SWFR ENG 4TE3 (6TE3) COMP SCI 4TE3 (6TE3) Continuous Optimization Algorithm

Duality

Computing and Software McMaster University

Optimality conditions for

constrained convex optimization problems

(CO) min
$$f(x)$$

s.t. $g_j(x) \le 0, \quad j = 1, \cdots, m$
 $x \in C.$

$$\mathcal{F} = \{ x \in \mathcal{C} \mid g_j(x) \le 0, \quad j \in J \}.$$

Let C^0 denote the *relative interior* of the convex set C. **Definition 1.** A vector (point) $x^0 \in C^0$ is called a Slater point of (CO) if

$$g_j(x^0) < 0$$
, for all j where g_j is nonlinear,
 $g_j(x^0) \le 0$, for all j where g_j is linear.

(CO) is Slater regular or (CO) satisfies the Slater condition (in other words, (CO) satisfies the Slater constraint qualification).

Ideal Slater Point

Some constraint functions $g_j(x)$ might take the value zero for all feasible points. Such constraints are called *singular* while the others are called *regular*.

$$J_s = \{ j \in J \mid g_j(x) = 0 \text{ for all } x \in \mathcal{F} \},\$$

 $J_r = J - J_s = \{ j \in J \mid g_j(x) < 0 \text{ for some } x \in \mathcal{F} \}.$

Remark: Note that if (CO) is Slater regular, then all singular functions must be linear.

Definition 2. A vector (point) $x^* \in C^0$ is called an Ideal Slater point of the convex optimization problem (CO), if x^* is a Slater point and

$$g_j(x^*) < 0$$
 for all $j \in J_r$,
 $g_j(x^*) = 0$ for all $j \in J_s$.

Lemma 1. If the problem (CO) is Slater regular then there exists an ideal Slater point $x^* \in \mathcal{F}$.

Convex Farka's Lemma

Theorem 1. Let $\mathcal{U} \subseteq \mathbb{R}^n$ be a convex set and a point $w \in \mathbb{R}^n$ with $w \notin \mathcal{U}$ be given. Then there is a separating hyperplane $H = \{x \mid a^T x = \alpha\}$ with $a \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ such that $a^T w \leq \alpha$ and $a^T u \geq \alpha$ for all $u \in \mathcal{U}$, but \mathcal{U} is not a subset of H, i.e. there is a $\overline{u} \in \mathcal{U}$ such that $a^T \overline{u} > \alpha$.

Lemma 2. (Farka's) The convex optimization problem (CO) is given and we assume that the Slater regularity condition is satisfied. The inequality system

$$f(x) < 0$$

$$g_j(x) \le 0, \quad j = 1, \cdots, m$$

$$x \in C.$$
(1)

has no solution if and only if there exists a vector $y = (y_1, \dots, y_m) \ge 0$ such that

$$f(x) + \sum_{j=1}^{m} y_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}.$$
 (2)

The systems (??) and (??) are called *alternative systems*, i.e. exactly one of them has a solution.

Proof of the

Convex Farka's Lemma

If (??) is solvable, then (??) cannot hold.

To prove the other side: let us assume that (??) has no solution. With $u = (u_0, \dots, u_m)$, we define the set $\mathcal{U} \in \mathbb{R}^{m+1}$

$$\mathcal{U} = \{ u \mid \exists x \in \mathcal{C} \quad \text{with} \quad u_0 > f(x), \ u_j \ge g_j(x) \text{ if } j \in J_r, \\ u_j = g_j(x) \text{ if } j \in J_s \}.$$

 \mathcal{U} is convex (due to the Slater condition singular functions are linear). Due to the infeasibility of (??) it does not contain the origin. Due to the separation Theorem ?? there exists a separating hyperplane defined by (y_0, y_1, \dots, y_m) and $\alpha = 0$ such that

$$\sum_{j=0}^{m} y_j u_j \ge 0 \quad \text{for all } u \in \mathcal{U}$$
(3)

and for some $\overline{u} \in \mathcal{U}$ one has

$$\sum_{j=0}^{m} y_j \overline{u}_j > 0.$$
 (4)

Proof of the

Convex Farka's Lemma

The rest of the proof is divided into four parts.

