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Optimization Problems with an `0-”norm” I

`0-“norm”:

‖x‖0 = #{i : xi 6= 0}

nonconvex, noncontinuous, but at least closed...

‖(−1, 2, 0, 0)T‖0 = 2, ‖(0, 0, 0, 10)T‖0 = 1.

Sparsity-Constrained Problems

(C )
min f (x)
s.t. x ∈ Cs ∩ B,

where Cs = {x ∈ Rn : ‖x‖0 ≤ s}

Difficulties:

(a) Cs ∩ B non-convex
(b) Cs ∩ B induces a combinatorial constraint

No global optimality conditions, “solution” methods are heuristic
in nature.
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Optimization Problems with an `0-”norm” II

Sparsity-Penalized Problems (λ > 0)

(C )
min f (x) + λ‖x‖0
s.t. x ∈ B.

As opposed to convex programming, the penalized and constrained
problems are not equivalent.
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Examples

(Linear) Compressed Sensing. Recover a sparse signal x
with a sampling matrix A and a measure b.

(CS)
min ‖Ax− b‖22
s.t. x ∈ Cs ∩ Rn or min‖Ax− b‖22 + λ‖x‖0

Sparse Index Tracking. Track an index b with a few assets,
with return matrix A.

(IT )
min ‖Ax− b‖22
s.t. x ∈ Cs ∩∆n

or min{‖Ax−b‖22+λ‖x‖0 : x ∈ ∆n}

(∆n = {x : eTx = 1, x ≥ 0}) (Takeda et al ’12)
Sparse Principal Component Analysis Find the dominant
sparse principal eigenvector of a matrix A.

(PCA)
max xTAx
s.t. x ∈ Cs ∩ B2[0, 1]

or max{xTAx−λ‖x‖0 : x ∈ B2[0, 1]}

Moghaddam, Weiss, Avidan ’06, d’Aspremont, Bach, El-Ghaoui ’08,

d’Aspremont, El-Ghaoui, Jordan, Lanckriet ’07, Luss and Teboulle ’13
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Literature - CS

Linear:

1 Conditions for reconstruction: RIP (Candes and Tao ’05),
SRIP (Beck and Teboulle ’10), spark (Donoho and Elad ’03;
Gorodnitsky and Rao ’97), mutual coherence (Donoho et al.
’03; Donoho and Huo ’99; Mallat and Zhang ’93)

2 Reviews: Bruckstein et al. ’09, Davenport et al. ’11, Tropp
and Wright ’10.

3 Iterative algorithms: IHT (Blumensath and Davis ’08, ’09,
’12; Beck and Teboulle ’10), CoSaMP (Needell and Tropp ’09)

Nonlinear:

1 Phase retrieval: Shechtman et al. ’13; Ohlsson and Eldar ’13;
Eldar and Mendelson ’13; Eldar et al. ’13; Hurt. ’89

2 Nonlinear: optimality conditions (Beck and Eldar ’13), GraSP
(Bahmani et al. ’13)
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Objectives

Unifying the first two models:

The sparse optimization model

(P) min
x

f (x) + g(x)

where either g(x) = g1(x) ≡ δB∩Cs (x) (model 1) or g(x) = g2(x) ≡
λ‖x‖0 + δB(x) (model 2)

B is a nonempty closed and convex set. δC (x) = 0 for x ∈ C and

∞ for x /∈ C .

Main Objectives:
Define necessary optimality conditions
Develop corresponding algorithms
Establish hierarchy between algorithms and conditions

The case B = Rn: Beck, Eldar ’13
However, we will also need to study and compute Proximal
Mappings of g1 and g2.

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Objectives

Unifying the first two models:

The sparse optimization model

(P) min
x

f (x) + g(x)

where either g(x) = g1(x) ≡ δB∩Cs (x) (model 1) or g(x) = g2(x) ≡
λ‖x‖0 + δB(x) (model 2)

B is a nonempty closed and convex set. δC (x) = 0 for x ∈ C and

∞ for x /∈ C .

