

JAC.

On Moser's Shadow Problem Arnau Padrol IMJ - PRG Sorbonne Université

reporting joint work with

Yusheng Luo and Jeffrey Lagarias, and Alfredo Hubard

Optimization and Discrete Geometry : Theory and Practice - 25/04/2018

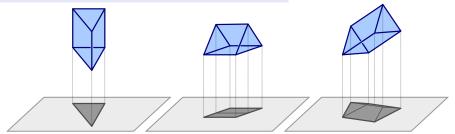
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
<lp>I
I
<lp>I

Moser's Shadow Problem

A mimeographed collection of 50 problems collected by Leo Moser titled "Poorly formulated unsolved problems in combinatorial geometry" circulated during the 60's. Problem 35 was the following:

Moser's Shadow Problem

Estimate the largest $\mathfrak{sh} = \mathfrak{sh}(n)$ such that every convex polyhedron of n vertices has an orthogonal projection onto the plane with $\mathfrak{sh}(n)$ vertices on the 'outside'.



Moser's shadow problem was a popular open problem in combinatorial geometry which has been...

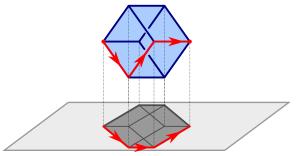
- ... restated:
 - Geoffrey C. Shephard, Twenty Problems on Convex Polyhedra, Part II, 1968.
- ... publicized:
 - William O. J. Moser Problems, Problems, Problems, 1991.
 - Hallard T. Croft, Kenneth J. Falconer and Richard K. Guy, Unsolved Problems in Geometry, 1991.

... and mentioned in relation to the silhouette-span problem:

 Bernard Chazelle, Herbert Edelsbrunner and Leonidas J. Guibas, The Complexity of Cutting Complexes, 1989.

Shadows in optimization

Shadow sizes are relevant for the complexity of the shadow vertex simplex algorithm (Gass and Saaty 1955).



Used in the study of

- average complexity of the simplex algorithm (Borgwardt 1982), and
- smoothed analysis of the simplex algorithm (Spielman and Teng 2004).

Shadows and silhouettes

A shadow of a 3-dimensional polyhedron *P* a 2-dimensional linear projection $\pi(P)$.

The shadow number $\mathfrak{sh}(P)$ is the maximum number of vertices of a shadow.

 $\mathfrak{sh}(n) := \min \{\mathfrak{sh}(P) : P \text{ 3-polytope with } n \text{ vertices} \}$

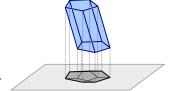
A silhouette of a 3-dimensional polyhedron *P* a 2-dimensional central projection from a point.

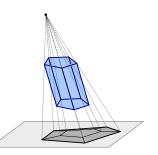
The silhouette span number $\mathfrak{si}(P)$ is the maximum number of vertices of a silhouette.

 $\mathfrak{si}(n) := \min{\mathfrak{si}(P) : P 3-polytope with n vertices}$

By taking points far enough:

 $\mathfrak{sh}(P) \leq \mathfrak{si}(P)$





Theorem (Chazelle-Edelsbrunner-Guibas 1989)

The silhouette span number $\mathfrak{si}(n)$ satisfies

$$\mathfrak{si}(n) = \Theta\left(\frac{\log n}{\log(\log(n))}\right).$$

And hence

$$\mathfrak{sh}(n) \leq \mathfrak{si}(n) = \mathcal{O}\left(\frac{\log n}{\log(\log(n))}\right).$$

Theorem (Chazelle-Edelsbrunner-Guibas 1989)

The silhouette span number $\mathfrak{si}(n)$ satisfies

$$\mathfrak{si}(n) = \Theta\left(\frac{\log n}{\log(\log(n))}\right).$$

And hence

$$\mathfrak{sh}(n) \leq \mathfrak{si}(n) = \mathcal{O}\left(\frac{\log n}{\log(\log(n))}\right).$$

