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Introduction

Linear Programming and a Graph of P
Linear programming problem (LP):

min cTx, subject to x ∈ P

where P ⊂ Rd is a polytope (or a polyhedron).
P is usually represented by a system of linear
equalities and inequalities:

P = {x|Ax ≤ b ,Cx = d}.
Let G = (V , E) be a graph of P, where V is a set
of vertices of P and E is a set of edges of P.
Let (LP’) be the standard form LP equivalent to
(LP).
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Introduction

The simplex method

The simplex method for solving the standard form
LP (LP’) was developed by G. Dantzig in 1947.
The simplex method generates a sequence of
basic feasible solutions of the feasible region (or
vertices of the polytope P).
Although the simplex method is efficient for almost
all practical problems, it needs an exponential
number (2d − 1) of iterations for some special
prolems, e.g., Klee-Minty LP.
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Introduction

A path of vertices
The sequence of distinct vertices generated by the
simplex method for (LP’) is a (monotone) path in
the graph G = (V , E).
The length of the sequence (or path) is always
finite. Let ℓ be the length of the path.
If the LP is non-degenerate, then ℓ is equal to the
number of iterations.
Let u and v be the initial vertex and the terminal
vertex of the sequence, then

The length of the shortest path (between u and v)
≤ ℓ
≤ The length of the (monotone) longest path
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A simple instance of LP

This section

We discuss the lower and upper bounds of ℓ (the
length of the path in the graph G of the feasible
region P) by using a simple instance.
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A simple instance of LP

A simple instance of LP on a cube
Let P = {(x1, x2, x3)|0 ≤ x1, x2, x3 ≤ 1} be the cube in
R3 and consider LP

min −(x1 + x2 + x3), subject to x ∈ P

The initial point is x0 = (0, 0, 0)T and the optimal
solution is x∗ = (1, 1, 1)T .
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A simple instance of LP

The shortest path

The length (number of edges) of the shortest path from
x0 to x∗ is equal to the dimension d = 3.
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A simple instance of LP

The longest path

The length of the shortest path is d = 3.
The length of the longest path is 2d − 1 = 7.
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A simple instance of LP

The simplex method on the cube

d ≤ ℓ ≤ 2d − 1, where ℓ is the number of distinct
vertices (or BFS) generated by the simplex method.

MIZUNO (TIT) The simplex method for LP 24–26 April, 2018 12 / 42



Contents

1 Introduction

2 A simple instance of LP

3 An upper bound

4 Strong polynomiality for TU-LP

5 Bad LP instances

6 Polytope of Integer Vertices

7 Conclusion



An upper bound

This section

We explain the upper bound of ℓ presented by
T. Kitahara and S. Mizuno: A bound for the number
of different basic solutions generated by the
simplex method. Mathematical Programming, 137
(2013), 579–586.
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An upper bound

A Pivoting Rule

The number ℓ of vertices generated by the simplex
method depends on the pivoting rule.
Kitahara and M obtain an upper bond of ℓ for the
simplex method with Dantzig’s rule (the most
negative pivoting rule).
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An upper bound

An upper bound of ℓ by Ki-M

The upper bound of ℓ by Ki-M:

ℓ ≤ nm
γ

δ
log(m

γ

δ
),

where m is the number of constraints, n is the
number of variables, δ and γ are the minimum and
the maximum values of all the positive elements of
primal BFSs.
If the primal problem is non-degenerate, it
becomes a bound for the number of iterations.

MIZUNO (TIT) The simplex method for LP 24–26 April, 2018 16 / 42



An upper bound

How good is the bound

Ki-M show that there exits an LP instance for which

ℓ =
γ

δ
and ℓ = 2m − 1.

Hence nmγ

δ
log(mγ

δ
) is a good upper bound.