- **I.** First we prove that $y_0 \ge 0$ and $y_j \ge 0$ for all $j \in J_r$.
- **II.** Secondly we establish that (??) holds for $u = (f(x), g_1(x), \dots, g_m(x))$ if $x \in C$.
- **III.** Then we prove that y_0 must be positive.
- **IV.** Finally, it is shown by using induction that we can assume $y_j > 0$ for all $j \in J_s$.

Proof: Steps I and II

I. First we show that $y_0 \ge 0$ and $y_j \ge 0$ for all $j \in J_r$. Let us assume that $y_0 < 0$. Let us take an arbitrary $(u_0, u_1, \dots, u_m) \in \mathcal{U}$. By definition $(u_0 + \lambda, u_1, \dots, u_m) \in \mathcal{U}$ for all $\lambda \ge 0$. Hence by (??) one has

$$\lambda y_0 + \sum_{j=0}^m y_j u_j \ge 0$$
 for all $\lambda \ge 0$.

For sufficiently large λ the left hand side is negative, which is a contradiction, i.e. y_0 must be nonnegative. The proof of the nonnegativity of all y_j as $j \in J_r$ goes analogously.

II. Secondly we establish that

$$y_0 f(x) + \sum_{j=1}^m y_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}.$$
(5)

This follows from the observation that for all $x \in C$ and for all $\lambda > 0$ one has $u = (f(x) + \lambda, g_1(x), \dots, g_m(x)) \in U$, thus

$$y_0(f(x) + \lambda) + \sum_{j=1}^m y_j g_j(x) \ge 0$$
 for all $x \in \mathcal{C}$.

Taking the limit as $\lambda \longrightarrow 0$ the claim follows.

Proof: Step III

III. Thirdly we show that $y_0 > 0$. The proof is by contradiction. We already know that $y_0 \ge 0$. Let us assume to the contrary that $y_0 = 0$. Hence from (??) we have

$$\sum_{j\in J_r} y_j g_j(x) + \sum_{j\in J_s} y_j g_j(x) = \sum_{j=1}^m y_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}.$$

Taking an ideal Slater point $x^* \in \mathcal{C}^0$ one has

$$g_j(x^*) = 0$$
 if $j \in J_s$,

whence

$$\sum_{j\in J_r}y_jg_j(x^*)\geq 0.$$

Since $y_j \ge 0$ and $g_j(x^*) < 0$ for all $j \in J_r$, this implies $y_j = 0$ for all $j \in J_r$. This results in

$$\sum_{j \in J_s} y_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}.$$
(6)

Now, from (??), with $\overline{x} \in C$ such that $\overline{u}_j = g_j(\overline{x})$ if $i \in J_s$ we have

$$\sum_{j\in J_s} y_j g_j(\overline{x}) > 0.$$
⁽⁷⁾

Because the ideal Slater point x^* is in the relative interior of C there exist a vector $\tilde{x} \in C$ and $0 < \lambda < 1$ such that $x^* = \lambda \overline{x} + (1 - \lambda) \tilde{x}$. Using that $g_j(x^*) = 0$ for $j \in J_s$ and that the singular functions are linear one gets

Proof: Step III cntd.

$$\begin{array}{rcl} 0 &=& \sum_{j \in J_s} y_j g_j(x^*) \\ &=& \sum_{j \in J_s} y_j g_j(\lambda \overline{x} + (1 - \lambda) \widetilde{x}) \\ &=& \lambda \sum_{j \in J_s} y_j g_j(\overline{x}) + (1 - \lambda) \sum_{j \in J_s} y_j g_j(\widetilde{x}) \\ &>& (1 - \lambda) \sum_{j \in J_s} y_j g_j(\widetilde{x}). \end{array}$$

Here the last inequality follows from (??). The inequality

$$(1-\lambda)\sum_{j\in J_s}y_jg_j(ilde{x})<0$$

contradicts (??). Hence we have proved that $y_0 > 0$.

