Optimization with verification oracles

Sergei Chubanov

April 24, 2018

- Oracle model of computation
- Binary case with arbitrary functions
- Separable convex optimization
- Linear programming over finite sets

- Augmentation oracle
- Verification oracle

• Optimization problem:

$$\min\{f(x): x \in S\},\$$

where $f \in C$.

- Verification or augmentation oracle for \mathcal{C} .
- Find $h^t \in C$ and $x^t \in S$ such that x^t is optimal for h^t such that

$$f = \lim_{t \to \infty} h^t.$$

• Use the oracle to verify optimality.

- $S \subseteq \{0,1\}^n$.
- $f \in C$, $f + g \in C$, \forall linear functions g.
- min{ $f(x) : x \in S$ }.
- Augmentation oracle¹.

¹The linear case: Schulz, A.S., Weismantel R., and Ziegler G.M. 0/1-integer programming: Optimization and augmentation are equivalent. *Lecture Notes in Computer Science* **979** 473-483 (1995)

Binary optimization: Greedy algorithm

Assume the following optimality condition:

$$x^* \in \arg\min_{S} f \iff x^* \in \arg\min_{U(x^*)} f$$

Greedy algorithm:

- Find x^{k+1} in arg min_{$U(x^k)$} f.
- k := k + 1.
- Repeat until $x^k \in \arg \min_{U(x^k)} f$.

Theorem

The greedy algorithm runs in polynomial time if f is integer-valued and polynomially computable.

Proof. Follows from a scaling algorithm.

Binary optimization: Scaling algorithm \implies Greedy alg.

• Augmentation for ("pay to change a bit"-function)

$$g(x) = f(x) + \delta \cdot ((-1)^{x^{k}})^{T} (x - x^{k})^{T} \text{ at } x^{k} :$$

$$g(x^{k+1}) < g(x^{k}).$$

$$f(x^{k+1}) \le g(x^{k+1}) - \delta < g(x^{k}) - \delta = f(x^{k}) - \delta.$$

• Let $m \ge ||x||_1, \forall x \in S$. If augmentation is not possible, then x^k is $2m\delta$ -approximate:

$$f(x^{k}) = g(x^{k}) \le g(x^{*}) \le f(x^{*}) + ||x^{*} - x^{k}||_{1} \cdot \delta \le OPT + 2m\delta,$$

where x^* is optimal. Then, $\delta := \delta/2$.

• Repeat until $\delta < \varepsilon/(2m)$.

Theorem

An ε -approximate solution in oracle time $O\left(m\log \frac{m(f(x^0)-LB)}{\varepsilon}\right)$.

Separable convex optimization

$$\min\{f(x): x \in S\},$$

$$f(x) = \sum_{j=1}^{n} f_j(x_j), \quad S = \{x: Ax = b, \mathbf{0} \le x \le u\}.$$

• f_j are convex.

- The input data:
 - f is given by an oracle or by an approximation oracle.
 - No other conditions.
 - In general, f_i are non-smooth.
- The goal: An ε -approximate solution, i.e, x with

 $f(x) \leq OPT + \varepsilon$.

8/19

- Approximate f(x) by $g(x) = \sum_{j} g_{j}(x_{j})$ where g_{j} are piecewise linear.
- The approximate problem:

 $\min\{g(x): x \in S\}.$

• The approximate problem is equivalent to an LP where ²: The number of variables = the total number of lin. pieces.

²Dantzig, G. 1956. Recent Advances in Linear Programming. Management Science 2, 131-144.

Hochbaum and Shanthikumar³:

- The problem is reduced to a sequence of LPs with 8n²Δ variables, where Δ is the maximum absolute value of determinants of A.
- The number of LPs in the sequence is polynomially bounded.

³Hochbaum, D. S. and Shanthikumar J. G. 1990. Convex separable optimization is not much harder than linear optimization. *Journal of the Association for Computing Machinery* **37**, 843-862.

- Tseng and Bertsekas ⁴: Polynomial time for a generalized network flow problem with convex costs.
- Karzanov and McCormik ⁵: Polynomial time when the coefficient matrix is totally unimodular.

⁴Tseng, P., and Bertsekas, D.P. 2000. An ε -relaxation method for separable convex cost generalized network flow problems. *Mathematical Programming* **88**, 85-104.

⁵Karzanov, A. and McCormick, Th. 1997. Polynomial methods for separable convex optimization in unimodualr linear spaces with applications. SIAM Journal on Computing **26**, 1245-1275

A scaling algorithm

- Γ = the initial objective value -OPT.
- $K_{\max} = \max \operatorname{imum} \operatorname{slope}$.
- T is the running time of the LP algorithm used.
- *P* is the running time of the oracle for *f*.

