Optimization with Sparsity Inducing Terms

Amir Beck

School of Mathematical Sciences, Tel-Aviv University

Based on joint works with Nadav Hallak

Optimization and Discrete Geometry: Theory and Practice, April 24-47, 2018, Tel Aviv University

Optimization Problems with an ℓ_0 -"norm" I

 ℓ_0 -"norm":

$$\|\mathbf{x}\|_0 = \#\{i : x_i \neq 0\}$$

nonconvex, noncontinuous, but at least closed...

 $\|(-1,2,0,0)^T\|_0 = 2, \|(0,0,0,10)^T\|_0 = 1.$

Optimization Problems with an ℓ_0 -"norm" I

 ℓ_0 -"norm":

$$\|\mathbf{x}\|_0 = \#\{i : x_i \neq 0\}$$

nonconvex, noncontinuous, but at least closed...

 $\|(-1,2,0,0)^{T}\|_{0} = 2, \|(0,0,0,10)^{T}\|_{0} = 1.$

• Sparsity-Constrained Problems

 $(C) \quad \begin{array}{ll} \min & f(\mathbf{x}) \ \mathrm{s.t.} & \mathbf{x} \in C_s \cap B, \end{array}$

where $C_s = {\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_0 \le s}$

Difficulties:

(a) $C_s \cap B$ non-convex (b) $C_s \cap B$ induces a combinatorial constraint No global optimality conditions, "solution" methods are heuristic Amir Beck - TAU Optimization with Sparsity Inducing Terms • Sparsity-Penalized Problems $(\lambda > 0)$

(C) $\begin{array}{ll} \min & f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 \\ \text{s.t.} & \mathbf{x} \in B. \end{array}$

As opposed to convex programming, the penalized and constrained problems are not equivalent.

Examples

• (Linear) Compressed Sensing. Recover a sparse signal x with a sampling matrix A and a measure b.

(CS) $\min_{\substack{s.t. \\ s.t. \\ x \in C_s \cap \mathbb{R}^n}} \max_{\substack{s.t. \\ min}} \max_{\substack{s.t. \\ s.t. \\ x \in C_s \cap \mathbb{R}^n}} \max_{\substack{s.t. \\ min}} \max_{\substack{s.t. \\ min}}$

Examples

• (Linear) Compressed Sensing. Recover a sparse signal x with a sampling matrix A and a measure b.

 $(CS) \quad \begin{array}{ll} \min & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \text{s.t.} & \mathbf{x} \in C_s \cap \mathbb{R}^n \end{array} \text{ or } \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0$

• **Sparse Index Tracking.** Track an index **b** with a few assets, with return matrix **A**.

 $\begin{array}{ll} (IT) & \min_{\mathbf{x}.t.} & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ & \text{s.t.} & \mathbf{x} \in C_s \cap \Delta_n \end{array} \text{ or } & \min\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0 : \mathbf{x} \in \Delta_n\} \\ & (\Delta_n = \{\mathbf{x} : \mathbf{e}^T \mathbf{x} = 1, \mathbf{x} \ge \mathbf{0}\}) \text{ (Takeda et al '12)} \end{array}$

Examples

• (Linear) Compressed Sensing. Recover a sparse signal x with a sampling matrix A and a measure b.

 $(CS) \quad \begin{array}{ll} \min & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \text{s.t.} & \mathbf{x} \in C_s \cap \mathbb{R}^n \end{array} \text{ or } \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0$

• **Sparse Index Tracking.** Track an index **b** with a few assets, with return matrix **A**.

 $(IT) \quad \begin{array}{l} \min \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap \Delta_n \end{array} \quad or \quad \min\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_0 : \mathbf{x} \in \Delta_n\} \end{array}$

 $(\Delta_n = {\mathbf{x} : \mathbf{e}^T \mathbf{x} = 1, \mathbf{x} \ge \mathbf{0}})$ (Takeda et al '12) • Sparse Principal Component Analysis Find the dominant

sparse principal eigenvector of a matrix **A**.

 $(PCA) \quad \begin{array}{l} \max \quad \mathbf{x}^{T} \mathbf{A} \mathbf{x} \\ \text{s.t.} \quad \mathbf{x} \in C_{s} \cap B_{2}[\mathbf{0}, 1] \end{array} \quad or \quad \max\{\mathbf{x}^{T} \mathbf{A} \mathbf{x} - \lambda \| \mathbf{x} \|_{0} : \mathbf{x} \in B_{2}[0, 1]\}$

Moghaddam, Weiss, Avidan '06, d'Aspremont, Bach, El-Ghaoui '08, d'Aspremont, El-Ghaoui, Jordan, Lanckriet '07, Luss and Teboulle '13