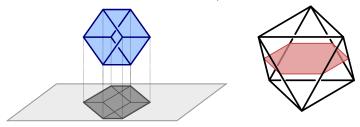
But actually, they also (have all the ingredients to) prove

$$\mathfrak{sh}(n) = \Omega\left(\frac{\log n}{\log(\log(n))}\right).$$

A dual approach: cross-section span

The C-E-G proof of the lower bound exploits projective duality:

- points $p \leftrightarrow$ hyperplanes H_p (preserving incidences)
- ▶ k-flats $\iff (d-k-1)$ -flats (preserving incidences)
- ▶ polyhedron P ↔ polar polyhedron P°
- ▶ silhouette of *P* from $p \leftrightarrow section P^{\circ} \cap H_p$

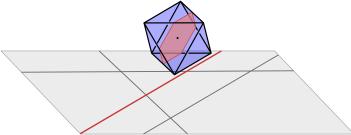


Theorem (Cross-section span problem (C-E-G 1989))

Every 3-polytope with n facets has a planar section with $\Omega\left(\frac{\log n}{\log(\log(n))}\right)$ vertices.

Line span problem

Using central projection of (half of the) polytope onto a plane.



planes through the origin 🛶 lines

Theorem (Line span problem (C-E-G 1989))

For every planar convex subdivision with n regions there is a line stabbing at least $\Omega\left(\frac{\log n}{\log(\log(n))}\right)$ regions.

By duality,

▶ shadows of $P \iff$ sections $P^\circ \cap H$ with $0 \in H$

hence, the silhouettes for the lower bound are actually shadows: The C-E-G proof also shows that

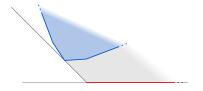
Theorem

The shadow number $\mathfrak{sh}(n)$ satisfies

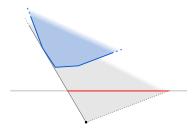
$$\mathfrak{sh}(n) = \Theta\left(\frac{\log n}{\log(\log(n))}\right).$$

Shadows and silhouettes for possibly unbounded polyhedra

 $\mathfrak{sh}_u(n) := \min \{\mathfrak{sh}(P) : P \text{ 3-polyhedron (possibly unbounded) with } n \text{ vertices} \}$



 $\mathfrak{si}_u(n) := \min \{\mathfrak{si}_u(P) : P \text{ 3-polyhedron (possibly unbounded) with } n \text{ vertices} \}$

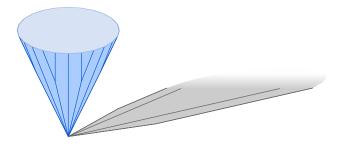


Theorem

The unbounded n-vertex shadow number $\mathfrak{sh}_u(n)$ for 3-dimensional convex polyhedra satisfies

$$\mathfrak{sh}_u(n) = \Theta(1).$$

In fact $\mathfrak{sh}_u(n) = 3$ for all $n \ge 3$ (and $\mathfrak{sh}_u(n) = n$ for $n \le 3$).



Theorem

The unbounded n-vertex silhouette span number $\mathfrak{si}_u(n)$ for 3-dimensional convex polyhedra satisfies

$$\mathfrak{si}_u(n) = \Theta\left(\frac{\log n}{\log(\log(n))}\right).$$

Question

What is the growth rate of the maximal number $\mathfrak{sh}_b(n, d, k)$ (resp. $\mathfrak{si}_b(n, d, k)$) such that every *d*-polytope with *n* vertices has a *k*-dimensional shadow (resp. silhouette) with $\mathfrak{sh}_b(n, d, k)$ (resp. $\mathfrak{si}_b(n, d, k)$) vertices?

Stabbing with lines and planar shadows

Theorem (Csaba D. Tóth 2008)

For any subdivision of \mathbb{R}^d into n convex cells there is a line stabbing

 $\Omega\left(\frac{\log n}{\log\log n}\right)^{\frac{1}{d-1}}$

cells. And this is the best possible.