Main Objectives:
Define necessary optimality conditions
Develop corresponding algorithms
Establish hierarchy between algorithms and conditions

The case B = Rn: Beck, Eldar ’13

However, we will also need to study and compute Proximal
Mappings of g1 and g2.

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Objectives

Unifying the first two models:

The sparse optimization model

(P) min
x

f (x) + g(x)

where either g(x) = g1(x) ≡ δB∩Cs (x) (model 1) or g(x) = g2(x) ≡
λ‖x‖0 + δB(x) (model 2)

B is a nonempty closed and convex set. δC (x) = 0 for x ∈ C and

∞ for x /∈ C .

Main Objectives:
Define necessary optimality conditions
Develop corresponding algorithms
Establish hierarchy between algorithms and conditions

The case B = Rn: Beck, Eldar ’13
However, we will also need to study and compute Proximal
Mappings of g1 and g2.

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Recap of Necessary First Order Opt. for the Composite
Model with (some) Convexity: Stationarity

(∗) min{F (x) ≡ f (x) + g(x)}
f continuously differentiable (not necessarily convex), g proper,

closed and convex.

Equivalent Definitions of Stationarity: x∗ stationary point iff

Prox Form: for some L > 0

x∗ = prox 1
L
g

(
x∗ − 1

L
∇f (x∗)

) Variational Form

F ′(x∗, y − x∗) ≥ 0∀y ∈ dom g

conditions are equivalent ⇒ independent of L
most 1st order algorithms converge to stat. points.
condition relies on the properties/computability of proxg (·)

proxg (x) = argmin
y

{
g(y) +

1

2
‖y − x‖22

}
.
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Why Study Proximal Mappings?

proxg (x) = argmin
y

{
g(y) +

1

2
‖y − x‖22

}
To define optimality conditions, we need to

compute and analyze properties of proxg1 , proxg2 .

Computing proxg1 ,proxg2 is in general a difficult task, but in
fact tractable under assumptions such as symmetry of B

Revised Layout:
Proximal Mappings, Optimality Conditions,
Algorithms
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Proximal Mappings of
g1 and g2
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Proximal Mapping of g1

Sparse projection over B:

proxg1 (x) = PB∩Cs (x) = argmin
y

{
1

2
‖y − x‖22 : y ∈ B ∩ Cs

}

proximal mapping=orthogonal projection onto B ∩ Cs .

If B = Rn, then PCs∩B(x) = PCs (x) comprises all vectors
consisting of the s components of x with the largest absolute
values and with zeros elsewhere.

In general, a multi-valued mapping.
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Supports, Super Supports

Let x ∈ Rn, s ∈ [n] = {1, . . . , n}.
1 Support of x: I1(x) ≡ {i ∈ [n] : xi 6= 0}.
2 Super support of x: any set T s.t. I1(x) ⊆ T and |T | = s.

3 x has full support if ‖x‖0 = |I1(x)| = s.

4 Off-support of x: I0(x) ≡ {i ∈ [n] : xi = 0}.

Example

s = 3, n = 5 and x = (−3, 4, 0, 0, 0)T

1 Support: I1(x) = {1, 2}
2 Super support: T ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}
3 Incomplete support: ‖x‖0 < s

4 Off-support: I0(x) = {3, 4, 5}
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Restriction to Index Sets

x ∈ Rn, T ⊆ [n] index set

1 xT ∈ R|T | is the restriction of x to T

2 BT = {x ∈ R|T | : UTx ∈ B} is the restriction of B to T

Example

x = (8, 7, 6, 5)T ⇒ x1,3 = (8, 6)T .

B = {(x1, x2, x3, x4) : x1 + 2x2 + 3x3 + 4x4 = 1}
⇓

B1,2 = {(x1, x2)T : x1 + 2x2 = 1}
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Phases in Computing the Projection

To find y ∈ PCs∩B (x):

(1) find its super support S

(2) Compute yS = PBS
(xS), ySc = 0

Naive approach: go over all possible
(n
s

)
super supports,

compute the corresponding projections, and find the sparse
projection vector. TOO EXPENSIVE.

If B is symmetric, then efficient computations methods exist.
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The Permutation Group

Σn = permutation group of [n]

xσ = reordering of x according to σ ∈ Σn,

(xσ)i = xσ(i).

