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Recall: The Basic Pillar underlying FOM

inf{Φ(x) := f (x) + g(x) : x ∈ Rd}, f , g convex, with g ∈ C 1.

Captures many applied problems, and the source for fundamental FOM.

Usual key assumption: g admits L-Lipschitz continuous gradient on Rd

A simple, yet key consequence of this, is the so-called descent Lemma:

g(x) ≤ g(y) + 〈∇g(y), x − y〉+
L

2
‖x − y‖2, ∀x , y ∈ Rd .

This inequality naturally provides

1. An upper quadratic approximation of g

2. A crucial pillar in the analysis of current FOM.

However, in many contexts and applications:

	 the differentiable function g does not have a L-smooth gradient
	 Hence precludes direct use of basic FOM methodology and schemes.
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FOM Beyond Lipschitz Gradient Continuity

Goals/Outline:

I Circumvent the longstanding question of Lipschitz Gradient continuity
imposed on FOM.

I Derive FOM “free” from this smoothness assumption, with guaranteed
complexity estimates and convergence results.

I Apply our results to a broad class of important problems lacking
smooth gradients.
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Main Observation: An Elementary Fact

Consider the descent Lemma for the smooth g ∈ C 1,1
L on Rd :

g(x) ≤ g(y) + 〈x − y ,∇g(y)〉+
L

2
‖x − y‖2, ∀x , y ∈ Rd .

Simple algebra shows that it can be equivalently written as:(
L

2
‖x‖2 − g(x)

)
−
(
L

2
‖y‖2 − g(y)

)
≥ 〈Ly −∇g(y), x − y〉 ∀x , y ∈ Rd

Nothing else but the gradient inequality for the convex L
2
‖x‖2 − g(x) !

Thus, for a given smooth function g on Rd

Descent Lemma ⇐⇒ L

2
‖x‖2 − g(x) is convex on Rd.

Capture the Geometry of Constraint/Objective Naturally suggests to replace the
squared norm with a general convex function h(·) that captures the geometry of
the constraint/objective.
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A Lipschitz-Like Convexity Condition

Following our basic observation: Replace the ‖ · ‖2 with a convex h.

I Trade L-smooth gradient of g on Rd with

I Convexity condition on couple (g , h), dom g ⊃ dom h, g ∈ C 1(int dom h).

A Lipschitz-like/Convexity Condition

(LC) ∃L > 0 with Lh − g convex on int dom h,

I Condition (LC) ⇐⇒ New descent Lemma we seek for.

I It also naturally leads to the well-known Bregman distance.
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A Descent Lemma without Lipschitz Gradient Continuity

Lemma (Descent lemma without Lipschitz Gradient Continuity)

The condition (LC): Lh − g convex on int dom h is equivalent to

g(x) ≤ g(y) + 〈∇g(y), x − y〉+ LDh(x , y), ∀(x , y) ∈ domh × int dom h

Dh stands for the Bregman Distance associated to a convex h:

Dh(x , y) := h(x)− h(y)− 〈∇h(y), x − y〉, ∀x ∈ dom h, y ∈ int dom h.

Proof of Descent Lemma. DLh−g (x , y) ≥ 0 for the convex function
Lh − g !

Distance-Like Properties - For all (x , y) ∈ dom h × int dom h

I x → Dh(x , y) is convex with h convex.

I Dh(x , y) ≥ 0 and “ = 0” iff x = y .(h strictly convex).

I However, note that Dh is in general not symmetric!

The use of Bregman distances in optimization started with Bregman (67).
For initial works and main results on Proximal Bregman Algorithms:
[Censor-Zenios (92), T. (92), Chen-T. (93), Eckstein (93), Bauschke-Borwein (97).]
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Some Useful Examples for Bregman Distances Dh

Each example is a one dimensional convex h. The corresponding function h̃
and Bregman distance in Rd simply use the formulae

h̃(x) =
n∑

j=1

h(xj) and Dh̃(x , y) =
n∑

j=1

Dh(xj , yj).

Name h dom h
Energy 1

2
x2 IR

Boltzmann-Shannon entropy x log x [0,∞)
Burg’s entropy − log x (0,∞)

Fermi-Dirac entropy x log x + (1− x) log(1− x) [0, 1]

Hellinger −(1− x2)1/2 [−1, 1]
Fractional Power (px − xp)/(1− p), p ∈ (0, 1) [0,∞)

I Other possible/useful kernels h include: Nonseparable Bregman, e.g.,

any convex h on Rd as well as for handling matrix problems: PSD
matrices, cone constraints, etc.., [details in Auslender and T. (2005)].
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The Convex Model and Blanket Assumption

Our aim is to solve the composite convex problem

v(P) = inf{Φ(x) := f (x) + g(x) | x ∈ dom h},

where dom h denotes the closure of dom h,

Under the following standard assumption.