At this point we have (??) with $y_0 > 0$ and $y_j \ge 0$ for all $j \in J_r$. Dividing by $y_0 > 0$ in (??) and by defining $y_j := \frac{y_j}{y_0}$ for all $j \in J$ we obtain

$$f(x) + \sum_{j=1}^{m} y_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}.$$
(8)

We finally show that y may be taken such that $y_j > 0$ for all $j \in J_s$.

Proof: Step IV

IV. To complete the proof we show by induction on the cardinality of J_s that one can make y_j nonnegative for all $j \in J_s$. Observe that if $J_s = \emptyset$ then we are done. If $|J_s| = 1$ then we apply the results proven up to this point to the inequality system

$$egin{aligned} g_s(x) < 0, \ g_j(x) \leq 0, \quad j \in J_r, \ x \in \mathcal{C} \end{aligned}$$

where $\{s\} = J_s$. The system (??) has no solution, it satisfies the Slater condition, and therefore there exists a $\hat{y} \in \mathbb{R}^{m-1}$ such that

$$g_s(x) + \sum_{j \in J_r} \hat{y}_j g_j(x) \ge 0 \quad \text{for all } x \in \mathcal{C}, \tag{10}$$

where $\hat{y}_j \ge 0$ for all $j \in J_r$. Adding a sufficiently large positive multiple of (??) to (??) one obtains a positive coefficient for $g_s(x)$.

The general inductive step goes analogously.

Proof: Step IV cntd.

Assuming that the result holds for $|J_s| = k$, it is proved for the case $|J_s| = k + 1$. Let $s \in J_s$ then $|J_s \setminus \{s\}| = k$, and hence the inductive assumption applies to the system

$$g_{s}(x) < 0$$

$$g_{j}(x) \leq 0, \quad j \in J_{s} \setminus \{s\},$$

$$g_{j}(x) \leq 0, \quad j \in J_{r},$$

$$x \in C$$
(11)

By construction the system (??) has no solution, it satisfies the Slater condition, and by the inductive assumption we have a $\hat{y} \in \mathbb{R}^{m-1}$ such that $g_s(x) + \sum_{j \in J_r \cup J_s \setminus \{s\}} \hat{y}_j g_j(x) \ge 0$ for all $x \in \mathcal{C}$. (12)

where $\hat{y}_j > 0$ for all $j \in J_s \setminus \{s\}$ and $\hat{y}_j \ge 0$ for all $j \in J_r$. Adding a sufficiently large multiple of (??) to (??) one obtains the desired nonnegative multipliers.

Remark: Note, that finally we proved slightly more than was stated. We have proved that the multipliers of all the singular constraints can be made strictly positive.

Lagrangian, Saddle point

The Lagrange function:

$$L(x,y) := f(x) + \sum_{j=1}^{m} y_j g_j(x)$$
(13)

where $x \in C$ and $y \ge 0$. Note that for fixed y the Lagrangean is convex in x; for fixed x. it is linear in y.

Definition 3. A vector pair $(\overline{x}, \overline{y}) \in \mathbb{R}^{n+m}$, $\overline{x} \in C$ and $\overline{y} \ge 0$ is called a saddle point of the Lagrange function L if

$$L(\overline{x}, y) \le L(\overline{x}, \overline{y}) \le L(x, \overline{y})$$
(14)

for all $x \in \mathcal{C}$ and $y \geq 0$.

A saddle point lemma

Lemma 3. A saddle point $(\overline{x}, \overline{y}) \in \mathbb{R}^{n+m}$, $\overline{x} \in C$ and $\overline{y} \ge 0$ satisfies the relation

$$\inf_{x \in \mathcal{C}} \sup_{y \ge 0} L(x, y) = L(\overline{x}, \overline{y}) = \sup_{y \ge 0} \inf_{x \in \mathcal{C}} L(x, y).$$
(15)

