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Conjugate directions:

Generalization of orthogonality

Let A be an n× n symmetric PD matrix.

We consider the strictly convex quadratic function

q(x) =
1

2
xTAx− bTx.

Definition 1. The directions (vectors) s1, · · · , sk ∈ Rn are conjugate

(A−orthogonal) directions if (si)TAsj = 0 for all 1 ≤ i 6= j ≤ k.

(Conjugate≡orthogonal if A = I.)

Theorem 1. Let L be a linear subspace, H1 := y1+L and H2 := y2+L
be two parallel affine spaces, and let x1 and x2 be the minimizers of

q(x) over H1 and H2, respectively. Then for every s ∈ L,

(x2 − x1) and s are conjugate w.r.t. A.

Theorem 2. Let s1, · · · , sk ∈ Rn be conjugate directions w.r.t. A. Let

x1 be given and let xi+1 := argmin q(xi + λsi), i = 1, · · · , k.

Then xk+1 minimizes q(x) on the affine space H = x1 + L(s1, · · · , sk).
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Proof of the Theorems
Proof of Theorem 1

x1 + λs ∈ H1 ⇒ q(x1 + λs) ≥ q(x1)⇒ sT∇q(x1) = 0

x2 + λs ∈ H2 ⇒ q(x2 + λs) ≥ q(x2)⇒ sT∇q(x2) = 0

This implies sT
(
∇q(x2)−∇q(x1)

)
= sTA(x1 − x2) = 0.

Proof of Theorem 2

One has to show that ∇q(xk+1) ⊥ L(s1, · · · , sk), i.e. ∇q(xk+1) ⊥
s1, · · · , sk.

xi+1 := xi + λisi i = 1, · · · , k

where λi indicates the line-minimum, thus

xk+1 := x1 + λ1s1 + · · ·+ λksk = xi + λisi + · · ·+ λksk.

Due to exact line-search we have ∇q(xi+1)T si = 0.

Using ∇q(x) = Ax− b we get

∇q(xk+1) := ∇q(xi + λisi) +
k∑

j=i+1

λjAsj.

(si)T∇q(xk+1) := (si)T∇q(xi+1) +
k∑

j=i+1

λj(si)TAsj.

Hence (si)T∇q(xk+1) = 0.
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Powell’s algorithm - I

Conjugate directions without using gradient

minimize q(x) =
1

2
xTAx− bTx.

Let s1, · · · , sn be linearly independent directions; and x1 be an initial
point, A is symmetric PD.

Cycle 1. Let z1 = x1 and

zi+1 := argmin q(zi + λsi) i = 1, · · · , n.
x2 = argmin q(zn+1 + λt1), where t1 = zn+1 − x1.

Let si = si+1, i = 1, · · · , n− 1 and sn = t1.

Cycle 2. Let z1 = x2 and

zi+1 := argmin q(zi + λsi) i = 1, · · · , n.
x3 = argmin q(zn+1 + λt2) with t2 = zn+1 − x2.

Then due to Thm 1. t1 and t2 are conjugate.

Let si = si+1, i = 1, · · · , n− 1 and sn = t2.

Cycle k. Let z1 = xk and

zi+1 := argmin q(zi + λsi) i = 1, · · · , n.
xk+1 = argmin q(zn+1 + λtk) with tk = zn+1 − xk.

Then due to Thm 1. t1, · · · tk are conjugate.

Let si = si+1, i = 1, · · · , n− 1 and sn = tk.
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Powell’s algorithm - II

Conjugate directions without using gradient

minimize q(x) =
1

2
xTAx− bTx.

Cycle n. Let z1 = xn and

zi+1 := arg min q(zi + λsi) i = 1, · · · , n.
xn+1 = argminq(zn+1 + λtn) with tn = zn+1 − xn.

Then due to Thm 1. t1, · · · tn are conjugate.

Let si = si+1, i = 1, · · · , n− 1 and sn = tn.

Thus s1, · · · sn are conjugate.

Cycle n+ 1. Let z1 = xn and

zi+1 := arg min q(zi + λsi) i = 1, · · · , n,
then due to Thm 2 x∗ = zn+1 is the minimizer of q(x).

Observe: Without any gradient information we were able to find the

exact minimum of a strictly convex quadratic function in a finite num-

ber of steps. For this at most (n + 1)2 line-searches are needed. We

also need to store n direction vectors.
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Fletcher and Reeves
Conjugate gradient method

minimize q(x) =
1

2
xTAx− bTx.

Let x1 be an initial point, A is symmetric PD.

Step 1. Let s1 = −∇q(x1) and x2 := arg min q(x1 + λs1).

Step k. Let xk, ∇q(xk) and s1, · · · , sk−1 conjugate directions be given.