Corollary

Every d-polytope with n vertices has a 2-dimensional shadow with

 $\Omega\left(\frac{\log n}{\log\log n}\right)^{\frac{1}{d-2}}$

vertices.

Theorem (Hubard-P. 2018+)

For any subdivision of \mathbb{R}^d into n convex cells there is a k-flat stabbing

 $\Omega\left(\frac{\log n}{\log\log n}\right)^{\frac{1}{d-k}}$

cells.

Corollary

Every d-polytope with n vertices has a k-dimensional shadow with

 $\Omega\left(\frac{\log n}{\log\log n}\right)^{\frac{1}{d-k}}$

vertices.

Lemma

Let *S* be convex subdivision of \mathbb{R}^d into $n > l^{(2l)^{d-k}}$ cells, where 0 < k < d and $l \ge 2$. Then for any generic direction *v*,

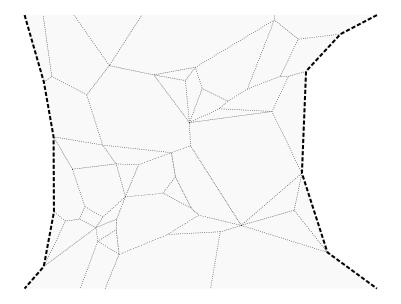
- either there is a line parallel to v stabbing l cells,
- or there is hyperplane transversal to v stabbing at least $l^{(2l)^{d-k-1}}$ cells.

This implies the Theorem by induction on d: \forall subdivision of \mathbb{R}^d into $n > \ell^{(2\ell)^{d-k}}$ convex cells, $\exists a k$ -flat intersecting $\geq \ell$ cells.

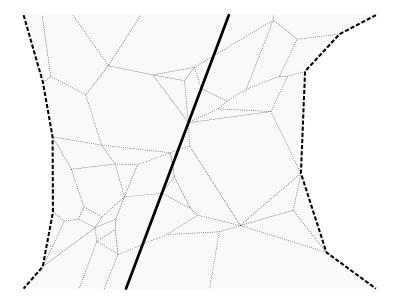
- $d = r \checkmark$
- Otherwise, either
 - line stabbing l cells
 - \rightarrow take any *k*-flat containing it \checkmark
 - ► ∃ hyperplane *H* intersecting $l^{(2l)^{d-r-1}}$ cells

 \rightarrow apply induction and find *k*-flat in *H* \checkmark

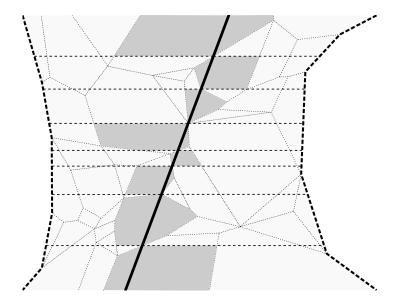
Sketch of the proof of the lemma



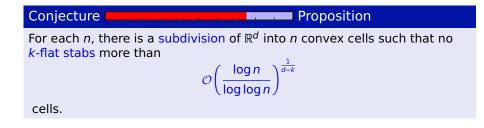
Sketch of the proof of the lemma

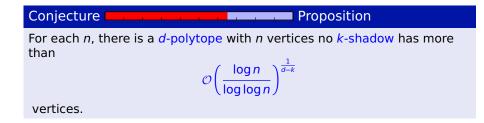


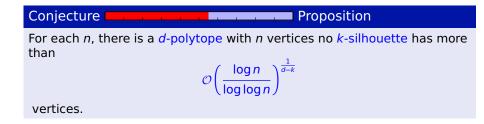
Sketch of the proof of the lemma

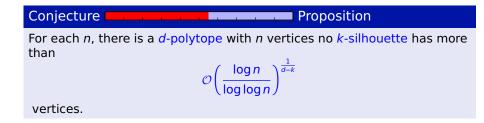


 $Z \Omega$









THANK YOU!

