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Optimization Problems with an /y-"norm” |

£o-"norm":
l[x[lo = #{i : x; # 0}

nonconvex, noncontinuous, but at least closed...

(~1.2,0,0)llo = 2,(0,0,0,10)"[lo = 1.
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Optimization Problems with an /y-"norm” |

£o-"norm":
l[x[lo = #{i : x; # 0}

nonconvex, noncontinuous, but at least closed...

(~1.2,0,0)llo = 2,(0,0,0,10)"[lo = 1.

@ Sparsity-Constrained Problems

min  f(x)
(€) st. xe N B,
where Cs = {x € R" : ||x||o < s}
Difficulties:
(a) CsN B non-convex

(b) Cs N B induces a combinatorial constraint
No global optimality conditions, “solution” methods are heuristic
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Optimization Problems with an /5-"norm” Il

e Sparsity-Penalized Problems (\ > 0)

min £ (x) + Al|x/|o
st. x¢€B.

(€)

As opposed to convex programming, the penalized and constrained
problems are not equivalent.
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o (Linear) Compressed Sensing. Recover a sparse signal x
with a sampling matrix A and a measure b.
min ||Ax — b||3

(€5 st. xe GGNR"?

or  min||Ax — b]3 + \||x[|o
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o (Linear) Compressed Sensing. Recover a sparse signal x
with a sampling matrix A and a measure b.
min ||Ax — b||3

(€5 st. xe GGNR"?

or  min||Ax — b]3 + \||x[|o

o Sparse Index Tracking. Track an index b with a few assets,
with return matrix A.

min |[Ax — b||3
st. xe GNA,

(A, = {x:e"x=1,x>0}) (Takeda et al '12)

(IT) or  min{|[Ax—b|[3+\|x|jo: x € A,}
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o (Linear) Compressed Sensing. Recover a sparse signal x
with a sampling matrix A and a measure b.
min ||Ax — b||3

(€5 st. xe GGNR"?

or  min||Ax — b]3 + \||x[|o

o Sparse Index Tracking. Track an index b with a few assets,
with return matrix A.

min |[Ax — b||3

st. xe GNA,

(A, = {x:e"x=1,x>0}) (Takeda et al '12)

@ Sparse Principal Component Analysis Find the dominant
sparse principal eigenvector of a matrix A.

(IT) or  min{|[Ax—b|[3+\|x|jo: x € A,}

max x' Ax
st. xe GNB0,1]

Moghaddam, Weiss, Avidan '06, d'Aspremont, Bach, EI-Ghaoui '08,
d’'Aspremont, El-Ghaoui, Jordan, Lanckriet '07, Luss and Teboulle '13

(PCA) or max{x" Ax—\||x|jo : x € B[0, 1]}
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@ Linear:

1 Conditions for reconstruction: RIP (Candes and Tao '05),
SRIP (Beck and Teboulle '10), spark (Donoho and Elad '03;
Gorodnitsky and Rao '97), mutual coherence (Donoho et al.
'03; Donoho and Huo '99; Mallat and Zhang '93)

2 Reviews: Bruckstein et al. '09, Davenport et al. '11, Tropp
and Wright '10.

3 lterative algorithms: IHT (Blumensath and Davis '08, '09,
'12; Beck and Teboulle '10), CoSaMP (Needell and Tropp '09)

@ Nonlinear:

1 Phase retrieval: Shechtman et al. '13; Ohlsson and Eldar "13;

Eldar and Mendelson '13; Eldar et al. '13; Hurt. '89

2 Nonlinear: optimality conditions (Beck and Eldar '13), GraSP
(Bahmani et al. '13)

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Unifying the first two models:

The sparse optimization model
(P) minf(x) +g(x)

where either g(x) = g1(x) = dgnc.(x) (model 1) or g(x) = g2(x) =
A[x]lo + dg(x) (model 2)

B is a nonempty closed and convex set. d¢(x) =0 for x € C and
oo for x ¢ C.
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Unifying the first two models:

The sparse optimization model
(P) minf(x) +g(x)

where either g(x) = g1(x) = dgnc.(x) (model 1) or g(x) = g2(x) =
A[x]lo + dg(x) (model 2)

B is a nonempty closed and convex set. d¢(x) =0 for x € C and
oo for x ¢ C.

Main Objectives:

@ Define necessary optimality conditions

e Develop corresponding algorithms

e Establish hierarchy between algorithms and conditions
The case B = R": Beck, Eldar '13
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Unifying the first two models:

The sparse optimization model
(P) minf(x) +g(x)

where either g(x) = g1(x) = dgnc.(x) (model 1) or g(x) = g2(x) =
A[x]lo + dg(x) (model 2)

B is a nonempty closed and convex set. d¢(x) =0 for x € C and
oo for x ¢ C.

