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Algorithms for constrained optimization

Linear equality constraints

(LEC) min f(x)
s.t. Ax = b.

f is continuously differentiable, A : m× n is a matrix with rank(A) = m and b ∈ IRm.

Given a basis B then

Ax = BxB +NxN = b

and so we have xB = B−1b−B−1NxN .

We can rewrite (LEC) as min fN(xN)

where fN(xN) = f(x) = f(B−1b−B−1NxN ;xN).

This is an unconstrained problem. Further,

∇f(x)T = ((∇Bf(x))T , (∇Nf(x))T),

The reduced gradient can be expressed as:

∇fN(xN)T = −(∇Bf(x))TB−1N + (∇Nf(x))T

=
(
(∇Bf(x))T , (∇Nf(x))T

)( −B−1N
I

)
.

The Reduced Hessian:

∇2fN(xN) =
(
−(B−1N)T , I

)
∇2f(x)

(
−B−1N

I

)
.
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Linear Equality Constraints

Null-space method - I

(LEC) min f(x)
s.t. Ax = b.

f is continuously differentiable, A : m×n is a matrix with rank(A) = m

and b ∈ IRm.

Let x̄ be feasible, i.e., Ax̄ = b, then Ax = A(x̄+ s) = b, thus (LEC) is

equivalent to:

(LEC) min f(x̄+ s)
s.t. As = 0.

The vector s is from the null-space of the matrix A.

If the columns of Z (an n×(n−m) matrix) give a basis of the null-space

of A, then s = Zv with v ∈ Rn−m.

Then (LEC) can be given by

(LEC) min h(v) = f(x̄+ Zv).

This is an unconstrained problem!
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Linear Equality Constraints

Null-space method - II

The null-space can easily be given:

Let B be a basis from the column space of A, then

A = (B, N)

The range(row) space of A can be given by the basis vectors

R = (I, B−1N).

The null-space is

ZT =
(
−(B−1N)T , I

)
.

Clearly RZ = AZ = 0.

The gradient of h(v) can be expressed as

∇h(v) = ZT∇f(x̄+ Zv).

The Hessian of h(v) can be expressed as

∇2h(v) = ZT∇2f(x̄+ Zv)Z.
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The reduced gradient method

Linear (in)equality constraints

(LC) min f(x)
s.t. Ax = b,

x ≥ 0.

f is continuously differentiable, A : m× n is a matrix with rank(A) = m and b ∈ IRm.

Given a basis B and a feasible x = (xB, xN) such that xB > 0. xN do not have to be
zero!

BxB +NxN = b

we have

xB = B−1b−B−1NxN

min fN(xN)
s.t. B−1b−B−1NxN ≥ 0,

xN ≥ 0,

where fN(xN) = f(x) = f(B−1b−B−1NxN , xN) and

∇f(x)T = ((∇Bf(x))T , (∇Nf(x))T).

The reduced gradient can be expressed as

r := ∇fN(xN)T = −(∇Bf(x))TB−1N + (∇Nf(x))T .
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The reduced gradient method

Linear constraints:

xk ∈ IRn is the current iterate;

the basis is nondegenerate.

Search direction: sT = (sTB, s
T
N) in N (A)

sB = −B−1NsN and sN properly given,

the feasibility of xk + λs is guaranteed as long as

xk + λs ≥ 0, i.e. λ ≤ λ = min
1≤i≤n, si<0

{
xki
−si

}
.

Further, sN should be a descent direction of f .

sj =

{
0 if xkj = 0 and rj ≥ 0,

−rj otherwise
j ∈ N.

Make a line search: xk+1 = arg min0≤λ≤λ f(xk + λs).

If all the coordinates xk+1
B stay strictly positive we keep the basis, else a

pivot is made to eliminate the zero variable from the basis and replace

it by a positive but currently non-basic coordinate.
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The reduced gradient method

Convergent variant:

xk ∈ IRn is the current iterate;

the basis is nondegenerate.

Search direction: sT = (sTB, s
T
N) in N (A)

sB = −B−1NsN and sN is given by

sj =

{
−xjrj if rj ≥ 0,
−rj otherwise

j ∈ N.

The feasibility of xk + λs is guaranteed as long as

xk + λs ≥ 0, i.e. λ ≤ λ = min
1≤i≤n, si<0

{
xki
−si

}
.

Theorem 1.The search direction s at xk is always a descent direction

unless s = 0. If s = 0, then xk is a KKT point of problem (LC).

Theorem 2. Any accumulation point of the sequence {xk} is a KKT

point.
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SQP-I

Sequential quadratic programming

Equality constraints

(NC) min f(x)
s.t. hj(x) = 0, j = 1, · · · ,m

The Lagrange function is

L(x, y) = f(x) +
m∑
j=1

yjhj(x),

where yj ∈ R, j = 1, · · · ,m. Let us denote

H(x) = (h1(x), · · · , hm(x))T .