The “Hidden h ” (in unconstrained case) will adapt to Nonlinear
Geometry of P

Blanket Assumption as Usual:

(i) f : Rd → (−∞,∞] is proper lower semicontinuous (lsc) convex,

(ii) h : Rd → (−∞,∞] is proper, lsc convex.

(iii) g : Rd → (−∞,∞] is proper lsc convex with dom g ⊃ dom h and
g ∈ C 1(int dom h)

(iv) dom f ∩ int dom h 6= ∅,
(v) −∞ < v(P) = inf{Φ(x) : x ∈ dom h} = inf{Φ(x) : x ∈ dom h}.
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Algorithm NoLips for inf{f (x) + g(x) : x ∈ C ≡ dom h}

Main Algorithmic Operator– [Reduces to classical prox-grad, when h quadratic]

Tλ(x) := argmin

{
f(u) + g(x) + 〈∇g(x), u− x〉+

1

λ
Dh(u, x) : u ∈ dom h

}
(λ > 0).

NoLips Main Iteration: x ∈ int dom h, x+ = Tλ(x), (λ > 0).

Algorithm NoLips – in More Details

0. Input. Choose a convex function h such that there exists L > 0 with
Lh − g convex on int dom h.

1. Initialization. Start with any x0 ∈ int dom h.

2. Recursion. For each k ≥ 1 with λk > 0, generate
{
xk
}
k∈N ∈ int dom h via

xk = Tλk (xk−1) = argmin
x

{
f (x) +

〈
∇g(xk−1), x − xk−1

〉
+

1

λk
Dh(x , xk−1)

}
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Main Issues / Questions for NoLips

I Well posedness and Computation of Tλ(·)?

I What is the complexity of NoLips?

I Does NoLips converge to an optimal solution?

I In particular: Can we identify the most aggressive step-size in terms
of problem’s data?
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NoLips is Well Defined

We assume h is a Legendre function [Rockafellar 70].

I h is strictly convex and differentiable on int dom h 6= ∅ and

dom ∂h = int dom h with ∂h(x) = {∇h(x)},∀x ∈ int dom h.

I ‖∇h(xk)‖ → ∞ whenever {xk} ⊂ int dom h, xk → x ∈ Bdy(dom h.)

With h Legengre: ∇h is a bijection from int dom h→ int dom h∗ and
(∇h)−1 = ∇h∗.

Note:

I Legendre functions “abound” for defining useful Dh. (All previous
examples and more..).

I Crucial for deriving meaningful convergence results.

Equipped with the above, one can prove (see technical details in our paper.)

Lemma (Well posedness of the method)

The proximal gradient map Tλ 6= ∅, is single-valued and maps int dom h in
int dom h.
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NoLips – Decomposition of Tλ(·) into Elementary Steps

Tλ shares the same structural decomposition as the usual proximal gradient.
It splits into “elementary” steps useful for computational purposes.

⊕ Define Bregman gradient map

pλ(x) := argmin
{
λ〈∇g(x), u〉+ Dh(u, x) : u ∈ Rd

}
≡ ∇h∗(∇h(x)− λ∇g(x))

Clearly reduces to the usual explicit gradient step when h = 1
2
‖ · ‖2.

⊕ Define the proximal Bregman map

proxh
λf (y) := argmin

{
λf (u) + Dh(u, y) : u ∈ Rd

}
, y ∈ int dom h

One can show NoLips ≡ Composition of these two Bregman maps:

NoLips Main Iteration: x ∈ int dom h, x+ = proxh
λf ◦ pλ(x) (λ > 0)

For Specific and Useful Examples, see the paper.
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The Key Estimation Inequality for Analyzing NoLips

Lemma (Descent inequality for NoLips)

Let λ > 0. For all x in int domh, let x+ := Tλ(x). Then,

λ
(
Φ(x+)− Φ(u)

)
≤ Dh(u, x)− Dh(u, x+)− (1− λL)Dh(x+, x), ∀u ∈ domh.

Proof simply combines the NoLips Descent Lemma with known old results:

[ Lemma 3.1 and Lemma 3.2 – Chen and T. (1993)].

1. (The three points identity) For any x , y ∈ int(dom h) and u ∈ dom h:

Dh(u, y)− Dh(u, x)− Dh(x , y) = 〈∇h(y)−∇h(x), x − u〉.

2. (Bregman Based Proximal Inequality) Given z ∈ int dom h, define

u+ := argmin{ϕ(u) + t−1Dh(u, z) : u ∈ X}; ϕ convex, t > 0.