- Linear:
 - Conditions for reconstruction: RIP (Candes and Tao '05), SRIP (Beck and Teboulle '10), spark (Donoho and Elad '03; Gorodnitsky and Rao '97), mutual coherence (Donoho et al. '03; Donoho and Huo '99; Mallat and Zhang '93)
 - 2 **Reviews:** Bruckstein et al. '09, Davenport et al. '11, Tropp and Wright '10.
 - 3 **Iterative algorithms:** IHT (Blumensath and Davis '08, '09, '12; Beck and Teboulle '10), CoSaMP (Needell and Tropp '09)
- Nonlinear:
 - 1 **Phase retrieval:** Shechtman et al. '13; Ohlsson and Eldar '13; Eldar and Mendelson '13; Eldar et al. '13; Hurt. '89
 - 2 **Nonlinear:** optimality conditions (Beck and Eldar '13), GraSP (Bahmani et al. '13)

Objectives

Unifying the first two models:

The sparse optimization model

 $(P) \quad \min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$

where either $g(\mathbf{x}) = g_1(\mathbf{x}) \equiv \delta_{B \cap C_s}(\mathbf{x}) \pmod{1}$ or $g(\mathbf{x}) = g_2(\mathbf{x}) \equiv \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x}) \pmod{2}$

B is a nonempty closed and convex set. $\delta_C(\mathbf{x}) = 0$ for $\mathbf{x} \in C$ and ∞ for $\mathbf{x} \notin C$.

Objectives

Unifying the first two models:

The sparse optimization model

 $(P) \quad \min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$

where either $g(\mathbf{x}) = g_1(\mathbf{x}) \equiv \delta_{B \cap C_s}(\mathbf{x}) \pmod{1}$ or $g(\mathbf{x}) = g_2(\mathbf{x}) \equiv \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x}) \pmod{2}$

B is a nonempty closed and convex set. $\delta_C(\mathbf{x}) = 0$ for $\mathbf{x} \in C$ and ∞ for $\mathbf{x} \notin C$.

Main Objectives:

- Define necessary optimality conditions
- Develop corresponding algorithms
- Establish hierarchy between algorithms and conditions

The case $B = \mathbb{R}^n$: Beck, Eldar '13

Objectives

Unifying the first two models:

The sparse optimization model

 $(P) \quad \min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$

where either $g(\mathbf{x}) = g_1(\mathbf{x}) \equiv \delta_{B \cap C_s}(\mathbf{x}) \pmod{1}$ or $g(\mathbf{x}) = g_2(\mathbf{x}) \equiv \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x}) \pmod{2}$

B is a nonempty closed and convex set. $\delta_C(\mathbf{x}) = 0$ for $\mathbf{x} \in C$ and ∞ for $\mathbf{x} \notin C$.

Main Objectives:

- Define necessary optimality conditions
- Develop corresponding algorithms
- Establish hierarchy between algorithms and conditions

The case $B = \mathbb{R}^n$: Beck, Eldar '13

However, we will also need to study and compute Proximal

Mappings of g_1 and g_2 .

Recap of Necessary First Order Opt. for the Composite Model with (some) Convexity: Stationarity

(*) $\min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x})\}$

f continuously differentiable (not necessarily convex), g proper, closed and convex.

Recap of Necessary First Order Opt. for the Composite Model with (some) Convexity: Stationarity

(*) $\min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x})\}$

f continuously differentiable (not necessarily convex), g proper, closed and convex.

Equivalent Definitions of Stationarity: x* stationary point iff

Prox Form: for some L > 0

$$\mathbf{x}^* = \operatorname{prox}_{\frac{1}{L}g}\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right)$$

Variational Form

$${\sf F}'({f x}^*,{f y}-{f x}^*)\geq 0 orall {f y}\in {\sf dom}\,g$$

Recap of Necessary First Order Opt. for the Composite Model with (some) Convexity: Stationarity

(*) $\min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + g(\mathbf{x})\}$

f continuously differentiable (not necessarily convex), g proper, closed and convex.

Equivalent Definitions of Stationarity: x* stationary point iff

Prox Form: for some L > 0

$$\mathbf{x}^* = \operatorname{prox}_{\frac{1}{L}g}\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right)$$

Variational Form

$$\Xi'(\mathbf{x}^*,\mathbf{y}-\mathbf{x}^*)\geq 0orall\mathbf{y}\in \mathsf{dom}\,g$$

erms

- conditions are equivalent \Rightarrow independent of L
- most 1st order algorithms converge to stat. points.
- condition relies on the properties/computability of $prox_g(\cdot)$

$$\operatorname{prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ g(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} \right\}.$$

Why Study Proximal Mappings?

$$\operatorname{prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ g(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} \right\}$$

To define optimality conditions, we need to

• compute and analyze properties of $prox_{g_1}, prox_{g_2}$.

Computing $prox_{g_1}, prox_{g_2}$ is in general a difficult task, but in fact tractable under assumptions such as symmetry of B

Why Study Proximal Mappings?

$$\operatorname{prox}_{g}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ g(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} \right\}$$

To define optimality conditions, we need to

• compute and analyze properties of $prox_{g_1}, prox_{g_2}$.

