hence (s)Tvq(zFt1) = 0. L]



Powell’s algorithm -1

Conjugate directions without using gradient

1
minimize q(x) = ExTAx — bl

Let si,.-.,s™ be linearly independent directions; and z! be an initial
point, A is symmetric PD.
Cycle 1. Let 21 = 21 and
21 = argmin q(z* + \s?) i=1,---,n.
2 = argmin ¢(z"1t1 + Xt1), where t1 = znt1 _ 21
Let st =5t 4=1-.- n—1and s =¢l.
Cycle 2. Let 21 = 22 and
21 = argmin q(z* + \s?) i=1,---,n.
23 = argmin ¢(z" 11 4+ A\t?) with t2 = znt1 — 32,
Then due to Thm 1. ¢! and #2 are conjugate.
Let st =s'Tl =1 ... n—1and s" = ¢2.
Cycle k. Let 2! = zF and
21 = argmin q(z* + \s?) i=1,---,n.
r*t1 = argmin q(z”‘"1 + )\tk) with tF = znt1 _ ok
Then due to Thm 1. ¢, ..-¢*¥ are conjugate.
Let st =s'Tl i=1-.. n—1and s =tk



Powell’s algorithm - II

Conjugate directions without using gradient

1
minimize q(x) = ExTAx — bl

Cycle n. Let z1 = 2™ and
21 = argmin q(z* + \s?) i=1,---,n.
2"t = argming(z" 1 4+ \") with 7 = 2T — g,
Then due to Thm 1. t1 -.-¢" are conjugate.
Let st =Tl i=1-.- n—1and s" ="
Thus s, ... s™ are conjugate.
Cycle n+ 1. Let 2! = 2" and
21 .= argminq(z* + \s?) 1=1,--- ,n,
then due to Thm 2 z* = 2711 is the minimizer of ¢(z).

Observe: Without any gradient information we were able to find the
exact minimum of a strictly convex quadratic function in a finite num-
ber of steps. For this at most (n + 1)2 line-searches are needed. We
also need to store n direction vectors.



Fletcher and Reeves

Conjugate gradient method

1
minimize q(x) = Ea:TAa: — bl

Let x1 be an initial point, A is symmetric PD.

Step 1. Let sy = —Vqg(z1) and x5 := argming(x1 + Asq1).

Step k. Let x, Vq(xr) and sq1,---,s,_1 conjugate directions be given.
First we find s in the space of the negative gradient and the
previous directions:

sk = —Va(z) + Bis1+ -+ By st
s should be conjugate to sqi,---,s._1. [Therefore there holds
si Asp, = 0, which implies:
Vq(zi)! As;
S?ASZ'

Then zp4 1 = argming(xg + Asg).

gL =

With a bit of analysis we show 8¢ =0 if i <k — 1, thus

k—1
sk = —gk + B, “sg—1, Where g = Vq(zy).



Fletcher and Reeves - 11

Calculating the coefficients 5,@

K s;-FAsi

Observe that

gi+1 — 9i = A(zj41 — =;) = NjAs;

thus 7
i 9. (git1 — 9i)
5k - T .
s (9i+1 — 9i)
Note gl g; =0 if i < k, because

: 1
gi = —s;+ Bls1+ -+ B s 1
T T 1T 1
gh9i = —glsi+Bigis1+ -+ B Tglsii1=0

because g L s1,---s,_1, by using Theorem 2.
Similarly, gl g; = —g!'s;, thus

0 ifi < k— 1,

T T
Bi, = 99k _— llgrll® ifi—=k—1
T = 2 = :
—s;_19k—1  |19k—1l




Fletcher and Reeves - III

Calculating the coefficients 5,@

Thus the direction s* is given by

Al
lgr—111?
Only the previous direction has to be stored and to minimize g(x) at
most n line-searches are needed.

S = —9gk +

Polak-Ribiere Method

For the nonlinear problem mingcrn f(x),

Linear Search might be inexact. FR-CG: g[f; = ”“T'k#i”,
9k

Note that in case that f(x) is quadratic and the line search is exact,
2
it holds Hg"H‘lH = g%+1(gk+1 — g1.). Another choice is PR-CG where:
B 9;Z+1(9k+1 — gk)

B = :
+ ek

Numerical experience shows PR-CG is more robust and efficient.



Quasi-Newton Methods

Approximate the inverse Hessian

1
minimize q(x) = EmTAx — vz

Let x1 be an initial point, A is symmetric PD.

For any two points z¥, zFT1 we have

Va(z"Th — vg(z®) = AzFT1 — b — (4zF —b) = A(GFTT — 2F).
Let y* = Vq(zFT1) — Vq(2F) and oF = kTl — 2k = N\rsk| so we get:
ok = A1,k
We are going to approximate A~1 by a matrix H,. The matrix H;

should behave like the inverse Hessian A~—l. The search direction is
calculated by

sk = —Hqu(xk) and zFT1:=argminq(z® + \s")

In the iterations the update Hy 1 = Hy + Dy, will be used.



Quasi-Newton - 11

Desired properties of the update

1. Symmetric and PD: To guarantee a decreasing direction we need
Hy41 to be symmetric and positive definite.

2. Quasi-Newton (QN): Maintain the Newton property o* = Hj, 4 19"

3. Hereditary: For all 1 <i<k o'= Hp41y"



Quasi-Newton - III

Choices for D,

Symmetric rank-one (SR1) update:

D, = (o — Hyyr) (on, — Hypyp)"
(o — Hiyr) " up

No guarantee to keep positive definiteness, need (o}, — Hpyp)! y;. > O.

Davidon-Fletcher-Powell (DFP) rank-2:

D, = opoi  Hiuryg Hy
ol yp, Y. Hiyg

If H; is positive definite, then so is Hy41.




Quasi-Newton - 1V

Consider now using approximations of A itself, denoted By, with

By41 = By + ABy.

Broyden-Fletcher-Goldfarb-Shanno update:

AR, — ypYi  Brogpoi By
k— "T ~— T :
Uk YL O'k BkUk
Taking its inverse,
D, =1 ykTHkyk kaf% Ukngk -I-Hkykag
k — + T T, T
0L Yk OL Yk OL Yk

If By, is positive definite, then so is By (same proof as for DFP).



QN Method - V

Broyden’s family:

By1(9) = (1 —¢)BEET + B

= BPYCS 4 ¢of Brogwiw]
where
wy = 2k _ fk;% |
oY Oy Brog

and its inverse form

Hpy1(0) = (1 —0)HRLE +o0r5ES

= Hl?flp + QyZHkykvk'U%
where
v, = ‘;k B jl:lkyk |
oL Yk Y Hryk
If 9,0 > 0 then Byy 1, Hiy1 remain positive definite.

In practice, BFGS has been found to be the most efficient update in
Broyden’'s family.



