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Optimality conditions for

constrained convex optimization problems

(CO) min f(x)
s.t. gj(x) ≤ 0, j = 1, · · · ,m

x ∈ C.

F = {x ∈ C | gj(x) ≤ 0, j ∈ J}.

Let C0 denote the relative interior of the convex set C.

Definition 1. A vector (point) x0 ∈ C0 is called a Slater point of (CO)

if

gj(x
0) < 0, for all j where gj is nonlinear,

gj(x
0) ≤ 0, for all j where gj is linear.

(CO) is Slater regular or (CO) satisfies the Slater condition (in other

words, (CO) satisfies the Slater constraint qualification).
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Ideal Slater Point

Some constraint functions gj(x) might take the value zero for all fea-

sible points. Such constraints are called singular while the others are

called regular.

Js = {j ∈ J | gj(x) = 0 for all x ∈ F},

Jr = J − Js = {j ∈ J | gj(x) < 0 for some x ∈ F}.

Remark: Note that if (CO) is Slater regular, then all singular functions

must be linear.

Definition 2. A vector (point) x∗ ∈ C0 is called an Ideal Slater point

of the convex optimization problem (CO), if x∗ is a Slater point and

gj(x
∗) < 0 for all j ∈ Jr,

gj(x
∗) = 0 for all j ∈ Js.

Lemma 1. If the problem (CO) is Slater regular then there exists an

ideal Slater point x∗ ∈ F.
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Convex Farka’s Lemma

Theorem 1. Let U ⊆ IRn be a convex set and a point w ∈ IRn with w /∈ U
be given. Then there is a separating hyperplane H = {x | aTx = α}
with a ∈ IRn, α ∈ IR such that aTw ≤ α and aTu ≥ α for all u ∈ U, but

U is not a subset of H, i.e. there is a u ∈ U such that aTu > α.

Lemma 2. (Farka’s) The convex optimization problem (CO) is given

and we assume that the Slater regularity condition is satisfied. The

inequality system

f(x) < 0
gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C.

(1)

has no solution if and only if there exists a vector y = (y1, · · · , ym) ≥ 0

such that

f(x) +
m∑
j=1

yjgj(x) ≥ 0 for all x ∈ C. (2)

The systems (??) and (??) are called alternative systems, i.e. exactly

one of them has a solution.
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Proof of the
Convex Farka’s Lemma

If (??) is solvable, then (??) cannot hold.

To prove the other side: let us assume that (??) has no solution. With

u = (u0, · · · , um), we define the set U ∈ IRm+1

U = {u | ∃x ∈ C with u0 > f(x), uj ≥ gj(x) if j ∈ Jr,
uj = gj(x) if j ∈ Js}.

U is convex (due to the Slater condition singular functions are linear).

Due to the infeasibility of (??) it does not contain the origin.

Due to the separation Theorem ?? there exists a separating hyperplane

defined by (y0, y1, · · · , ym) and α = 0 such that

m∑
j=0

yjuj ≥ 0 for all u ∈ U (3)

and for some u ∈ U one has

m∑
j=0

yjuj > 0. (4)
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Proof of the
Convex Farka’s Lemma

The rest of the proof is divided into four parts.

I. First we prove that y0 ≥ 0 and yj ≥ 0 for all j ∈ Jr.

II. Secondly we establish that (??) holds for

u = (f(x), g1(x), · · · , gm(x)) if x ∈ C.

III. Then we prove that y0 must be positive.

IV. Finally, it is shown by using induction that

we can assume yj > 0 for all j ∈ Js.
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Proof: Steps I and II

I. First we show that y0 ≥ 0 and yj ≥ 0 for all j ∈ Jr. Let us assume

that y0 < 0. Let us take an arbitrary (u0, u1, · · · , um) ∈ U. By definition

(u0 + λ, u1, · · · , um) ∈ U for all λ ≥ 0.

Hence by (??) one has

λy0 +
m∑
j=0

yjuj ≥ 0 for all λ ≥ 0.

For sufficiently large λ the left hand side is negative, which is a contra-

diction, i.e. y0 must be nonnegative. The proof of the nonnegativity

of all yj as j ∈ Jr goes analogously.