Computing $prox_{g_1}, prox_{g_2}$ is in general a difficult task, but in fact tractable under assumptions such as symmetry of *B* Revised Layout: Proximal Mappings, Optimality Conditions, Algorithms

Proximal Mappings of g_1 and g_2

Amir Beck - TAU Optimization with Sparsity Inducing Terms

Sparse projection over *B*:

$$\operatorname{prox}_{g_1}(\mathbf{x}) = P_{B \cap C_s}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in B \cap C_s \right\}$$

• proximal mapping=orthogonal projection onto $B \cap C_s$.

Sparse projection over *B*:

$$\operatorname{prox}_{g_1}(\mathbf{x}) = P_{B \cap C_s}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in B \cap C_s \right\}$$

- proximal mapping=orthogonal projection onto $B \cap C_s$.
- If B = ℝⁿ, then P_{Cs∩B}(x) = P_{Cs}(x) comprises all vectors consisting of the s components of x with the largest absolute values and with zeros elsewhere.
- In general, a multi-valued mapping.

Supports, Super Supports

Let $\mathbf{x} \in \mathbb{R}^n$, $s \in [n] = \{1, \ldots, n\}$.

- 1 Support of x: $I_1(\mathbf{x}) \equiv \{i \in [n] : x_i \neq 0\}.$
- 2 Super support of x: any set T s.t. $I_1(x) \subseteq T$ and |T| = s.
- 3 x has full support if $\|\mathbf{x}\|_0 = |l_1(\mathbf{x})| = s$.
- 4 Off-support of \mathbf{x} : $I_0(\mathbf{x}) \equiv \{i \in [n] : x_i = 0\}$.

Example

$$s = 3, n = 5$$
 and $\mathbf{x} = (-3, 4, 0, 0, 0)^{7}$

- 1 Support: $I_1(\mathbf{x}) = \{1, 2\}$
- 2 Super support: $T \in \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$
- 3 Incomplete support: $\|\mathbf{x}\|_0 < s$
- 4 **Off-support**: $l_0(\mathbf{x}) = \{3, 4, 5\}$

Restriction to Index Sets

$$\mathbf{x} \in \mathbb{R}^{n}, \ T \subseteq [n] \text{ index set}$$

1 $\mathbf{x}_{T} \in \mathbb{R}^{|T|}$ is the restriction of \mathbf{x} to T
2 $B_{T} = {\mathbf{x} \in \mathbb{R}^{|T|} : \mathbf{U}_{T}\mathbf{x} \in B}$ is the restriction of B to T

Example

$$\mathbf{x} = (8,7,6,5)^T \Rightarrow \mathbf{x}_{1,3} = (8,6)^T.$$

$$B = \{ (x_1, x_2, x_3, x_4) : x_1 + 2x_2 + 3x_3 + 4x_4 = 1 \}$$

$$\downarrow B_{1,2} = \{ (x_1, x_2)^T : x_1 + 2x_2 = 1 \}$$

To find $\mathbf{y} \in P_{C_s \cap B}(\mathbf{x})$: (1) find its super support S(2) Compute $\mathbf{y}_S = P_{B_S}(\mathbf{x}_S), \ \mathbf{y}_{S^c} = \mathbf{0}$

• Naive approach: go over all possible $\binom{n}{s}$ super supports, compute the corresponding projections, and find the sparse projection vector. TOO EXPENSIVE.

To find $\mathbf{y} \in P_{C_s \cap B}(\mathbf{x})$: (1) find its super support S(2) Compute $\mathbf{y}_S = P_{B_S}(\mathbf{x}_S), \ \mathbf{y}_{S^c} = \mathbf{0}$

- Naive approach: go over all possible $\binom{n}{s}$ super supports, compute the corresponding projections, and find the sparse projection vector. TOO EXPENSIVE.
- If *B* is symmetric, then efficient computations methods exist.

The Permutation Group

$$\Sigma_n$$
 = permutation group of [n]

$$\mathbf{x}^{\sigma}$$
 = reordering of \mathbf{x} according to $\sigma \in \Sigma_n$,

$$(\mathbf{x}^{\sigma})_i = x_{\sigma(i)}.$$

Example (permutation)

$$\mathbf{x} = \begin{pmatrix} 5 & 4 & 6 \end{pmatrix}^T$$
, and $\sigma(1) = 3, \sigma(2) = 1, \sigma(3) = 2,$ then $\mathbf{x}^{\sigma} = \begin{pmatrix} 6 & 5 & 4 \end{pmatrix}^T.$

•

• D is a symmetric set if

$$\mathbf{x} \in D \Rightarrow \mathbf{x}^{\sigma} \in D \ \forall \sigma \in \Sigma_n$$

set	description	sym.	nonneg. sym.	abs. sym.
$\Delta_n^{\prime 1}$	unit sum	\checkmark		
$[\ell, u]^n (\ell < u)$	box	\checkmark		

$${}^{1}\Delta_{n}^{\prime} = \{\mathbf{x} \in \mathbb{R}^{n} : \mathbf{1}^{\mathsf{T}}\mathbf{x} = 1\}$$

