
Optimization with verification oracles

Sergei Chubanov

April 24, 2018

1 / 19

Outline

Oracle model of computation

Binary case with arbitrary functions

Separable convex optimization

Linear programming over finite sets

2 / 19

Oracle model

Augmentation oracle

Verification oracle

3 / 19

General scheme

Optimization problem:

min{f (x) : x ∈ S},

where f ∈ C.

Verification or augmentation oracle for C.

Find ht ∈ C and x t ∈ S such that x t is optimal for ht such that

f = lim
t−→∞

ht .

Use the oracle to verify optimality.

4 / 19

Binary optimization

S ⊆ {0, 1}n.

f ∈ C, f + g ∈ C, ∀ linear functions g .

min{f (x) : x ∈ S}.

Augmentation oracle1.

1The linear case: Schulz, A.S., Weismantel R., and Ziegler G.M. 0/1-integer
programming: Optimization and augmentation are equivalent. Lecture Notes in
Computer Science 979 473-483 (1995)

5 / 19

Binary optimization: Greedy algorithm

Assume the following optimality condition:

x∗ ∈ arg min
S

f ⇐⇒ x∗ ∈ arg min
U(x∗)

f

Greedy algorithm:

Find xk+1 in arg minU(xk) f .

k := k + 1.

Repeat until xk ∈ arg minU(xk) f .

Theorem

The greedy algorithm runs in polynomial time if f is integer-valued and
polynomially computable.

Proof. Follows from a scaling algorithm.

6 / 19

Binary optimization: Scaling algorithm =⇒ Greedy alg.

Augmentation for (”pay to change a bit”-function)

g(x) = f (x) + δ · ((−1)x
k

)T (x − xk)T at xk :

g(xk+1) < g(xk).

f (xk+1) ≤ g(xk+1)− δ < g(xk)− δ = f (xk)− δ.

Let m ≥ ‖x‖1,∀x ∈ S . If augmentation is not possible, then xk is
2mδ-approximate:

f (xk) = g(xk) ≤ g(x∗) ≤ f (x∗) + ‖x∗ − xk‖1 · δ ≤ OPT + 2mδ,

where x∗ is optimal. Then, δ := δ/2.

Repeat until δ < ε/(2m).

Theorem

An ε-approximate solution in oracle time O
(
m log m(f (x0)−LB)

ε

)
.

7 / 19

Separable convex optimization

min{f (x) : x ∈ S},

f (x) =
n∑

j=1

fj(xj), S = {x : Ax = b, 0 ≤ x ≤ u}.

fj are convex.

The input data:

f is given by an oracle or by an approximation oracle.
No other conditions.
In general, fj are non-smooth.

The goal: An ε-approximate solution, i.e, x with

f (x) ≤ OPT + ε.

8 / 19

Piecewise linear approximations

Approximate f (x) by g(x) =
∑

j gj(xj) where gj are piecewise linear.

The approximate problem:

min{g(x) : x ∈ S}.

The approximate problem is equivalent to an LP where 2:

The number of variables = the total number of lin. pieces.

2Dantzig, G. 1956. Recent Advances in Linear Programming. Management
Science 2, 131-144.

9 / 19

Local piecewise linear approximations

Hochbaum and Shanthikumar3:

The problem is reduced to a sequence of LPs with 8n2∆ variables,
where ∆ is the maximum absolute value of determinants of A.

The number of LPs in the sequence is polynomially bounded.

3Hochbaum, D. S. and Shanthikumar J. G. 1990. Convex separable
optimization is not much harder than linear optimization. Journal of the
Association for Computing Machinery 37, 843-862.

10 / 19

Special cases

Tseng and Bertsekas 4: Polynomial time for a generalized network
flow problem with convex costs.

Karzanov and McCormik 5: Polynomial time when the coefficient
matrix is totally unimodular.

4Tseng, P., and Bertsekas, D.P. 2000. An ε-relaxation method for separable
convex cost generalized network flow problems. Mathematical Programming
88, 85-104.

5Karzanov, A. and McCormick, Th. 1997. Polynomial methods for
separable convex optimization in unimodualr linear spaces with applications.
SIAM Journal on Computing 26, 1245-1275

11 / 19

A scaling algorithm

Γ = the initial objective value −OPT .