II. Secondly we establish that

y0f(x) +
m∑
j=1

yjgj(x) ≥ 0 for all x ∈ C. (5)

This follows from the observation that for all x ∈ C and for all λ > 0

one has u = (f(x) + λ, g1(x), · · · , gm(x)) ∈ U, thus

y0(f(x) + λ) +
m∑
j=1

yjgj(x) ≥ 0 for all x ∈ C.

Taking the limit as λ −→ 0 the claim follows.
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Proof: Step III

III. Thirdly we show that y0 > 0. The proof is by contradiction. We already know
that y0 ≥ 0. Let us assume to the contrary that y0 = 0. Hence from (??) we have∑

j∈Jr

yjgj(x) +
∑
j∈Js

yjgj(x) =
m∑
j=1

yjgj(x) ≥ 0 for all x ∈ C.

Taking an ideal Slater point x∗ ∈ C0 one has

gj(x
∗) = 0 if j ∈ Js,

whence ∑
j∈Jr

yjgj(x
∗) ≥ 0.

Since yj ≥ 0 and gj(x∗) < 0 for all j ∈ Jr, this implies yj = 0 for all j ∈ Jr. This results
in ∑

j∈Js

yjgj(x) ≥ 0 for all x ∈ C. (6)

Now, from (??), with x ∈ C such that uj = gj(x) if i ∈ Js we have∑
j∈Js

yjgj(x) > 0. (7)

Because the ideal Slater point x∗ is in the relative interior of C there exist a vector

x̃ ∈ C and 0 < λ < 1 such that x∗ = λx + (1 − λ)x̃. Using that gj(x∗) = 0 for j ∈ Js
and that the singular functions are linear one gets
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Proof: Step III cntd.

0 =
∑
j∈Js yjgj(x

∗)
=

∑
j∈Js yjgj(λx+ (1− λ)x̃)

= λ
∑
j∈Js yjgj(x) + (1− λ)

∑
j∈Js yjgj(x̃)

> (1− λ)
∑
j∈Js yjgj(x̃).

Here the last inequality follows from (??). The inequality

(1− λ)
∑
j∈Js

yjgj(x̃) < 0

contradicts (??). Hence we have proved that y0 > 0.

At this point we have (??) with y0 > 0 and yj ≥ 0 for all j ∈ Jr.

Dividing by y0 > 0 in (??) and by defining yj :=
yj
y0

for all j ∈ J we

obtain

f(x) +
m∑
j=1

yjgj(x) ≥ 0 for all x ∈ C. (8)

We finally show that y may be taken such that yj > 0 for all j ∈ Js.
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Proof: Step IV

IV. To complete the proof we show by induction on the cardinality

of Js that one can make yj nonnegative for all j ∈ Js. Observe that if

Js = ∅ then we are done. If |Js| = 1 then we apply the results proven

up to this point to the inequality system

gs(x) < 0,
gj(x) ≤ 0, j ∈ Jr,
x ∈ C

(9)

where {s} = Js. The system (??) has no solution, it satisfies the Slater

condition, and therefore there exists a ŷ ∈ IRm−1 such that

gs(x) +
∑
j∈Jr

ŷjgj(x) ≥ 0 for all x ∈ C, (10)

where ŷj ≥ 0 for all j ∈ Jr. Adding a sufficiently large positive multiple

of (??) to (??) one obtains a positive coefficient for gs(x).

The general inductive step goes analogously.

9



Proof: Step IV cntd.

Assuming that the result holds for |Js| = k, it is proved for the case

|Js| = k + 1. Let s ∈ Js then |Js \ {s}| = k, and hence the inductive

assumption applies to the system

gs(x) < 0
gj(x) ≤ 0, j ∈ Js \ {s},
gj(x) ≤ 0, j ∈ Jr,
x ∈ C

(11)

By construction the system (??) has no solution, it satisfies the Slater

condition, and by the inductive assumption we have a ŷ ∈ IRm−1 such

that gs(x) +
∑

j∈Jr∪Js\{s}
ŷjgj(x) ≥ 0 for all x ∈ C. (12)

where ŷj > 0 for all j ∈ Js \ {s} and ŷj ≥ 0 for all j ∈ Jr. Adding

a sufficiently large multiple of (??) to (??) one obtains the desired

nonnegative multipliers.

Remark: Note, that finally we proved slightly more than was stated.