Proof. For any (\hat{x}, \hat{y}) one has

$$\inf_{x \in \mathcal{C}} L(x, \hat{y}) \le L(\hat{x}, \hat{y}) \le \sup_{y \ge 0} L(\hat{x}, y),$$

hence one can take the supremum of the left hand side and the infimum of the right hand side resulting in

$$\sup_{y \ge 0} \inf_{x \in \mathcal{C}} L(x, y) \le \inf_{x \in \mathcal{C}} \sup_{y \ge 0} L(x, y).$$
(16)

Using the saddle point inequality (??) one obtains

$$\inf_{x \in \mathcal{C}} \sup_{y \ge 0} L(x, y) \le \sup_{y \ge 0} L(\overline{x}, y) \le L(\overline{x}, \overline{y}) \le \inf_{x \in \mathcal{C}} L(x, \overline{y}) \le \sup_{y \ge 0} \inf_{x \in \mathcal{C}} L(x, y).$$
(17)
Combining (??) and (??) the equality (??) follows.

Karush-Kuhn-Tucker Theorem

Theorem 2. The problem (CO) is given. Assume that the Slater regularity condition is satisfied. The vector \overline{x} is an optimal solution of (CO) if and only if there is a vector \overline{y} such that $(\overline{x}, \overline{y})$ is a saddle point of the Lagrange function L.

Proof. First, if $(\overline{x}, \overline{y})$ is a saddle point of L(x, y) then \overline{x} is optimal for (CO). The proof of this part does not need any regularity condition. From the saddle point inequality (??) one has

$$f(\overline{x}) + \sum_{j=1}^{m} y_j g_j(\overline{x}) \le f(\overline{x}) + \sum_{j=1}^{m} \overline{y}_j g_j(\overline{x}) \le f(x) + \sum_{j=1}^{m} \overline{y}_j g_j(x)$$

for all $y \ge 0$ and for all $x \in C$. From the first inequality $g_j(\overline{x}) \le 0$ for all $j = 1, \dots, m$ follows, hence $\overline{x} \in \mathcal{F}$ is feasible for (CO). Taking the two extreme sides of the above inequality and substituting y = 0 we have

$$f(\overline{x}) \le f(x) + \sum_{j=1}^{m} \overline{y}_j g_j(x) \le f(x)$$

for all $x \in \mathcal{F}$, i.e. \overline{x} is optimal.

KKT proof cntd.

To prove the other direction we need Slater regularity and the Convex Farkas Lemma **??**. Let us take an optimal solution \overline{x} of the convex optimization problem (CO). Then the inequality system

$$egin{aligned} f(x) - f(\overline{x}) < 0 \ g_j(x) &\leq 0, \ x \in \mathcal{C} \end{aligned} \quad j = 1, \cdots, m \end{aligned}$$

is infeasible. Applying the Convex Farkas Lemma $\ref{eq:point}$ one has $\overline{y} \geq 0$ such that

$$f(x) - f(\overline{x}) + \sum_{j=1}^{m} \overline{y}_j g_j(x) \ge 0$$

for all $x \in C$. Using that \overline{x} is feasible one can derive the saddle point inequality

$$f(\overline{x}) + \sum_{j=1}^{m} y_j g_j(\overline{x}) \le f(\overline{x}) + \sum_{j=1}^{m} \overline{y}_j g_j(\overline{x}) \le f(x) + \sum_{j=1}^{m} \overline{y}_j g_j(x)$$

which completes the proof.

KKT–Corollaries

Corollary 1. Under the assumptions of Theorem **??** the vector $\overline{x} \in C$ is an optimal solution of (CO) if and only if there exists a $\overline{y} \ge 0$ such that

(i)
$$f(\overline{x}) = \min_{x \in \mathcal{C}} \{f(x) + \sum_{\substack{j=1 \ m}}^{m} \overline{y}_j g_j(x)\}$$
 and
(ii) $\sum_{j=1}^{m} \overline{y}_j g_j(\overline{x}) = \max_{y \ge 0} \{\sum_{j=1}^{m} y_j g_j(\overline{x})\}.$

Corollary 2. Under the assumptions of Theorem **??** the vector $\overline{x} \in \mathcal{F}$ is an optimal solution of (CO) if and only if there exists a $\overline{y} \ge 0$ such that