The separable convex problem can be solved by the scaling algorithm in polynomial time⁶:

Theorem

Using any polynomial LP-algorithm, an ε -approximate solution in time

$$O\left(\left(n^3 + T + P \cdot n \cdot \left(\log \frac{nK_{\max} ||u||_{\infty}}{\varepsilon}\right)^2\right) \cdot n \cdot \log \frac{n \max\{1, \Gamma\}}{\varepsilon}\right).$$

⁶S. Ch. 2016. A Polynomial-Time Descent Method for Separable Convex Optimization Problems with Linear Constraints. SIAM J. Optim., 26(1), 856-889.

Basic idea: Local approximation in a scaling framework

- 1. x^k is the current solution in S.
- 2. Find $g : x \to \sum_{j=1}^{n} g_j(x_j)$ where each g_j consists of two linear pieces:

(i) max(f,g) is a suitable approximation of f:

$$\max_{S} \left(\max(f,g) - f \right) \le n\delta, \quad g(x^k) = f(x^k).$$

(ii) There is a neighborhood $B \subseteq \{x : \mathbf{0} \le x \le u\}$ of x^k such that

$$g(x) \ge f(x) + \frac{\delta}{2}, \forall x \in \partial B.$$

3. Solve $g(x) < g(x^k), x \in S$, (formulated as LP with 2*n* variables):

• Let x be a solution. An improvement of $f(x^k)$ by $\geq \delta$:

$$x^{k+1} = [x^k, x] \cap \partial B$$

• If no solutions, then x^k is $n\delta$ -approximate: divide δ by 2.

- The algorithm can use any LP solver:
 - The approximate piecewise linear problems are formulated as LPs with 2*n* variables.
 - In the case of network flows, this step reduces to finding a negative-cost cycle in the residual graph.
- Algorithm's complexity:
 - The running time is polynomial when the LP solver is polynomial.
 - The sizes of the numbers are polynomial.

• An integer linear problem:

$$\min\{c^T x : x \in S\}, S \subset \mathbb{Z}^n, |S| \le \infty.$$

- A verification oracle: Given an objective function y and x⁰ ∈ S, whether x⁰ is optimal for y.
- The existing results for 0, 1-problems do not apply: A reduction by means of binary encodings fails because of the oracle; even if S ⊂ {−1,0,1}.

Normal cone:

$$\forall x \in S : C(x) = \{ y \in \mathbb{R}^n : y^T x = \min_{x' \in S} y^T x' \}$$

or

$$\forall x \in S : C(x) = \{y \in \mathbb{R}^n : (x - x')^T y \leq 0, \forall x' \in S\}.$$

- Properties:
 - x is a vertex of $CH(S) \Leftrightarrow \dim C(x) = n$.
 - Full-dim. cones $C(x_1)$ and $C(x_2)$ share a facet (are adjacent) $\Leftrightarrow x_1$ and x_2 are adjacent in CH(S).
 - The normal fan \mathcal{F} : The cell complex formed by the full-dim. normal cones.

Stage 1: General position

$$c = c^0 + (c^1 - c^0) + \dots (c^k - c^{k-1}),$$

where $c^k = c$.

So, at the **first stage** the algorithm finds segments $[z^{i-1}, z^i]$ such that the following conditions are satisfied:

- (i) z^i belongs to the interior of a normal cone $C(w^i) \in \mathcal{F}$ such that at the same time $c^i \in C(w^i)$.
- (ii) If $[z^{i-1}, z^i]$ intersects a facet Y of some normal cone in \mathcal{F} , then it is transverse to Y and the respective intersection point is contained in the relative interior of Y.

(iii) $z^i - z^{i-1} = c^i - c^{i-1}$.

Stage 2

• Find all normal cones intersected by the curve $\cup_i [z^{i-1}, z^i]$.

Figure: The green segment is a part of the curve.

Theorem

- The integer linear problem can be solved in oracle time which is polynomial in n and u_i.
- If c⁰ ∈ int(C(x⁰)) and x⁰ is known, then the problem can be solved by visiting ||u||₁ vertices of CH(S).
- More generally, can be solved by visiting

$$\sum_{i=1}^{k} |\{(c^{i} - c^{i-1})^{T} x : x \in S\}| - k$$

vertices of CH(S), for any given c^0, \ldots, c^k where $c^k = c$ in oracle time polynomial in n and

$$\|c^{i}-c^{i-1}\|/\gcd(c^{i}-c^{i-1}), \quad i=1,\ldots,k.$$