We have proved that the multipliers of all the singular constraints can

be made strictly positive.
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Karush–Kuhn–Tucker theory

Lagrangian, Saddle point

The Lagrange function:

L(x, y) := f(x) +
m∑
j=1

yjgj(x) (13)

where x ∈ C and y ≥ 0. Note that for fixed y the Lagrangean is convex

in x; for fixed x. it is linear in y.

Definition 3. A vector pair (x, y) ∈ IRn+m, x ∈ C and y ≥ 0 is called a

saddle point of the Lagrange function L if

L(x, y) ≤ L(x, y) ≤ L(x, y) (14)

for all x ∈ C and y ≥ 0.
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A saddle point lemma

Lemma 3. A saddle point (x, y) ∈ IRn+m, x ∈ C and y ≥ 0 satisfies the

relation

inf
x∈C

sup
y≥0

L(x, y) = L(x, y) = sup
y≥0

inf
x∈C

L(x, y). (15)

Proof. For any (x̂, ŷ) one has

inf
x∈C

L(x, ŷ) ≤ L(x̂, ŷ) ≤ sup
y≥0

L(x̂, y),

hence one can take the supremum of the left hand side and the infimum

of the right hand side resulting in

sup
y≥0

inf
x∈C

L(x, y) ≤ inf
x∈C

sup
y≥0

L(x, y). (16)

Using the saddle point inequality (??) one obtains

inf
x∈C

sup
y≥0

L(x, y) ≤ sup
y≥0

L(x, y) ≤ L(x, y) ≤ inf
x∈C

L(x, y) ≤ sup
y≥0

inf
x∈C

L(x, y). (17)

Combining (??) and (??) the equality (??) follows.
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Karush-Kuhn-Tucker Theorem

Theorem 2. The problem (CO) is given. Assume that the Slater

regularity condition is satisfied. The vector x is an optimal solution of

(CO) if and only if there is a vector y such that (x, y) is a saddle point

of the Lagrange function L.

Proof. First, if (x, y) is a saddle point of L(x, y) then x is optimal for
(CO). The proof of this part does not need any regularity condition.
From the saddle point inequality (??) one has

f(x) +
m∑
j=1

yjgj(x) ≤ f(x) +
m∑
j=1

yjgj(x) ≤ f(x) +
m∑
j=1

yjgj(x)

for all y ≥ 0 and for all x ∈ C. From the first inequality gj(x) ≤ 0 for

all j = 1, · · · ,m follows, hence x ∈ F is feasible for (CO). Taking the

two extreme sides of the above inequality and substituting y = 0 we

have

f(x) ≤ f(x) +
m∑
j=1

yjgj(x) ≤ f(x)

for all x ∈ F, i.e. x is optimal.
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KKT proof cntd.

To prove the other direction we need Slater regularity and the Convex

Farkas Lemma ??. Let us take an optimal solution x of the convex

optimization problem (CO). Then the inequality system

f(x)− f(x) < 0
gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C

is infeasible. Applying the Convex Farkas Lemma ?? one has y ≥ 0

such that

f(x)− f(x) +
m∑
j=1

yjgj(x) ≥ 0

for all x ∈ C. Using that x is feasible one can derive the saddle point

inequality

f(x) +
m∑
j=1

yjgj(x) ≤ f(x) +
m∑
j=1

yjgj(x) ≤ f(x) +
m∑
j=1

yjgj(x)

which completes the proof.
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KKT–Corollaries

Corollary 1. Under the assumptions of Theorem ?? the vector x ∈ C is an optimal
solution of (CO) if and only if there exists a y ≥ 0 such that

(i) f(x) = min
x∈C
{f(x) +

m∑
j=1

yjgj(x)} and

(ii)
m∑
j=1

yjgj(x) = max
y≥0
{
m∑
j=1

yjgj(x)}.

Corollary 2. Under the assumptions of Theorem ?? the vector x ∈ F is an optimal
solution of (CO) if and only if there exists a y ≥ 0 such that

(i) f(x) = min
x∈C
{f(x) +

m∑
j=1

yjgj(x)} and

(ii)
m∑
j=1

yjgj(x) = 0.