Example (permutation)

x =
(
5 4 6

)T
, and

σ(1) = 3, σ(2) = 1, σ(3) = 2,

then
xσ =

(
6 5 4

)T
.
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Symmetric Sets

D is a symmetric set if

x ∈ D ⇒ xσ ∈ D ∀σ ∈ Σn

set description sym. nonneg. sym. abs. sym.

∆′n
1 unit sum X

[`, u]n(` < u) box X

1∆′n = {x ∈ Rn : 1Tx = 1}
Amir Beck - TAU Optimization with Sparsity Inducing Terms



Nonnegative Symmetric Sets

D is nonnegative if ∀x ∈ D, x ≥ 0

set description sym. nonneg. sym. abs. sym.

Rn
+ nonnegative orthant X X

∆n unit simplex X X
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Absolutely Symmetric Sets

D is an absolutely symmetric set if it is symmetric and

x ∈ D, y ∈ {−1, 1}n ⇒ x� y ≡ (xiyi )
n
i=1 ∈ D

set description sym. nonneg. sym. abs. sym.

Rn entire space X X
Bp[0, 1](p > 0) p-ball X X

Cs s-sparse ball X X
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Summary of Examples

set desc. sym. non. sym. abs. sym.

Rn entire space X X
Rn
+ nonneg. orthant X X

∆n unit simplex X X
∆
′
n unit sum X

Bp[0, 1](p ≥ 1) p-ball X X
Cs s-sparse ball X X

[`, u]n(` < u) box X
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Symmetric Sparse Projection Theorem

Notation: given x ∈ Rn

Mk(x) = k indices corresponding to the k largest values in x

Lk(x) = k indices corresponding to the k smallest values in x

Not uniquely defined.

Symmetric Sparse Projection Theorem B be a symmetric set,

then a supper support of a vector ∃y ∈ PCs∩B (x), k ∈ {0, . . . , s} for

which

I1(y) ⊆ Mk(x) ∪ Ls−k(x)

Algorithm: Explore only s + 1 supports.

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Sparse Projection Onto Simple Symmetric Sets

A set is called simple symmetric if it is either absolutely
symmetric or nonnegative symmetric.

Given an underlying simple symmetric set, the symmetry
function p : Rn → Rn is given by:

pB(x) ≡
{

x B is nonnegative symmetric,
|x| B is absolutely symmetric.

Theorem (Sparse Projection onto Simple Symmetric Sets) Let

B be a nonempty closed convex and simple symmetric set

Then

∃y ∈ PCs∩B (x) s.t. I1(y) ⊆ MS(pB(x))
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Sparse Projection onto Simple Symmetric - Algorithm

Input: x ∈ Rn.
Output: u ∈ PB∩Cs (x).

1 Compute T = Ms(pB(x)).

2 Return u: uT = PBT
(xT ),uT c = 0.
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Proximal Mapping of g2

g2(x) = λ‖x‖0 + δB(x)
Sparse prox over B:

proxg2 (x) = argmin
y

{
λ‖y‖0 +

1

2
‖y − x‖22 : y ∈ B

}

If B = Rn, then proxg2(x) is the Hard Thresholding operator

with level
√

2λ:

(proxg2(x))i =


{0}, |xi | <

√
2λ,

{xi}, |xi | >
√

2λ,

{0, xi}, |xi | =
√

2λ.
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Computing proxg2 using proxg1

Underlying assumption: B is a simple symmetric set.

Result: a vector in proxg2 can be evaluted by computing
vectors in PB∩Ci

for any i = 0, 1, . . . , n.

The projection sequence:
PB(x; i) ∈ PB∩Ci

(x), T = Mi (pB(x))

Theorem. Any vector in

argmin

{
λ‖y‖0 +

1

2
‖y − x‖22 : y ∈ {PB(x; 0), ...,PB(x; n)}

}
is in proxg2(x)

Drawback: requires n projection computations.
Question: Can it be reduced to O(log n) computations? Yes,
under an additional assumption
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The Second Order Monotonicity (SOM) Property

• Definition. A simple symmetric set B ⊆ Rn is said to satisfy the
second order monotonicity property if
∀x ∈ Rn, i ∈ {0, 1, . . . , n − 2}it holds that

‖PB(x; i)−x‖22−‖PB(x; i+1)−x‖22 ≥ ‖PB(x; i+1)−x‖22−‖PB(x; i+2)−x‖22.