The LP instance is

max
∑m

i=1
xi

s. t. x1 ≤ 1
2x1 + · · ·+ 2xk−1 + xk ≤ 2k − 1

for k = 2, 3, . . . ,m
x ≥ 0
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Strong polynomiality for TU-LP

This section

We explain that the simplex method using Tardos’s
basic algorithm is strongly polynomial for linear
programming with totally unimodular matrix.
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Strong polynomiality for TU-LP

Summary of this section
Problem: Standard form linear programming problem

min cTx, subject to Ax = b , x ≥ 0.

Algorithm: Dual simplex method with Dantzig’s rule
Analysis: Kitahara-Mizuno + Cramer’s rule
Result 1: Number of distinct solutions (ℓ) is bounded

by a polynomial of n, ∆, and ∥c∥, where ∆
is maximum subdeterminant of A .

Result 2: By using Tardos’ basic algorithm, the number
is bounded by a polynomial of n and ∆.

Result 3: If A is totally unimodular and all auxiliary
problems are nondegenerate, then the
algorithm is strongly polynomial.
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Strong polynomiality for TU-LP

A bound by Kitahara-M. (Primal)

Ki-M shows that the number (ℓ) of distinct solutions
generated by the primal simplex method with
Dantzig’s rule is bounded by

mn
γ

δ
log(m

γ

δ
), (1)

where δ and γ are the minimum and the maximum
values of all the positive elements of basic feasible
solutions.
The bound is independent of c.
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Strong polynomiality for TU-LP

Ki-M and Cramer’s rule
Define the maximum subdeterminant of A :

∆ = max{| det D |
∣∣∣D is a square submatrix of A}.

By Cramer’s rule, each element of basic solutions
is a rational number p

q where

|p| ≤ m∆∥b∥∞, 1 ≤ q ≤ ∆.

Hence γ ≤ m∆∥b∥∞ and δ ≥ 1/∆.
The bound by Ki-M is represented as

m2n∆2∥b∥∞ log(m2∆2∥b∥∞).
If ∆ and ∥b∥ are bounded by a polynomial of n,
then it is bounded by a polynomial function of n.
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Strong polynomiality for TU-LP

Dual simplex method

The number (ℓ) of distinct solutions generated by
the dual simplex method with Dantzig’s rule is
bounded by

m2n∆2∥c∥∞ log(mn∆2∥c∥∞).

If ∆ and ∥c∥ are bounded by a polynomial of n,
then it is bounded by a polynomial function of n.
(Especially when A is totally unimodular, ∆ = 1.)
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Strong polynomiality for TU-LP

When ∥c∥ is big

We use a variant of Tardos’ basic algorithm, which
solves at most n auxiliary problems where c is
replaced by a vector of rounded integers, whose
sizes are bounded by n2∆.
If all the auxiliary problems are nondegenerate, the
total number of iterations is bounded by

m2n4∆3 log(mn3∆3).

If A is totally unimodular (∆ = 1), then the
algorithm is strongly polynomial.
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Bad LP instances

This section

In this section, we introduce two simple
degenerate LPs, for which ℓ is small but the
simplex method with Dantzig’s rule requires
exponential number of iterations.
The LPs are degenerate variants of Klee-Minty LP.
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Bad LP instances

Klee-Minty LP

Klee and Minty show that the simplex method
generates an exponential number (2m − 1) of vertices
for a special LP on a perturbed cube:

max
∑m

i=1
2m−ixi

s. t. x1 ≤ 5
2k x1 + · · ·+ 4xk−1 + xk ≤ 5k

for k = 2, 3, . . . ,m
x ≥ 0
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max 4x1 + 2x2 + x3

5 25

125

x1
x2

x3

(from Klee Minty cube by Wikipedia.)