Corollary 3. Let us assume that C = IRn and the functions f, g1, · · · , gm are contin-
uously differentiable functions. Under the assumptions of Theorem ?? the vector
x ∈ F is an optimal solution of (CO) if and only if there exists a y ≥ 0 such that

(i) 0 = ∇f(x) +
m∑
j=1

yj∇gj(x) and

(ii)
m∑
j=1

yjgj(x) = 0.
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KKT point

Definition 4. Let us assume that C = IRn and the functions f, g1, · · · , gm
are continuously differentiable functions. The vector (x, y) ∈ IRn+m is

called a Karush–Kuhn–Tucker (KKT) point of (CO) if

(i) gj(x) ≤ 0, for all j ∈ J,

(ii) 0 = ∇f(x) +
m∑
j=1

yj∇gj(x)

(iii)
m∑
j=1

yjgj(x) = 0,

(iv) y ≥ 0.

Corollary 4. Let us assume that C = IRn and the functions f, g1, · · · , gm
are continuously differentiable convex functions and the assumptions

of Theorem ?? hold. Let the vector (x, y) be a KKT point, then x is

an optimal solution of (CO).
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Duality in CO

Lagrange dual

Definition 5. Denote

ψ(y) = inf
x∈C
{f(x) +

m∑
j=1

yjgj(x)}.

The problem (LD) supψ(y)
y ≥ 0

is called the Lagrange dual of problem (CO).

Lemma 4. The Lagrange dual (LD) of (CO) is a convex optimization

problem, even if the functions f, g1, · · · , gm are not convex.

Proof. ψ(y) is concave! Let y, ŷ ≥ 0 and 0 ≤ λ ≤ 1.

ψ(λy + (1− λ)ŷ) = inf
x∈C
{f(x) +

m∑
j=1

(λyj + (1− λ)ŷj)gj(x)}

= inf
x∈C
{λ[f(x) +

m∑
j=1

yjgj(x)] + (1− λ)[f(x) +
m∑
j=1

ŷjgj(x)]}

≥ inf
x∈C
{λ[f(x) +

m∑
j=1

yjgj(x)]}+ inf
x∈C
{(1− λ)[f(x) +

m∑
j=1

ŷjgj(x)]}

= λψ(y) + (1− λ)ψ(ŷ).
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Results on the Lagrange dual

Theorem 3 (Weak duality). If x is a feasible solution of (CO) and

y ≥ 0 then

ψ(y) ≤ f(x)

and equality holds if and only if

inf
x∈C
{f(x) +

m∑
j=1

yjgj(x)} = f(x).

Proof.

ψ(y) = inf
x∈C
{f(x) +

m∑
j=1

yjgj(x)} ≤ f(x) +
m∑
j=1

yjgj(x) ≤ f(x).

Equality holds iff infx∈C{f(x) +
∑m
j=1 yjgj(x)} = f(x) and hence

yjgj(x) = 0 for all j ∈ J.
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Results on the Lagrange dual

Corollary 5. If x is a feasible solution of (CO), y ≥ 0 and ψ(y) = f(x)

then the vector x is an optimal solution of (CO) and y is optimal for

(LD). Further if the functions f, g1, · · · , gm are continuously differen-

tiable then (x, y) is a KKT point.

Theorem 4 (Strong duality). Assume that (CO) satisfies the Slater

regularity condition. Let x be a feasible solution of (CO). The vector

x is an optimal solution of (CO) if and only if there exists a y ≥ 0 such

that y is an optimal solution of (LD) and

ψ(y) = f(x).
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Wolfe dual

Definition 6. Assume that C = IRn and the functions f, g1, · · · , gm are

continuously differentiable and convex. The problem

(WD) sup{f(x) +
m∑
j=1

yjgj(x)}

∇f(x) +
m∑
j=1

yj∇gj(x) = 0,

y ≥ 0

is called the Wolfe dual of the convex optimization problem (CO).

Warning! Remember, we are only allowed to form the Wolfe dual of

a nonlinear optimization problem if it is convex!

For nonconvex problems one has to work with the Lagrange dual.
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Examples of dual problems

Linear optimization

(LO) min{cTx | Ax = b, x ≥ 0}.

gj(x) = (aj)Tx− bj if j = 1, · · · ,m;

gj(x) = (−aj−m)Tx+ bj−m if j = m+ 1, · · · ,2m;

gj(x) = −xj−2m if j = 2m+ 1, · · · ,2m+ n.