“The marginal gain in increasing the size of the support is
decreasing”

• Result 1. Under the SOM property, a sparse prox vector can be
found in dlog2 ne projections.
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Sets Satisfying the SOM Property

Result 2. The following sets satisfy the SOM property:

Name of Set Set

`∞-ball B∞[0, α]

nonnegative α-box [0, α]n

– Rn

nonnegative orthant Rn
+

`2-ball B2[0, α]

α-simplex ∆n(α) = {x : eTx = α, x ≥ 0}
full α-simplex ∆F

n (α) = {x : eTx ≤ α, x ≥ 0}
`1-ball B1[0, α]
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Optimality Conditions and
Algorithms
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Back to the Sparse Optimization Problem

The sparse optimization model

(P) min
x

f (x) + g(x)

where either g(x) = g1(x) ≡ δB∩Cs (x) (model 1) or g(x) = g2(x) ≡
λ‖x‖0 + δB(x) (model 2)

Assumption

[A] f : Rn → R is lower bounded, continuously differentiable.

[B] B is a simple symmetric closed and convex set.

In some cases

[C] f ∈ C 1,1
Lf

.
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Road Map of Optimality Conditions

(P) min f (x) + g(x)

g(x) = g1(x) ≡ δB∩Cs (x) (model 1) or g(x) = g2(x) ≡ λ‖x‖0+δB(x)
(model 2)

Support Optimality - “optimality” over the
support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality

To simplify the presentation - we will assume in the setting of
model 1 (g = g1) that all relevant points are with full support.
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Support Optimality (SO)

Notation. Set of optimal solutions over a given support
S ⊆ [n]:

O(S) = argmin
u
{f (u) : I1(u) ⊆ S ,u ∈ dom(g)}.

A vector x ∈ Rn is called support optimal if

x ∈ O(I1(x)).

Theorem. Any optimal solution is support optimal (no
assumptions on B and f )
The condition can be verified if it is possible to minimize over
restrictions of B (without the sparsity terms):

min
u
{f (u) : u ∈ B, ui = 0, u /∈ I1(x)}
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Algorithm: How to find an SO point

In model 1: Take S ⊆ [n], |S | = s and compute x ∈ O(S).

In model 2: Take S ⊆ [n] and compute x ∈ O(S).

Exponential amount of SO points.

Extremely weak condition.
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Road Map of Optimality Conditions

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Support Optimality - “optimality” over the
support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality
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L-Stationarity

Unfortunately, the variational form F ′(x∗, x− x∗) ≥ 0∀x ∈ dom(g)
is not a necessary optimality condition (in general...)

Let L > 0. A vector x ∈ dom(g) is an L-stationary point of (P) if

x ∈ prox g
L

(
x− 1

L
∇f (x)

)
.

Example (B = Rn)

B = Rn, and σ ∈ Σ̃(|x∗|). Then x∗ is an L-stationary point of (P)
if and only ifa

|∇i f (x∗)|
{
≤ L|x∗〈s〉| if i ∈ I0(x∗),

= 0 if i ∈ I1(x∗).

aBeck, A. & Eldar, Y. C., SIOPT, 2013
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L-Stationarity in the Hierarchy

1 L-Stationarity ⇒ SO (if f is convex)

2 If f ∈ C 1,1
Lf

, Optimality ⇒ L-stationarity ∀L ≥ Lf

Condition depends on L, more restrictive as L gets smaller
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Proximal Gradient Method

Proximal Gradient Method

xk+1 ∈ prox g
L

(
xk − 1

L
∇f (xk)

)

B = Rn ⇒ Iterative Hard Thresholding (IHT) method
(Blumensath and Davis ’08, ’09, ’12).

Makes sense only when f ∈ C 1,1.

Only guarantees convergence to an L-stationary point for
L > Lf .