Then the KKT conditions are:

∇xL(x, y) = 0
H(x) = 0.

Let a candidate solution (xk, yk) be given and apply Newton’s method

to solve this nonlinear equation system:

∇2
xxL(xk, yk)∆x +(∇H(xk))T∆y = −∇xL(xk, yk)
∇H(xk)∆x = −H(xk).
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SQP-II

Sequential quadratic programming

Equality constraints

This equation system

∇2
xxL(xk, yk)∆x +(∇H(xk))T∆y = −∇xL(xk, yk)
∇H(xk)∆x = −H(xk)

is the KKT condition of the following linearly constrained quadratic

optimization problem:

min 1
2∆xT∇2

xxL(xk, yk)∆x+∇xL(xk, yk)T∆x

s.t. ∇H(xk)∆x = −H(xk).

One needs to:

– solve this quadratic problem at each iteration,

– make a line-search where feasibility and optimality need to be con-

sidered

– and repeat the process from the new point until the optimality con-

dition is satisfied.
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Barrier functions

How can one replace the constraint t ≥ 0 (i.e., −gj(x) ≥ 0) by a good

barrier function?

Desired properties of barrier function B(t) of t ≥ 0:

1. B(t) is a smooth (infinitely many times) differentiable, strictly con-

vex.

2. The derivative of B(t) goes to −∞ as t→ 0.

3. B(t) goes to infinity as t→ 0.

Note:

For barrier functions you need inequality constraints!
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Barrier functions

Examples:

1. The logarithmic barrier function − log t.

2. Let r > 1. The inverse barrier function t−r.

The barrier function for the (CO) problem

(CO) min f(x)
s.t. gj(x) ≤ 0, j = 1, · · · ,m

is given by

fµ(x) =
f(x)

µ
+

m∑
j=1

B(−gj(x)) (1)

where µ > 0. The original problem (CO) is solved by sequentially

minimizing the function fµ(x) for a series of µ values as µ→ 0.
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Generic Interior Point Method

Input:

µ = µ0 the barrier parameter value;

θ the reduction parameter, 0 < θ < 1;

ε > 0 the accuracy parameter;

x0 a given interior feasible point;

Step 0: x := x0, µ := µ0;

Step 1: If µ < ε STOP, x(µ) is returned as the solution.

Step 2: Calculate (approximately) x(µ);

Step 3: µ := (1− θ)µ;

Step 4: GO TO Step 1.
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Log-barrier methods

and Lagrange multiplier estimates

The log-barrier function for the (CO) problem

(CO) min f(x)
s.t. gj(x) ≤ 0, j = 1, . . . ,m

for µ > 0 is given by fµ(x) = f(x) + µ
∑m

j=1− log(−gj(x)).

The optimality condition when minimizing fµ(x) is:

∇f(x) +
m∑
j=1

µ

−gj(x)
∇gj(x) = 0. (∗)

On the other hand, the Lagrange function for (CO) is

L(x, y) = f(x) +
m∑
j=1

yjgj(x).

In the Wolfe dual we get the constraint:

∇f(x) +
m∑
j=1

yj∇gj(x) = 0, (∗∗)

the optimality condition to minimize L(x, y) in x.
Comparing (∗) and (∗∗) we have that

µ

−gj(x)
is an estimate of yj,

the Lagrange multiplier.
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Penalty functions

How can one force

the equality constraints t = 0 (i.e., hi(x) = 0)) and

the inequality constraints t ≤ 0 (i.e, gj(x) ≤ 0)

by penalizing the non-satisfaction of these constraints?

What are the desirable properties of a penalty function?

Desired properties of a penalty function P (t):

1. P (t) is nonnegative and strictly convex;

2. P (t) = 0 for feasible points;

3. P (t) goes to infinity as infeasibility increases;

4. P (t) increases sharply as infeasibility occurs;

5. P (t) is a smooth (infinitely many times) differentiable.

Functions satisfying at least the first three properties are called

penalty functions.
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Penalty functions

For the equality constraints t = 0 (i.e., hi(x) = 0))

• Quadratic penalty function: P (t) = t2.
• Exact penalty function: P (t) = |t|.

For the inequality constraints t ≤ 0 (i.e, gj(x) ≤ 0)

1. Quadratic penalty function:

P (t) =

{
0 if t ≤ 0;
t2 if t > 0;

= (max{0, t})2.

2. Exact penalty function: P (t) = max{0, t}.

(CO) min f(x)
s.t. gj(x) ≤ 0, j = 1, · · · ,m,

hi(x) = 0, i = 1, · · · , k.
The quadratic penalty function for (CO) is:

P (x) = f(x) + ϑ

 m∑
j=1

(max{0, gj(x)})2 +
k∑
i=1

(hi(x))2

 .

The exact penalty function for (CO) is:

P (x) = f(x) + ϑ

 m∑
j=1

max{0, gj(x)}+
k∑
i=1

|hi(x)|

 .

14