Denote Lagrange multipliers by y−, y+ and s,

then the Wolfe dual (WD) of (LO) is:

max cTx+ (y−)T(Ax− b) + (y+)T(−Ax+ b) + sT(−x)
c+ATy− −ATy+ − s = 0,
y− ≥ 0, y+ ≥ 0, s ≥ 0.

Substitute c = −ATy−+ATy+ + s and let y = y+ − y− then

max bTy

ATy + s = c,
s ≥ 0.

Note that the KKT conditions provide the well known complementary

slackness condition xT s = 0.
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Quadratic optimization

(QO) min{cTx+ 1
2x

TQx | Ax ≥ b, x ≥ 0}.

gj(x) = (−aj)Tx+ bj if j = 1, · · · ,m;

gj(x) = −xj−m if j = m+ 1, · · · ,m+ n.

Lagrange multipliers: y and s.

The Wolfe dual (WD) of (QO) is:

max cTx+ 1
2x

TQx+ yT (−Ax+ b) + sT (−x)
c+Qx−ATy − s = 0,

y ≥ 0, s ≥ 0.

Substitute c = −Qx+ATy + s in the objective.

max bTy − 1
2x

TQx

−Qx+ATy + s = c,
y ≥ 0, s ≥ 0.

Q = DTD (e.g. Cholesky), let z = Dx.
The following (QD) dual problem is obtained:

max bTy − 1
2z
Tz

−DTz +ATy + s = c,
y ≥ 0, s ≥ 0.
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Nonlinear optimization

min −
n∑
i=1

lnxi

s.t. Ax ≥ 0
dTx = 1
x ≥ 0

Lagrange multipliers: y ∈ IRm, t ∈ IR and s ∈ IRn. The Wolfe dual

(WD) is:

max −
n∑
i=1

lnxi + yT (−Ax) + t(dTx− 1) + sT (−x)

−X−1e−ATy + td− s = 0,
y ≥ 0, s ≥ 0.

Multiplying the first constraint by xT one has

−xTX−1e− xTATy + txTd− xT s = 0.

Using dTx = 1, xTX−1e = n and the optimality conditions yTAx = 0,

xT s = 0 we have

t = n.
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Nonlinear optimization II

x is necessarily strictly positive, hence the dual variable s must be

zero at optimum.

max −
n∑
i=1

lnxi

X−1e+ATy = nd,
y ≥ 0.

Eliminating the variables xi > 0:

xi = 1
ndi−aTi y

and − lnxi = ln(ndi − aTi y) ∀ i.

max
n∑
i=1

ln(ndi − aTi y)

ATy ≤ nd,
y ≥ 0.
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Example: positive duality gap

Duffin’s convex optimization problem

(CO) min e−x2

s.t.
√
x2

1 + x2
2 − x1 ≤ 0

x ∈ IR2.

The feasible region is F = {x ∈ IR2| x1 ≥ 0, x2 = 0}.
(CO) is not Slater regular.

The optimal value of the object function is 1.

The Lagrange function is given by

L(x, y) = e−x2 + y(
√
x2

1 + x2
2 − x1).

Now, let ε =
√
x2

1 + x2
2 − x1, then

x2
2 − 2εx1 − ε2 = 0.
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Example: positive duality gap

Hence, for any ε > 0 we can find x1 > 0 such that ε =
√
x2

1 + x2
2 − x1

even if x2 goes to infinity. However, when x2 goes to infinity e−x2 goes

to 0. So,

ψ(y) = inf
x∈IR2

e−x2 + y

(√
x2

1 + x2
2 − x1

)
= 0,

thus the optimal value of the Lagrange dual

(LD) max ψ(y)

s.t. y ≥ 0

is 0. Nonzero duality gap that equals to 1!
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Example: infinite duality gap

Duffin’s example slightly modified

min −x2

s.t.
√
x2

1 + x2
2 − x1 ≤ 0.

The feasible region is

F = {x ∈ IR2| x1 ≥ 0, x2 = 0}. The problem is not Slater regular.

The optimal value of the object function is 0.

The Lagrange function is given by

L(x, y) = −x2 + y(
√
x2

1 + x2
2 − x1).

So,

ψ(y) = inf
x∈IR2

{
−x2 + y

(√
x2

1 + x2
2 − x1

)}
= −∞,

thus the optimal value of the Lagrange dual

(LD) max ψ(y)

s.t. y ≥ 0

is −∞, because ψ(y) is minus infinity!
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