First we find sk in the space of the negative gradient and the

previous directions:

sk := −∇q(xk) + β1
ks1 + · · ·+ βk−1

k sk−1.

sk should be conjugate to s1, · · · , sk−1. Therefore there holds

sTi Ask = 0, which implies:

βik =
∇q(xk)TAsi

sTi Asi

Then xk+1 := arg min q(xk + λsk).

With a bit of analysis we show βik = 0 if i < k − 1, thus

sk = −gk + βk−1
k sk−1, where gk = ∇q(xk).
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Fletcher and Reeves - II
Calculating the coefficients βik

βik =
gTkAsi

sTi Asi
.

Observe that

gi+1 − gi = A(xi+1 − xi) = λiAsi

thus

βik =
gTk (gi+1 − gi)
sTi (gi+1 − gi)

.

Note gTk gi = 0 if i < k, because

gi := −si + β1
i s1 + · · ·+ βi−1

i si−1

gTk gi := −gTk si + β1
i g
T
k s1 + · · ·+ βi−1

i gTk si−1 = 0

because gk ⊥ s1, · · · sk−1, by using Theorem 2.

Similarly, gTi gi = −gTi si, thus

βik =


0 ifi < k − 1,

gTk gk
−sTk−1gk−1

= ‖gk‖2
‖gk−1‖2

ifi = k − 1.
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Fletcher and Reeves - III
Calculating the coefficients βik

Thus the direction sk is given by

sk = −gk +
‖gk‖2

‖gk−1‖2
sk−1,

Only the previous direction has to be stored and to minimize q(x) at

most n line-searches are needed.

Polak-Ribière Method

For the nonlinear problem minx∈Rn f(x),

Linear Search might be inexact. FR-CG: βFRk+1 =
‖gk+1‖2

‖gk‖2
;

Note that in case that f(x) is quadratic and the line search is exact,

it holds
∥∥∥gk+1

∥∥∥2
= gTk+1(gk+1 − gk). Another choice is PR-CG where:

βPRk+1 =
gTk+1(gk+1 − gk)

‖gk‖2
;

Numerical experience shows PR-CG is more robust and efficient.
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Quasi-Newton Methods

Approximate the inverse Hessian

minimize q(x) =
1

2
xTAx− bTx.

Let x1 be an initial point, A is symmetric PD.

For any two points xk, xk+1 we have

∇q(xk+1)−∇q(xk) = Axk+1 − b− (Axk − b) = A(xk+1 − xk).

Let yk = ∇q(xk+1)−∇q(xk) and σk = xk+1 − xk = λksk, so we get:

σk = A−1yk

We are going to approximate A−1 by a matrix Hk. The matrix Hk
should behave like the inverse Hessian A−1. The search direction is

calculated by

sk = −Hk∇q(xk) and xk+1 := arg min q(xk + λsk)

In the iterations the update Hk+1 = Hk +Dk will be used.
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Quasi-Newton - II

Desired properties of the update

1. Symmetric and PD: To guarantee a decreasing direction we need

Hk+1 to be symmetric and positive definite.

2. Quasi-Newton (QN): Maintain the Newton property σk = Hk+1y
k.

3. Hereditary: For all 1 ≤ i ≤ k σi = Hk+1y
i.
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Quasi-Newton - III

Choices for Dk

Symmetric rank-one (SR1) update:

Dk =
(σk −Hkyk)(σk −Hkyk)T

(σk −Hkyk)Tyk
.

No guarantee to keep positive definiteness, need (σk −Hkyk)Tyk > 0.

Davidon-Fletcher-Powell (DFP) rank-2:

Dk =
σkσ

T
k

σTk yk
−
Hkyky

T
kHk

yTkHkyk
.

If Hk is positive definite, then so is Hk+1.
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Quasi-Newton - IV

Consider now using approximations of A itself, denoted Bk, with

Bk+1 = Bk + ∆Bk.

Broyden-Fletcher-Goldfarb-Shanno update:

∆Bk =
yky

T
k

σTk yk
−
Bkσkσ

T
kBk

σTkBkσk
.

Taking its inverse,

Dk =

(
1 +

yTkHkyk

σTk yk

)
σkσ

T
k

σTk yk
−
σky

T
kHk +Hkykσ

T
k

σTk yk

If Bk is positive definite, then so is Bk+1 (same proof as for DFP).
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QN Method - V

Broyden’s family:

Bk+1(φ) = (1− φ)BBFGSk+1 + φBDFPk+1

= BBFGSk+1 + φσTkBkσkwkw
T
k

where

wk =
yk
σTk yk

−
Bkσk
σTkBkσk

.

and its inverse form

Hk+1(θ) = (1− θ)HDFP
k+1 + θHBFGS

k+1

= HDFP
k+1 + θyTkHkykvkv

T
k

where

vk =
σk
σTk yk

−
Hkyk
yTkHkyk

.

If φ, θ ≥ 0 then Bk+1, Hk+1 remain positive definite.

In practice, BFGS has been found to be the most efficient update in

Broyden’s family.
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