• *D* is **nonnegative** if $\forall \mathbf{x} \in D$, $\mathbf{x} \ge \mathbf{0}$

set	description	sym.	nonneg. sym.	abs. sym.
\mathbb{R}^{n}_{+}	nonnegative orthant	\checkmark	\checkmark	
Δ_n	unit simplex	\checkmark	\checkmark	

• D is an absolutely symmetric set if it is symmetric and

$$\mathbf{x} \in D, \mathbf{y} \in \{-1, 1\}^n \Rightarrow \mathbf{x} \odot \mathbf{y} \equiv (x_i y_i)_{i=1}^n \in D$$

set	description	sym.	nonneg. sym.	abs. sym.
\mathbb{R}^n	entire space	\checkmark		\checkmark
$B_{p}[0,1](p > 0)$	<i>p</i> -ball	\checkmark		\checkmark
Cs	<i>s</i> -sparse ball	\checkmark		\checkmark

set	desc.	sym.	non. sym.	abs. sym.
\mathbb{R}^n	entire space	\checkmark		\checkmark
\mathbb{R}^{n}_{+}	nonneg. orthant	\checkmark	\checkmark	
Δ_n	unit simplex	\checkmark	\checkmark	
Δ'_n	unit sum	\checkmark		
$B_p[0,1](p\geq 1)$	<i>p</i> -ball	\checkmark		\checkmark
Cs	<i>s</i> -sparse ball	\checkmark		\checkmark
$[\ell, u]^n (\ell < u)$	box	\checkmark		

Notation: given $\mathbf{x} \in \mathbb{R}^n$

 $M_k(\mathbf{x}) = k$ indices corresponding to the k largest values in \mathbf{x} $L_k(\mathbf{x}) = k$ indices corresponding to the k smallest values in \mathbf{x}

Not uniquely defined.

Symmetric Sparse Projection Theorem *B* be a symmetric set, then a supper support of a vector $\exists \mathbf{y} \in P_{C_s \cap B}(\mathbf{x}), k \in \{0, \dots, s\}$ for which

$$I_1(\mathbf{y}) \subseteq M_k(\mathbf{x}) \cup L_{s-k}(\mathbf{x})$$

Algorithm: Explore only s + 1 supports.

Sparse Projection Onto Simple Symmetric Sets

• A set is called simple symmetric if it is either absolutely symmetric or nonnegative symmetric.

Sparse Projection Onto Simple Symmetric Sets

- A set is called simple symmetric if it is either absolutely symmetric or nonnegative symmetric.
- Given an underlying simple symmetric set, the symmetry function p : ℝⁿ → ℝⁿ is given by:

 $p_B(\mathbf{x}) \equiv \begin{cases} \mathbf{x} & B \text{ is nonnegative symmetric,} \\ |\mathbf{x}| & B \text{ is absolutely symmetric.} \end{cases}$

Sparse Projection Onto Simple Symmetric Sets

- A set is called simple symmetric if it is either absolutely symmetric or nonnegative symmetric.
- Given an underlying simple symmetric set, the symmetry function p : ℝⁿ → ℝⁿ is given by:

 $p_B(\mathbf{x}) \equiv \begin{cases} \mathbf{x} & B \text{ is nonnegative symmetric,} \\ |\mathbf{x}| & B \text{ is absolutely symmetric.} \end{cases}$

Theorem (Sparse Projection onto Simple Symmetric Sets) Let *B* be a nonempty closed convex and simple symmetric set Then

$$\exists \mathbf{y} \in P_{C_s \cap B}\left(\mathbf{x}
ight) ext{ s.t. } l_1(\mathbf{y}) \subseteq M_S(p_B(\mathbf{x}))$$

Input: $\mathbf{x} \in \mathbb{R}^n$. Output: $\mathbf{u} \in P_{B \cap C_c}(\mathbf{x})$.

• Compute
$$T = M_s(p_B(\mathbf{x}))$$
.

2 Return **u**:
$$\mathbf{u}_T = P_{B_T}(\mathbf{x}_T), \mathbf{u}_{T^c} = \mathbf{0}.$$

Proximal Mapping of g_2

$$g_2(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x})$$

Sparse prox over *B*:

$$\operatorname{prox}_{g_2}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ \lambda \|\mathbf{y}\|_0 + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in B \right\}$$

Proximal Mapping of g_2

$$g_2(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x})$$

Sparse prox over *B*:

$$\operatorname{prox}_{g_2}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{y}} \left\{ \lambda \|\mathbf{y}\|_0 + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in B \right\}$$

 If B = ℝⁿ, then prox_{g2}(x) is the Hard Thresholding operator with level √2λ:

$$(\operatorname{prox}_{g_2}(\mathbf{x}))_i = \begin{cases} \{0\}, & |x_i| < \sqrt{2\lambda}, \\ \{x_i\}, & |x_i| > \sqrt{2\lambda}, \\ \{0, x_i\}, & |x_i| = \sqrt{2\lambda}. \end{cases}$$

Underlying assumption: *B* is a simple symmetric set.