(i)
$$f(\overline{x}) = \min_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} \overline{y}_j g_j(x)\}$$
 and
(ii) $\sum_{j=1}^{m} \overline{y}_j g_j(\overline{x}) = 0.$

Corollary 3. Let us assume that $C = \mathbb{R}^n$ and the functions f, g_1, \dots, g_m are continuously differentiable functions. Under the assumptions of Theorem **??** the vector $\overline{x} \in \mathcal{F}$ is an optimal solution of (CO) if and only if there exists a $\overline{y} \ge 0$ such that

(i)
$$0 = \nabla f(\overline{x}) + \sum_{j=1}^{m} \overline{y}_j \nabla g_j(\overline{x})$$
 and
(ii) $\sum_{j=1}^{m} \overline{y}_j g_j(\overline{x}) = 0.$

KKT point

Definition 4. Let us assume that $C = \mathbb{R}^n$ and the functions f, g_1, \dots, g_m are continuously differentiable functions. The vector $(\overline{x}, \overline{y}) \in \mathbb{R}^{n+m}$ is called a Karush–Kuhn–Tucker (KKT) point of (CO) if

(i)
$$g_j(\overline{x}) \leq 0$$
, for all $j \in J$,
(ii) $0 = \nabla f(\overline{x}) + \sum_{j=1}^m \overline{y}_j \nabla g_j(\overline{x})$
(iii) $\sum_{\substack{j=1\\ j \neq 1}}^m \overline{y}_j g_j(\overline{x}) = 0$,
(iv) $\overline{y} \geq 0$.

Corollary 4. Let us assume that $C = \mathbb{R}^n$ and the functions f, g_1, \dots, g_m are continuously differentiable convex functions and the assumptions of Theorem **??** hold. Let the vector $(\overline{x}, \overline{y})$ be a KKT point, then \overline{x} is an optimal solution of (CO).

Duality in CO

Lagrange dual

Definition 5. Denote

The problem

$$\psi(y) = \inf_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} y_j g_j(x)\}.$$

(LD) $\sup_{y \geq 0} \psi(y)$
 $y \geq 0$

is called the Lagrange dual of problem (CO).

Lemma 4. The Lagrange dual (LD) of (CO) is a convex optimization problem, even if the functions f, g_1, \dots, g_m are not convex.

Proof. $\psi(y)$ is concave! Let $\overline{y}, \widehat{y} \ge 0$ and $0 \le \lambda \le 1$.

$$\begin{split} \psi(\lambda \overline{y} + (1-\lambda)\widehat{y}) &= \inf_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} (\lambda \overline{y}_{j} + (1-\lambda)\widehat{y}_{j})g_{j}(x)\} \\ &= \inf_{x \in \mathcal{C}} \{\lambda [f(x) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(x)] + (1-\lambda)[f(x) + \sum_{j=1}^{m} \widehat{y}_{j}g_{j}(x)]\} \\ &\geq \inf_{x \in \mathcal{C}} \{\lambda [f(x) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(x)]\} + \inf_{x \in \mathcal{C}} \{(1-\lambda)[f(x) + \sum_{j=1}^{m} \widehat{y}_{j}g_{j}(x)]\} \\ &= \lambda \psi(\overline{y}) + (1-\lambda)\psi(\widehat{y}). \end{split}$$

Results on the Lagrange dual

Theorem 3 (Weak duality). If \overline{x} is a feasible solution of (CO) and $\overline{y} \ge 0$ then

$$\psi(\overline{y}) \le f(\overline{x})$$

and equality holds if and only if

$$\inf_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(x)\} = f(\overline{x}).$$

Proof.

$$\psi(\overline{y}) = \inf_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(x)\} \le f(\overline{x}) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(\overline{x}) \le f(\overline{x}).$$

Equality holds iff $\inf_{x \in \mathcal{C}} \{f(x) + \sum_{j=1}^{m} \overline{y}_{j}g_{j}(x)\} = f(\overline{x})$ and hence
 $\overline{y}_{j}g_{j}(\overline{x}) = 0$ for all $j \in J.$

Results on the Lagrange dual

Corollary 5. If \overline{x} is a feasible solution of (CO), $\overline{y} \ge 0$ and $\psi(\overline{y}) = f(\overline{x})$ then the vector \overline{x} is an optimal solution of (CO) and \overline{y} is optimal for (LD). Further if the functions f, g_1, \dots, g_m are continuously differentiable then $(\overline{x}, \overline{y})$ is a KKT point.