Bad LP instances

A simple variant of Klee-Minty LP

A simple variant of Klee-Minty LP by Ki-M is

max
∑m

i=1
xi

s. t. x1 ≤ 1
2x1 + · · ·+ 2xk−1 + xk ≤ 2k − 1

for k = 2, 3, . . . ,m
x ≥ 0
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max x1 + x2 + x3

0
1 3
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x1

x2

x3



Bad LP instances

Two degenerate bad LPs

When a linear programming problem is
degenerate, the number of iterations could be
much bigger than the length of the path ℓ even if a
cycling does not occur. So it is usually very difficult
to get a good upper bound for the number of
iterations.
We will show two simple and small data instances
for which the simplex method requires exponential
number of iterations.
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Bad LP instances

The first degenerate LP
We consider the following LP:

max
∑m

i=1
xi

s. t. 2x1 ≤ 2
2x1 + · · ·+ 2xk−1 + xk ≤ 2 for k = 2, 3, . . . ,m
x ≥ 0

One can check that the first m − 1 inequalities are
redundant, and that the feasible region is the simplex

P = {x|2x1 + · · ·+ 2xm−1 + xm ≤ 2, x ≥ 0}.
The vertices of this simplex are

{0, e1, e2, . . . , em−1, 2em}.
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max x1 + x2 + x3

0
1 1

2

x1

x2

x3

2m − 1 faces intersect at (1, 0, 0)T , which is highly
degenerated.



Bad LP instances

Degenerate LP on a simplex

The entries of the constraint matrix, the
right-hand-side vector, and the cost vector are
{0, 1, 2}-valued.
The feasible region is a full dimensional simplex
including a highly degenerate vertex x = e1.
( (2m − 1) faces intersect at x = e1)
Starting from x = 0, the simplex method with
Dantzig’s pivoting rule visits exactly 3 distinct
vertices, and makes 2m−1 + 1 iterations, including
2m−1 − 1 at a highly degenerate vertex x = e1.
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Bad LP instances

The second degenerate LP

We consider the following LP:

max
∑m

i=1
xi

s. t. x1 ≤ 0
2x1 + · · ·+ 2xk−1 + xk ≤ 0 for k = 2, 3, . . . ,m
x ≥ 0

One can check that the feasible region is reduced to the
origin 0 which forms the unique and highly degenerate
optimal vertex.
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Bad LP instances

Degenerate LP on a single point

The entries of the constraint matrix, the
right-hand-side vector, and the cost vector are
{0, 1, 2}-valued.
The feasible region is reduced to a highly
degenerate point.
Starting from x = 0, the simplex method with
Dantzig’s pivoting rule visits exactly 1 vertex, and
makes 2m − 1 iterations at this highly degenerate
vertex.
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Polytope of Integer Vertices

This section

We discuss ℓ (the length of the path in the graph G
of the feasible region P), when P is a polytope of
integer vertices.
It is difficult to get a good upper bound for ℓ in this
case too.
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Polytope of Integer Vertices

Polytope of integer vertices

Let P ⊂ Rd be a convex hull of vetices in
{0, 1, 2, . . . , k }d, and consider LP

min cTx, subject to x ∈ P .

Then

the length of the shortest path ≤ kd,
ℓ ≤ M(M + d)k log(Mk),

the length of the longest path ≤ (k + 1)d,

where M is the number of faces (inequalities).
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Polytope of Integer Vertices

Summary

Table: Lower and Upper bounds

Polytope shortest ℓ Ki-M longest
Cube d d 2d2 log(d) 2d

Klee-M d 2d (*) 2d

{0, . . . , k }d kd ? (**) (1 + k)d

(*) is 2d22d log(d2d).
(**) is M(M + d)k log(Mk).
(M is a number of inequalities)
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Conclusion

Conclusion
The length of the shortest path of a polytope may
not be a good estimate of the number of vertices
generated by the simplex method. The length of
the longest monotone path could be its upper
bound, but it is usually very difficult to estimate the
length.
The simplex method is strongly polynomial for
TU-LP, if we use Tardos’ basic algorithm and all
the auxiliary problems are non-degenerate.
We presented two simple and small data instances
of degenerate LPs for which the simplex method
requires exponential number of iterations.
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