Underlying assumption: *B* is a simple symmetric set.

Result: a vector in prox_{g2} can be evaluted by computing vectors in P_{B∩Ci} for any i = 0, 1, ..., n.

Underlying assumption: *B* is a simple symmetric set.

- Result: a vector in prox_{g2} can be evaluted by computing vectors in P_{B∩Ci} for any i = 0, 1, ..., n.
- The projection sequence: $P_B(\mathbf{x}; i) \in P_{B \cap C_i}(\mathbf{x}), \quad T = M_i(p_B(\mathbf{x}))$

Underlying assumption: *B* is a simple symmetric set.

- Result: a vector in prox_{g2} can be evaluted by computing vectors in P_{B∩Ci} for any i = 0, 1, ..., n.
- The projection sequence: $P_B(\mathbf{x}; i) \in P_{B \cap C_i}(\mathbf{x}), \quad T = M_i(p_B(\mathbf{x}))$

Theorem. Any vector in

$$\operatorname{argmin}\left\{\lambda \|\mathbf{y}\|_{0} + \frac{1}{2}\|\mathbf{y} - \mathbf{x}\|_{2}^{2} : \mathbf{y} \in \{P_{B}(\mathbf{x}; 0), ..., P_{B}(\mathbf{x}; n)\}\right\}$$

is in $\operatorname{prox}_{g_2}(\mathbf{x})$

Underlying assumption: *B* is a simple symmetric set.

- Result: a vector in prox_{g2} can be evaluted by computing vectors in P_{B∩Ci} for any i = 0, 1, ..., n.
- The projection sequence: $P_B(\mathbf{x}; i) \in P_{B \cap C_i}(\mathbf{x}), \quad T = M_i(p_B(\mathbf{x}))$

Theorem. Any vector in

$$\operatorname{argmin}\left\{\lambda \|\mathbf{y}\|_0 + \frac{1}{2}\|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in \{P_B(\mathbf{x}; 0), ..., P_B(\mathbf{x}; n)\}\right\}$$

is in $\operatorname{prox}_{g_2}(\mathbf{x})$

Drawback: requires n projection computations. **Question:** Can it be reduced to $O(\log n)$ computations?

Underlying assumption: *B* is a simple symmetric set.

- Result: a vector in prox_{g2} can be evaluted by computing vectors in P_{B∩Ci} for any i = 0, 1, ..., n.
- The projection sequence: $P_B(\mathbf{x}; i) \in P_{B \cap C_i}(\mathbf{x}), \quad T = M_i(p_B(\mathbf{x}))$

Theorem. Any vector in

$$\operatorname{argmin}\left\{\lambda \|\mathbf{y}\|_0 + \frac{1}{2}\|\mathbf{y} - \mathbf{x}\|_2^2 : \mathbf{y} \in \{P_B(\mathbf{x}; 0), ..., P_B(\mathbf{x}; n)\}\right\}$$

is in $\mathrm{prox}_{g_2}(\boldsymbol{x})$

Drawback: requires n projection computations. **Question:** Can it be reduced to $O(\log n)$ computations? Yes, under an additional assumption • **Definition.** A simple symmetric set $B \subseteq \mathbb{R}^n$ is said to satisfy the second order monotonicity property if $\forall \mathbf{x} \in \mathbb{R}^n, i \in \{0, 1, \dots, n-2\}$ it holds that

 $\|P_B(\mathbf{x};i) - \mathbf{x}\|_2^2 - \|P_B(\mathbf{x};i+1) - \mathbf{x}\|_2^2 \ge \|P_B(\mathbf{x};i+1) - \mathbf{x}\|_2^2 - \|P_B(\mathbf{x};i+2) - \mathbf{x}\|_2^2.$

"The marginal gain in increasing the size of the support is decreasing"

• **Definition.** A simple symmetric set $B \subseteq \mathbb{R}^n$ is said to satisfy the second order monotonicity property if $\forall \mathbf{x} \in \mathbb{R}^n, i \in \{0, 1, \dots, n-2\}$ it holds that

 $\|P_B(\mathbf{x};i) - \mathbf{x}\|_2^2 - \|P_B(\mathbf{x};i+1) - \mathbf{x}\|_2^2 \ge \|P_B(\mathbf{x};i+1) - \mathbf{x}\|_2^2 - \|P_B(\mathbf{x};i+2) - \mathbf{x}\|_2^2.$

"The marginal gain in increasing the size of the support is decreasing"

• **Result 1.** Under the SOM property, a sparse prox vector can be found in $\lceil \log_2 n \rceil$ projections.