Theorem 4 (Strong duality). Assume that (CO) satisfies the Slater regularity condition. Let \overline{x} be a feasible solution of (CO). The vector \overline{x} is an optimal solution of (CO) if and only if there exists a $\overline{y} \ge 0$ such that \overline{y} is an optimal solution of (LD) and

 $\psi(\overline{y}) = f(\overline{x}).$

Wolfe dual

Definition 6. Assume that $C = \mathbb{R}^n$ and the functions f, g_1, \dots, g_m are continuously differentiable and <u>convex</u>. The problem

$$(WD) \quad \sup\{f(x) + \sum_{j=1}^{m} y_j g_j(x)\}$$
$$\nabla f(x) + \sum_{\substack{j=1\\ y \ge 0}}^{m} y_j \nabla g_j(x) = 0,$$

is called the Wolfe dual of the convex optimization problem (CO).

Warning! Remember, we are only allowed to form the Wolfe dual of a nonlinear optimization problem if it is *convex*!

For nonconvex problems one has to work with the Lagrange dual.

Examples of dual problems

Linear optimization

(LO)
$$\min\{c^T x \mid Ax = b, x \ge 0\}.$$

 $g_{j}(x) = (a^{j})^{T} x - b_{j} \text{ if } j = 1, \cdots, m;$ $g_{j}(x) = (-a^{j-m})^{T} x + b_{j-m} \text{ if } j = m + 1, \cdots, 2m;$ $g_{j}(x) = -x_{j-2m} \text{ if } j = 2m + 1, \cdots, 2m + n.$

Denote Lagrange multipliers by y^-, y^+ and s, then the Wolfe dual (WD) of (LO) is:

$$\max c^{T}x + (y^{-})^{T}(Ax - b) + (y^{+})^{T}(-Ax + b) + s^{T}(-x)$$

$$c + A^{T}y^{-} - A^{T}y^{+} - s = 0,$$

$$y^{-} \ge 0, \ y^{+} \ge 0, \ s \ge 0.$$

Substitute $c = -A^Ty^- + A^Ty^+ + s$ and let $y = y^+ - y^-$ then

$$\begin{array}{ll} \max & b^T y \\ & A^T y + s = c, \\ & s \ge 0. \end{array}$$

Note that the KKT conditions provide the well known complementary slackness condition $x^T s = 0$.

Quadratic optimization

(QO)
$$\min\{c^T x + \frac{1}{2}x^T Qx \mid Ax \ge b, x \ge 0\}.$$

$$g_j(x) = (-a^j)^T x + b_j$$
 if $j = 1, \dots, m$;
 $g_j(x) = -x_{j-m}$ if $j = m + 1, \dots, m + n$.
Lagrange multipliers: y and s .

The Wolfe dual (WD) of (QO) is:

$$\max \ c^{T}x + \frac{1}{2}x^{T}Qx + y^{T}(-Ax + b) + s^{T}(-x) \\ c + Qx - A^{T}y - s = 0, \\ y \ge 0, \ s \ge 0.$$

Substitute $c = -Qx + A^Ty + s$ in the objective.

$$\begin{array}{ll} \max & b^T y - \frac{1}{2} x^T Q x \\ -Q x + A^T y + s = c, \\ y \geq 0, \ s \geq 0. \end{array}$$

 $Q = D^T D$ (e.g. Cholesky), let z = Dx. The following (QD) dual problem is obtained:

$$\begin{array}{ll} \max & b^T y - \frac{1}{2} z^T z \\ & -D^T z + A^T y + s = c, \\ & y \geq 0, \ s \geq 0. \end{array}$$