Then, for any u ∈ dom h,

t(ϕ(u+)− ϕ(u)) ≤ Dh(u, z)− Dh(u, u+)− Dh(u+, z).
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Complexity for NoLips: O(1/k)

Theorem (NoLips: Complexity)

(i) (Global estimate in function values) Let {xk}k∈N be the sequence
generated by NoLips with λ ∈ (0, 1/L]. Then

Φ(xk)− Φ(u) ≤ LDh(u, x0)

k
∀u ∈ domh.

(ii) (Complexity for h with closed domain) Assume in addition, that
domh = dom h and that (P) has at least a solution. Then for any solution x̄
of (P),

Φ(xk)−min
C

Φ ≤ LDh(x̄ , x0)

k

Notes ♦ The entropies of Boltzmann-Shannon, Fermi-Dirac and Hellinger are
non trivial examples for which the assumption (dom h = dom h) holds.

♦ When h(x) = 1
2
‖x‖2, g ∈ C 1,1

L , and we thus recover the classical sublinear
global rate of the usual proximal gradient method.
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Does NoLips Globally Converge to a Minimizer?

Yes! by introducing an interesting notion of symmetry for Dh.

Bregman distances are in general not symmetric, except when h is the energy.

Definition (Symmetry coefficient-Measures Lack of Symmetry)

Let h : Rd → (−∞,∞] be a Legendre function. Its symmetry coefficient is defined
by

α(h) := inf

{
Dh(x , y)

Dh(y , x)
: (x , y) ∈ int domh × int domh, x 6= y

}
.

Properties of the Symmetry Coefficient α(h):

I α(h) ∈ [0, 1]. The closer is α(h) to 1 the more symmetric Dh is.

I α(h) = 1 Perfect symmetry! when h is the energy.

I α(h) = 0 Total lack of symmetry, e.g., h(x) = x log x and h(x) = − log x .

I α(h) > 0 Some symmetry.., e.g., h(x) = x4, α(h) = 2−
√

3.

The symmetry coefficient allows to determine the best step size of NoLips

for pointwise convergence of the generated sequence {xk}.
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The Step-Size Choice λ for Global Convergence of NoLips

Defining Step Size in Terms of Problem’s Data

0 < λ ≤
(
1 + α(h)

)
− δ

L
for some δ ∈ (0, 1 + α(h)),

I [0, 1] 3 α(h) is the symmetry coefficient of h.

I L > 0 is the constant in condition (LC) Lh − g convex.

I When h(·) := ‖ · ‖2/2, then α(h) = 1, L is usual Lipchitz constant for ∇g
and above reduces to

0 < λ ≤ 2− δ
L

recovers the classical step size allowed for pointwise convergence of the
classical proximal gradient method [Combettes-Wajs 05].

I With the above step-size choice, we can establish global convergence of

the sequence {xk} generated by NoLips.
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Pointwise Convergence for NoLips

Theorem (NoLips: Point convergence - With λ ∈ (0, L−1(1 + α(h)) )

Assume that the solution set S∗ of (P) is nonsempty. Then, the following holds.

(i) (Subsequential convergence) If S∗ is compact, any limit point of {xk}k∈N
is a solution to (P).

(ii) (Global convergence) Assume that dom h = domh and that (H) is
satisfied. Then the sequence {xk}k∈N converges to some solution x∗ of (P).

Note Nontrivial examples: Boltzmann-Shannon, Fermi-Dirac and Hellinger
entropies satisfy the set of assumptions in H and dom h = dom h.

Additional assumption on Dh is to ensure separation properties of Dh at the boundary.

Assumption H:

(i) For every x ∈ dom h and β ∈ IR, the level set
{
y ∈ int dom h : Dh(x, y) ≤ β} is bounded.

(ii) If {xk}k∈N converges to some x in dom h then Dh(x, x
k )→ 0.

(iii) Reciprocally, if x is in dom h and if {xk}k∈N is such that Dh(x, x
k )→ 0, then xk → x .
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Applications - A Prototype: Linear Inverse Problems with Poisson Noise
A very large class of problems arising in Statistical and Image Sciences
areas: inverse problems where data measurements are collected by counting
discrete events (e.g., photons, electrons) contaminated by noise described by a
Poisson process.
Huge amount of literature: astronomy, nuclear medicine (PET), electronic microscropy,

statistical estimation (EM), image deconvolution, denoising speckle (multiplicative) noise,

ect....

Problem: Given a matrix A ∈ Rm×n
+ and b ∈ Rm

++ the goal is to reconstruct the
signal/image x ∈ Rn

+ from the noisy measurements b such that Ax ' b.