Result 2. The following sets satisfy the SOM property:

Name of Set	Set	
ℓ_∞ -ball	$B_{\infty}[0, lpha]$	
nonnegative α -box	[0, α] ⁿ	
_	\mathbb{R}^n	
nonnegative orthant	\mathbb{R}^{n}_{+}	
ℓ_2 -ball	$B_2[0, \alpha]$	
α -simplex	$\Delta_n(\alpha) = \{ \mathbf{x} : \mathbf{e}^T \mathbf{x} = \alpha, \mathbf{x} \ge 0 \}$	
full α -simplex	$\Delta_n^F(\alpha) = \{ \mathbf{x} : \mathbf{e}^T \mathbf{x} \le \alpha, \mathbf{x} \ge 0 \}$	
ℓ_1 -ball	$B_1[0, \alpha]$	

Optimality Conditions and Algorithms

Back to the Sparse Optimization Problem

The sparse optimization model $(P) \quad \min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$ where either $g(\mathbf{x}) = g_1(\mathbf{x}) \equiv \delta_{B \cap C_s}(\mathbf{x}) \pmod{1}$ or $g(\mathbf{x}) = g_2(\mathbf{x}) \equiv \lambda ||\mathbf{x}||_0 + \delta_B(\mathbf{x}) \pmod{2}$

Assumption

[A] $f : \mathbb{R}^n \to \mathbb{R}$ is lower bounded, continuously differentiable. [B] B is a simple symmetric closed and convex set. In some cases [C] $f \in C_{L_f}^{1,1}$.

Road Map of Optimality Conditions

 $(P)\min f(\mathbf{x}) + g(\mathbf{x})$

 $g(\mathbf{x}) = g_1(\mathbf{x}) \equiv \delta_{B \cap C_s}(\mathbf{x}) \pmod{1}$ or $g(\mathbf{x}) = g_2(\mathbf{x}) \equiv \lambda \|\mathbf{x}\|_0 + \delta_B(\mathbf{x}) \pmod{2}$ (model 2)

- Support Optimality "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

To simplify the presentation - we will assume in the setting of model 1 $(g = g_1)$ that all relevant points are with full support.

Support Optimality (SO)

 Notation. Set of optimal solutions over a given support S ⊆ [n]:

 $\mathcal{O}(S) = \underset{\mathbf{u}}{\operatorname{argmin}} \{f(\mathbf{u}) : I_1(\mathbf{u}) \subseteq S, \mathbf{u} \in \operatorname{dom}(g)\}.$

Support Optimality (SO)

 Notation. Set of optimal solutions over a given support S ⊆ [n]:

 $\mathcal{O}(S) = \underset{\mathbf{u}}{\operatorname{argmin}} \{f(\mathbf{u}) : I_1(\mathbf{u}) \subseteq S, \mathbf{u} \in \operatorname{dom}(g)\}.$

A vector $\mathbf{x} \in \mathbb{R}^n$ is called support optimal if

 $\mathbf{x} \in \mathcal{O}(I_1(\mathbf{x})).$

• **Theorem.** Any optimal solution is support optimal (no assumptions on *B* and *f*)

Support Optimality (SO)

 Notation. Set of optimal solutions over a given support S ⊆ [n]:

 $\mathcal{O}(S) = \underset{\mathbf{u}}{\operatorname{argmin}} \{f(\mathbf{u}) : I_1(\mathbf{u}) \subseteq S, \mathbf{u} \in \operatorname{dom}(g)\}.$

A vector $\mathbf{x} \in \mathbb{R}^n$ is called support optimal if

 $\mathbf{x} \in \mathcal{O}(I_1(\mathbf{x})).$

- **Theorem.** Any optimal solution is support optimal (no assumptions on *B* and *f*)
- The condition can be verified if it is possible to minimize over restrictions of *B* (without the sparsity terms):

$$\min_{\mathbf{u}} \{ f(\mathbf{u}) : \mathbf{u} \in B, u_i = 0, u \notin I_1(\mathbf{x}) \}$$

- In model 1: Take $S \subseteq [n], |S| = s$ and compute $\mathbf{x} \in \mathcal{O}(S)$.
- In model 2: Take $S \subseteq [n]$ and compute $\mathbf{x} \in \mathcal{O}(S)$.

- In model 1: Take $S \subseteq [n], |S| = s$ and compute $\mathbf{x} \in \mathcal{O}(S)$.
- In model 2: Take $S \subseteq [n]$ and compute $\mathbf{x} \in \mathcal{O}(S)$.
- Exponential amount of SO points.
- Extremely weak condition.

$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- Support Optimality "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

L-Stationarity

Unfortunately, the variational form $F'(\mathbf{x}^*, \mathbf{x} - \mathbf{x}^*) \ge 0 \forall \mathbf{x} \in \text{dom}(g)$ is not a necessary optimality condition (in general...)