Nonlinear optimization

min
$$-\sum_{i=1}^{n} \ln x_i$$

s.t. $Ax \ge 0$
 $d^Tx = 1$
 $x \ge 0$

Lagrange multipliers: $y \in \mathbb{R}^m$, $t \in \mathbb{R}$ and $s \in \mathbb{R}^n$. The Wolfe dual (WD) is:

$$\max -\sum_{i=1}^{n} \ln x_i + y^T (-Ax) + t(d^T x - 1) + s^T (-x)$$
$$-X^{-1}e - A^T y + td - s = 0,$$
$$y \ge 0, \ s \ge 0.$$

Multiplying the first constraint by x^T one has

$$-x^{T}X^{-1}e - x^{T}A^{T}y + tx^{T}d - x^{T}s = 0.$$

Using $d^T x = 1$, $x^T X^{-1} e = n$ and the optimality conditions $y^T A x = 0$, $x^T s = 0$ we have

$$t = n$$
.

Nonlinear optimization II

x is necessarily strictly positive, hence the dual variable s must be zero at optimum.

$$\max \quad \begin{aligned} & -\sum_{\substack{i=1\\X^{-1}e + A^T y = nd,}}^n \ln x_i \\ & x^{-1}e + A^T y = nd, \\ & y \ge 0. \end{aligned}$$

Eliminating the variables $x_i > 0$:

$$x_i = \frac{1}{nd_i - a_i^T y}$$
 and $-\ln x_i = \ln(nd_i - a_i^T y) \forall i$.

$$\max \sum_{i=1}^{n} \ln(nd_i - a_i^T y) \\ A^T y \le nd, \\ y \ge 0.$$

Example: positive duality gap

Duffin's convex optimization problem

(CO) min
$$e^{-x_2}$$

s.t. $\sqrt{x_1^2 + x_2^2} - x_1 \le 0$
 $x \in \mathbb{R}^2$.

The feasible region is $\mathcal{F} = \{x \in \mathbb{R}^2 | x_1 \ge 0, x_2 = 0\}.$ (CO) is not Slater regular.

The optimal value of the object function is 1.

The Lagrange function is given by

$$L(x,y) = e^{-x_2} + y(\sqrt{x_1^2 + x_2^2} - x_1)$$

Now, let $\epsilon = \sqrt{x_1^2 + x_2^2} - x_1$, then
 $x_2^2 - 2\epsilon x_1 - \epsilon^2 = 0.$

Example: positive duality gap

Hence, for any $\epsilon > 0$ we can find $x_1 > 0$ such that $\epsilon = \sqrt{x_1^2 + x_2^2 - x_1}$ even if x_2 goes to infinity. However, when x_2 goes to infinity e^{-x_2} goes to 0. So,

$$\psi(y) = \inf_{x \in \mathbb{IR}^2} e^{-x_2} + y\left(\sqrt{x_1^2 + x_2^2} - x_1\right) = 0,$$

thus the optimal value of the Lagrange dual

(LD) max
$$\psi(y)$$

s.t. $y \ge 0$

is 0. Nonzero duality gap that equals to 1!

Example: infinite duality gap

Duffin's example slightly modified

min
$$-x_2$$

s.t. $\sqrt{x_1^2 + x_2^2} - x_1 \le 0.$

The feasible region is

 $\mathcal{F} = \{x \in \mathbb{R}^2 | x_1 \ge 0, x_2 = 0\}$. The problem is not Slater regular. The optimal value of the object function is 0.

The Lagrange function is given by

$$L(x,y) = -x_2 + y(\sqrt{x_1^2 + x_2^2} - x_1).$$

So,

$$\psi(y) = \inf_{x \in \mathbb{IR}^2} \left\{ -x_2 + y \left(\sqrt{x_1^2 + x_2^2} - x_1 \right) \right\} = -\infty,$$

thus the optimal value of the Lagrange dual

(LD) max
$$\psi(y)$$

s.t. $y \ge 0$

is $-\infty$, because $\psi(y)$ is minus infinity!