Kmax = maximum slope.

T is the running time of the LP algorithm used.

P is the running time of the oracle for f .

The separable convex problem can be solved by the scaling algorithm in
polynomial time6:

Theorem

Using any polynomial LP-algorithm, an ε-approximate solution in time

O

((
n3 + T + P · n ·

(
log

nKmax‖u‖∞
ε

)2
)
· n · log

nmax{1, Γ}
ε

)
.

6S. Ch. 2016. A Polynomial-Time Descent Method for Separable Convex
Optimization Problems with Linear Constraints. SIAM J. Optim., 26(1),
856-889.

12 / 19

Basic idea: Local approximation in a scaling framework

1. xk is the current solution in S .

2. Find g : x →
∑n

j=1 gj(xj) where each gj consists of two linear
pieces:

(i) max(f , g) is a suitable approximation of f :

max
S

(max(f , g)− f) ≤ nδ, g(xk) = f (xk).

(ii) There is a neighborhood B ⊆ {x : 0 ≤ x ≤ u} of xk such that

g(x) ≥ f (x) +
δ

2
,∀x ∈ ∂B.

3. Solve g(x) < g(xk), x ∈ S , (formulated as LP with 2n variables):

Let x be a solution. An improvement of f (xk) by ≥ δ :

xk+1 = [xk , x] ∩ ∂B.

If no solutions, then xk is nδ-approximate: divide δ by 2.

13 / 19

Summary of the algorithm

The algorithm can use any LP solver:

The approximate piecewise linear problems are formulated as
LPs with 2n variables.
In the case of network flows, this step reduces to finding a
negative-cost cycle in the residual graph.

Algorithm’s complexity:

The running time is polynomial when the LP solver is
polynomial.
The sizes of the numbers are polynomial.

14 / 19

Integer linear programming

An integer linear problem:

min{cT x : x ∈ S},S ⊂ Zn, |S | ≤ ∞.

A verification oracle: Given an objective function y and x0 ∈ S ,
whether x0 is optimal for y .

The existing results for 0, 1-problems do not apply: A reduction by
means of binary encodings fails because of the oracle; even if
S ⊂ {−1, 0, 1}.

15 / 19

Normal fan

Normal cone:

∀x ∈ S : C (x) = {y ∈ Rn : yT x = min
x′∈S

yT x ′}

or
∀x ∈ S : C (x) = {y ∈ Rn : (x − x ′)T y ≤ 0,∀x ′ ∈ S}.

Properties:

x is a vertex of CH(S) ⇔ dimC (x) = n.
Full-dim. cones C (x1) and C (x2) share a facet (are adjacent)
⇔ x1 and x2 are adjacent in CH(S).
The normal fan F : The cell complex formed by the full-dim.
normal cones.

16 / 19

Stage 1: General position

c = c0 + (c1 − c0) + . . . (ck − ck−1),

where ck = c .
So, at the first stage the algorithm finds segments [z i−1, z i] such that
the following conditions are satisfied:

(i) z i belongs to the interior of a normal cone C (w i) ∈ F such that at
the same time c i ∈ C (w i).

(ii) If [z i−1, z i] intersects a facet Y of some normal cone in F , then it is
transverse to Y and the respective intersection point is contained in
the relative interior of Y .

(iii) z i − z i−1 = c i − c i−1.

17 / 19

Stage 2

Find all normal cones intersected by the curve ∪i [z i−1, z i].

C (x0)

C (x)

a1

y0

a2

â1

y

â2

{y : (x − x0)T y = 0}

Figure: The green segment is a part of the curve.

18 / 19

Complexity

Theorem

The integer linear problem can be solved in oracle time which is
polynomial in n and ui .

If c0 ∈ int(C (x0)) and x0 is known, then the problem can be solved
by visiting ‖u‖1 vertices of CH(S).

More generally, can be solved by visiting

k∑
i=1

|{(c i − c i−1)T x : x ∈ S}| − k

vertices of CH(S), for any given c0, . . . , ck where ck = c in oracle
time polynomial in n and

‖c i − c i−1‖/ gcd(c i − c i−1), i = 1, . . . , k.

19 / 19