L-Stationarity

Unfortunately, the variational form $F'(\mathbf{x}^*, \mathbf{x} - \mathbf{x}^*) \ge 0 \forall \mathbf{x} \in dom(g)$ is not a necessary optimality condition (in general...)

Let L > 0. A vector $\mathbf{x} \in \text{dom}(g)$ is an *L*-stationary point of (P) if

$$\mathbf{x} \in \operatorname{prox}_{\frac{g}{L}}\left(\mathbf{x} - \frac{1}{L} \nabla f(\mathbf{x})\right).$$

L-Stationarity

Unfortunately, the variational form $F'(\mathbf{x}^*, \mathbf{x} - \mathbf{x}^*) \ge 0 \forall \mathbf{x} \in dom(g)$ is not a necessary optimality condition (in general...)

Let L > 0. A vector $\mathbf{x} \in dom(g)$ is an *L*-stationary point of (P) if

$$\mathbf{x} \in \operatorname{prox}_{\frac{g}{L}}\left(\mathbf{x} - \frac{1}{L} \nabla f(\mathbf{x})\right).$$

Example $(B = \mathbb{R}^n)$

 $B = \mathbb{R}^n$, and $\sigma \in \tilde{\Sigma}(|\mathbf{x}^*|)$. Then \mathbf{x}^* is an *L*-stationary point of (P) if and only if^a

$$|\nabla_i f(\mathbf{x}^*)| \begin{cases} \leq L |x_{\langle s \rangle}^*| & \text{if } i \in I_0(\mathbf{x}^*), \\ = 0 & \text{if } i \in I_1(\mathbf{x}^*). \end{cases}$$

^aBeck, A. & Eldar, Y. C., SIOPT, 2013

1 *L*-Stationarity
$$\Rightarrow$$
 SO (if *f* is convex)
2 If $f \in C_{L_f}^{1,1}$, Optimality \Rightarrow *L*-stationarity $\forall L \ge L_f$

Condition depends on L, more restrictive as L gets smaller

Proximal Gradient Method

Proximal Gradient Method

$$\mathbf{x}^{k+1} \in \operatorname{prox}_{\frac{g}{L}}\left(\mathbf{x}^{k} - \frac{1}{L}\nabla f(\mathbf{x}^{k})\right)$$

Proximal Gradient Method

$$\mathbf{x}^{k+1} \in \operatorname{prox}_{rac{d}{L}}\left(\mathbf{x}^k - rac{1}{L}
abla f(\mathbf{x}^k)
ight)$$

- B = ℝⁿ ⇒ Iterative Hard Thresholding (IHT) method (Blumensath and Davis '08, '09, '12).
- Makes sense only when $f \in C^{1,1}$.
- Only guarantees convergence to an L-stationary point for L > L_f.

Theorem. If $L > L_f$, then all limit points of the sequence generated by the PG method with stepsize $\frac{1}{L}$ are *L*-stationary points.

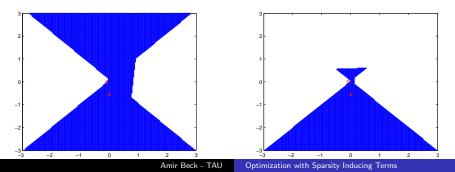
Back to L-stationarity - Example

$$\min\left\{f(x_1, x_2) \equiv 12x_1^2 + 20x_1x_2 + 32x_2^2 : \left\|(x_1; x_2)^T\right\|_0 \le 1\right\}$$

 $L_f = 48.3961$

Two SO vectors: (0,-9/16) - optimal solution. (-1/12,0) - non-optimal, SL=196.

L = 250



$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- Support Optimality "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

Partial CW optimality

Lots of notions of "CW-optimality". We will concentrate on a "partial notion" where we compare the current point to (possibly) three points with similar support sets.

$$\begin{array}{rcl} \mathbf{v}_{\mathbf{x}}^{-} &\in & \mathcal{O}(I_{1}(\mathbf{x}) \setminus \{i_{\mathbf{x}}\}), \\ \mathbf{v}_{\mathbf{x}}^{\mathsf{swap}} &\in & \mathcal{O}\left((I_{1}(\mathbf{x}) \setminus \{i_{\mathbf{x}}\}) \cup \{j_{\mathbf{x}}\}\right), \\ \mathbf{v}_{\mathbf{x}}^{+} &\in & \mathcal{O}(I_{1}(\mathbf{x}) \cup \{j_{\mathbf{x}}\}) \end{array}$$

where

 $i_{\mathbf{x}} \in \underset{\ell \in C(\mathbf{x})}{\operatorname{argmin}} \{ p_B(-\nabla_{\ell} f(\mathbf{x})) \} \text{ with } C(\mathbf{x}) = \underset{k \in I_1(\mathbf{x})}{\operatorname{argmin}} p_B(x_k)$

$$j_{\mathbf{x}} \in \operatorname*{argmin}_{\ell \in h_0(\mathbf{x})} \left\{ -p_B(-\nabla_\ell f(\mathbf{x})) \right\}.$$