A natural proximity measure in Rn
+ - (Kullback-Liebler Divergence):

D(b,Ax) :=
m∑
i=1

{bi log
bi

(Ax)i
+ (Ax)i − bi}.

which (up to some const.) is the negative Poisson log-likelihood function.

I The optimization problem: (E) minimize {µf (x) + g(x) : x ∈ Rn
+}

I g(x) ≡ D(d ,Ax), f a regularizer – smooth or nonsmooth, µ > 0

I x → D(b,Ax) convex, but does not admit a globally Lipschitz continuous
gradient.
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NoLips in Action : New Simple Schemes for Many Problems

The optimization problem will be of the form:

(E) min
x
{µf (x) +Dφ(b,Ax)} or min

x
{µf (x) +Dφ(Ax , b)}

where g(x) := Dφ(b,Ax) for some convex φ, and f (x) some convex
regularizer.

Applying NoLips requires:

1. To pick an adequate h, so that Lh − g convex; L in terms of problem’s
data.

2. In turns, this determines the step-size λ defined through (L, α(h)).

3. Compute pλ(·) and proxh
λf (·)) – Bregman - gradient and proximal steps.

Our convergence/complexity results hold and produce new simple algorithms:

Simple schemes via explicit map Mj(·)

x > 0, x+
j = Mj(b,A, x ;µ, λ) · xj , j = 1, . . . , n.
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Two Simple Algorithms for Poisson Linear Inverse Problems

Given g(x) := Dφ(b,Ax) ( φ(u) = u log u), to apply NoLips:

I We take h(x) = −
∑n

j=1 log xj , dom h = IRn
++.

I We need to find L > 0 such that Lh − g is convex in IRn
++.

Lemma. With (g , h) above, Lh − g is convex on IRn
++

for any L ≥ ‖b‖1 :=
∑m

i=1 bi .

Thus, we can take λ = L−1 = ‖b‖−1
1 , and applying NoLips with x ∈ IRn

++

reads:

x+ = argmin

{
µf (u) + 〈∇g(x), u〉+ ‖b‖1

n∑
j=1

(
uj
xj
− log

uj
xj
− 1

)
: u > 0

}
.

The above yields closed form algorithms for Poisson reconstruction
problems with two typical regularizers.
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Example 1 – Sparse Poisson Linear Inverse Problem

Sparse regularization. Let f (x) := µ‖x‖1, known to promote sparsity. Define,

cj(x) :=
m∑
i=1

bi
aij
〈ai , x〉

, rj :=
∑
i

aij > 0.

NoLips for Sparse Poisson Linear Inverse Problems

xj > 0, x+
j =

‖b‖1xj
‖b‖1 + (µxj + xj(rj − cj(x)))

, j = 1, . . . n

Special Case: µ = 0, (E) is the Poisson Maximum Likelihood Estimation.

NoLips yields in that case: A New Scheme for Poisson MLE

xj > 0, x+
j =

‖b‖1xj
‖b‖1 + xj(rj − cj(x))

, j = 1, . . . n.
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Example 2 - Thikhonov - Poisson Linear Inverse Problems

Tikhonov regularization. Let f (x) := µ‖x‖2/2. Recall that this term is used
as a penalty in order to promote solutions of Ax = b with small Euclidean
norms.

Using previous notation, NoLips yields a

“ A Poisson-Thikonov method” : Set λ = ‖b‖−1
1 and start with x ∈ IRn

++

x+
j =

√
ρ2j (x) + 4µλx2

j − ρj(x)

2µλxj
, j = 1, . . . , n.

where
ρj(x) := 1 + λxj (rj − cj(x)) , j = 1, . . . , n.

As just mentioned, many other interesting methods can be considered

I By choosing different kernels for φ, or

I By reversing the order of the arguments in the proximity measure (which is
not symmetric!..hence defining different problems, see the paper.)
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Conclusion and More Details/Results on NoLips

Proposed framework offers a new paragdim for FOM

I Breaks the longstanding question asking for L-smooth gradient.

I Proven Complexity and Pointwise Convergence as Classical case.

I Allows to derive new FOM without Lipschitz gradient.

Details and More Results: Bauschke H., Bolte J., and Teboulle M.

“A Descent Lemma beyond Lipshitz Gradient Continuity: First Order Methods
Revisited and Applications”. Mathematics of Operations Research, (2017),
330–348.

Available Online http://dx.doi.org/10.1287/moor.2016.0817
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THANK YOU FOR LISTENING!
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NoLips (Red) Versus a FAST NoLips (Blue)...
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