Theorem. If L > Lf , then all limit points of the sequence generated
by the PG method with stepsize 1

L are L-stationary points.
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Back to L-stationarity - Example

min
{
f (x1, x2) ≡ 12x21 + 20x1x2 + 32x22 :

∥∥∥(x1; x2)T
∥∥∥
0
≤ 1
}

Lf = 48.3961

Two SO vectors: (0,−9/16) - optimal solution. (−1/12, 0) -
non-optimal, SL=196.

L = 250

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

L = 500

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Beck, Eldar ’13
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Road Map of Optimality Conditions

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Support Optimality - “optimality” over the
support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality
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Partial CW optimality

Lots of notions of “CW-optimality”. We will concentrate on a
“partial notion” where we compare the current point to (possibly)
three points with similar support sets.

v−x ∈ O(I1(x)\{ix}),
vswapx ∈ O ((I1(x)\{ix}) ∪ {jx}) ,

v+x ∈ O(I1(x) ∪ {jx})

where

ix ∈ argmin
`∈C(x)

{pB(−∇`f (x))} with C (x) = argmin
k∈I1(x)

pB(xk)

jx ∈ argmin
`∈I0(x)

{−pB(−∇`f (x))} .
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Partial CW-Optimality

Model 1: (P1) min{F (x) ≡ f (x) : x ∈ B ∩ Cs}
Model 2: (P1) min{F (x) ≡ f (x) + λ‖x‖0 : x ∈ B}

Model 1: An SO point x∗ is a coordinate-wise optimal point if

F (x∗) ≤ F (vswapx∗ )

Model 2: An SO point x∗ is a coordinate-wise optimal point if

F (x∗) ≤ min{F (vswapx∗ ),F (v−x∗),F (v+x∗)}
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Partial CW-Optimality in the Hierarchy

Results: I

1 Optimality ⇒ partial CW-optimality

2 If f ∈ C 1,1
Lf

, then partial CW-optimality ⇒ L-stationarity
∀L ≥ Lf

It can be shown that Partial CW-optimality actually implies
L-stationarity for a smaller value than L = Lf

Partial CW-optimality is more restrictive than Lf -stationarity

A more restrictive condition: full-CW optimality. Loosely
speaking, the point is better than any other point with a slightly
different support set.
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Hierarchy - Summary

Full CW-Optimality

⇓
Partial CW-Optimality

⇓
Lf -Stationarity

⇓
Support Optimality
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Numerical Example

min
x∈R10

{‖Ax− b‖22 + 0.2‖x‖0 : ‖x‖1 ≤ 1}

supports support optimal L-stationary partial CW optimal
1024 644 153 3 1
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CD Method for Finding a CW-Optimal Point

Partial Coordinate Descent Method for Model 2:

1 Initialization: x0 ∈ Rn - an SO point. k ← 0;

2 set x = xk and compute ix and jx.

3 compute

v−x ∈ O(I1(x)\{ix}),
v−x ∈ O(I1(x) ∪ {jx}),

vswapx ∈ O ((I1(x)\{ix}) ∪ {jx}) .

4 set xk+1 ∈ argmin
{
F (u) : u ∈ {v−x , vswapx , v+x }

}
(unless no

improvement), k ← k + 1, and go to step 2.

Similar method exists for model 1.

A full coordinate descent method can be defined that finds
full CW-optimal points.
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Hierarchy of Algorithms (Best to Worst)

Full CD

Partial CD

Proximal Gradient
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Numerical Example - Chances to Obtain the Optimum

min ‖Ax− b‖22 + 0.5‖x‖0.
Monte Carlo Simulations (100 randomized initializations)

m n s PG Partial CD
32 320 2 13% 100%

64 640 2 5% 100%

96 960 2 42% 100%

128 1280 2 94% 100%

32 320 4 1% 70%

64 640 4 1% 99%

96 960 4 0% 100%

128 1280 4 0% 100%

32 320 6 0% 98%

64 640 6 0% 100%

128 1280 6 0% 100%

32 320 10 0% 0%

64 640 10 0% 90%

128 1280 10 0% 100%
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