Partial CW-Optimality

- Model 1: (P_1) min $\{F(\mathbf{x}) \equiv f(\mathbf{x}) : \mathbf{x} \in B \cap C_s\}$
- Model 2: $(P_1) \quad \min\{F(\mathbf{x}) \equiv f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 : \mathbf{x} \in B\}$

Model 1: An SO point x* is a coordinate-wise optimal point if

 $F(\mathbf{x}^*) \leq F(\mathbf{v}^{\mathrm{swap}}_{\mathbf{x}^*})$

Model 2: An SO point x* is a coordinate-wise optimal point if

 $F(\mathbf{x}^*) \le \min\{F(\mathbf{v}_{\mathbf{x}^*}^{\text{swap}}), F(\mathbf{v}_{\mathbf{x}^*}^{-}), F(\mathbf{v}_{\mathbf{x}^*}^{+})\}$

Partial CW-Optimality in the Hierarchy

Results: |

- 1~ Optimality \Rightarrow partial CW-optimality
- 2 If $f \in C_{L_f}^{1,1}$, then partial CW-optimality \Rightarrow *L*-stationarity $\forall L \ge L_f$

It can be shown that Partial CW-optimality actually implies L-stationarity for a smaller value than $L = L_f$

Partial CW-optimality is more restrictive than L_f-stationarity

Partial CW-Optimality in the Hierarchy

Results: |

- 1~ Optimality \Rightarrow partial CW-optimality
- 2 If $f \in C_{L_f}^{1,1}$, then partial CW-optimality \Rightarrow *L*-stationarity $\forall L \ge L_f$

It can be shown that Partial CW-optimality actually implies L-stationarity for a smaller value than $L = L_f$

Partial CW-optimality is more restrictive than *L_f*-stationarity

A more restrictive condition: **full-CW optimality**. Loosely speaking, the point is better than any other point with a slightly different support set.

```
Full CW-Optimality
Partial CW-Optimality
   L_f-Stationarity
 Support Optimality
```

$$\min_{\mathbf{x} \in \mathbb{R}^{10}} \{ \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + 0.2 \|\mathbf{x}\|_0 : \|\mathbf{x}\|_1 \le 1 \}$$

supports	support optimal	L-stationary	partial CW	optimal
1024	644	153	3	1

CD Method for Finding a CW-Optimal Point

Partial Coordinate Descent Method for Model 2:

1 Initialization: $\mathbf{x}^0 \in \mathbb{R}^n$ - an SO point. $k \leftarrow 0$;

3 set
$$\mathbf{x} = \mathbf{x}^k$$
 and compute $i_{\mathbf{x}}$ and $j_{\mathbf{x}}$.

Compute

$$\begin{array}{lll} \mathbf{v}_{\mathbf{x}}^{-} &\in & \mathcal{O}(I_1(\mathbf{x}) \setminus \{i_{\mathbf{x}}\}), \\ \mathbf{v}_{\mathbf{x}}^{-} &\in & \mathcal{O}(I_1(\mathbf{x}) \cup \{j_{\mathbf{x}}\}), \\ \mathbf{v}_{\mathbf{x}}^{\mathrm{swap}} &\in & \mathcal{O}\left((I_1(\mathbf{x}) \setminus \{i_{\mathbf{x}}\}) \cup \{j_{\mathbf{x}}\}\right). \end{array}$$

• set $\mathbf{x}^{k+1} \in \operatorname{argmin} \{ F(\mathbf{u}) : \mathbf{u} \in \{\mathbf{v}_{\mathbf{x}}^{-}, \mathbf{v}_{\mathbf{x}}^{\operatorname{swap}}, \mathbf{v}_{\mathbf{x}}^{+} \} \}$ (unless no improvement), $k \leftarrow k + 1$, and go to step 2.

- Similar method exists for model 1.
- A full coordinate descent method can be defined that finds full CW-optimal points.

- Full CD
- Partial CD
- Proximal Gradient

Numerical Example - Chances to Obtain the Optimum

$\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + 0.5 \|\mathbf{x}\|_0.$

Monte Carlo Simulations (100 randomized initializations)

m	n	s	PG	Partial CD
32	320	2	13%	100%
64	640	2	5%	100%
96	960	2	42%	100%
128	1280	2	94%	100%
32	320	4	1%	70%
64	640	4	1%	99%
96	960	4	0%	100%
128	1280	4	0%	100%
32	320	6	0%	98%
64	640	6	0%	100%
128	1280	6	0%	100%
32	320	10	0%	0%
64	640	10	0%	90%
128	1280	10	0%	100%

THANK YOU FOR YOUR ATTENTION

- Beck, Hallak "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms", *Mathematics of Operations Research*, vol. 41, no. 1 (2016) 196–223.
- Beck, Hallak "Proximal Mapping for Symmetric Penalty and Sparsity", *SIAM Journal on Optimization*, vol. 28, no. 1 (2018), 496–527.