Main Objectives:

@ Define necessary optimality conditions

e Develop corresponding algorithms

e Establish hierarchy between algorithms and conditions
The case B = R": Beck, Eldar '13
However, we will also need to study and compute Proximal
Mappings of g1 and g».
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Recap of Necessary First Order Opt. for the Composite

Model with (some) Convexity: Stationarity

(¥) min{F(x) = f(x) + g(x)}

f continuously differentiable (not necessarily convex), g proper,
closed and convex.
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Recap of Necessary First Order Opt. for the Composite

Model with (some) Convexity: Stationarity

(x) min{F(x) = f(x) + g(x)}

f continuously differentiable (not necessarily convex), g proper,
closed and convex.
Equivalent Definitions of Stationarity: x* stationary point iff

Prox Form: for some L > 0 Variational Form

x* = proxi, (x* — Vf(x*)) F'(x*,y — x*) > 0Vy € domg
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Recap of Necessary First Order Opt. for the Composite

Model with (some) Convexity: Stationarity

(*) min{F(x) = f(x) + g(x)}
f continuously differentiable (not necessarily convex), g proper,

closed and convex.
Equivalent Definitions of Stationarity: x* stationary point iff

Prox Form: for some L > 0 Variational Form

Vf(x*)) F'(x*,y — x*) > 0Vy € domg

1
k *k =
X" = proxi (x 1

@ conditions are equivalent = independent of L
@ most 1st order algorithms converge to stat. points.
e condition relies on the properties/computability of prox,(-)

) 1
proxg(x) = angmin { () + 3y ~ xI3 .
y
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Why Study Proximal Mappings?

) 1
pro (<) = argmin { g(4) + 3 Iy ~ 15 |
y
To define optimality conditions, we need to
@ compute and analyze properties of prox,, , proxg,.

Computing prox,, , prox,, is in general a difficult task, but in
fact tractable under assumptions such as symmetry of B
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Why Study Proximal Mappings?

) 1
pro (<) = argmin { g(4) + 3 Iy ~ 15 |
y

To define optimality conditions, we need to
@ compute and analyze properties of prox,, , proxg,.

Computing prox,, , prox,, is in general a difficult task, but in
fact tractable under assumptions such as symmetry of B
Revised Layout:

Proximal Mappings, Optimality Conditions,
Algorithms
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Proximal Mappings of
g1 and g
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Proximal Mapping of g1

Sparse projection over B:

.1
prox,, (x) = Pgnc,(x) = argmin {2||y —x||3:y€e BN Cs}
y

@ proximal mapping=orthogonal projection onto B N Cs.
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Proximal Mapping of g1

Sparse projection over B:

.1
prox,, (x) = Pgnc,(x) = argmin {2||y —x||3:y€e BN Cs}
y

@ proximal mapping=orthogonal projection onto B N Cs.

e If B=R", then Pc,ng(x) = Pc.(x) comprises all vectors
consisting of the s components of x with the largest absolute
values and with zeros elsewhere.

@ In general, a multi-valued mapping.
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Supports, Super Supports

Let x e R", s e [n]={1,...,n}.
1 Support of x: 1(x) ={i € [n] : x; # 0}.
2 Super support of x: any set T s.t. 1(x) C T and |T| =s.
3 x has full support if ||x||o = |h(x)| = s.
4 Off-support of x: Ip(x) = {i € [n] : x; = 0}.

s=3,n=5and x=(-3,4,0,0,0)7
1 Support: (x) = {1,2}
2 Super support: T € {{1,2,3},{1,2,4},{1,2,5}}
3 Incomplete support: ||x|[o < s
4 Off-support: Ih(x) = {3,4,5}
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Restriction to Index Sets

x € R", T C [n] index set
1 x7 € RITl is the restriction of x to T
2 Bt = {x e RITl : Uyx € B} is the restriction of B to T

x=(8,7,6,5)" = x;3=(8,6)".

B = {(Xl,XQ,X3,X4) X1 +2x0 +3x3 +4x4 = 1}
N2
3172 = {(Xl,XQ)T 1 X1+ 2x0 = ]_}
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Phases in Computing the Projection

To find y € Pc,ng (x):
(1) find its super support S
(2) Compute ys = Pp.(xs), ysc =0

o Naive approach: go over all possible (Z) super supports,
compute the corresponding projections, and find the sparse
projection vector. TOO EXPENSIVE.
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Phases in Computing the Projection

To find y € Pc,ng (x):
(1) find its super support S
(2) Compute ys = Pp.(xs), ysc =0

o Naive approach: go over all possible (Z) super supports,
compute the corresponding projections, and find the sparse
projection vector. TOO EXPENSIVE.

e If B is symmetric, then efficient computations methods exist.
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The Permutation Group

Y, = permutation group of [n]

= reordering of x according to o € ¥,

(x7)i = Xo(i)-

Example (permutation)

x=(5 4 6)", and

then
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Symmetric Sets

@ D is a symmetric set if

xeD=x"eD Voe¥x,

’ set \ description \ sym. \ nonneg. sym. | abs. sym.
Al unit sum v
[4, u]"(¢ < u) box v

AL ={xeR":1"x =1}
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Nonnegative Symmetric Sets

@ D is nonnegative if Y x € D, x >0

’ set \ description \ sym. \ nonneg. sym. | abs. sym.
R? | nonnegative orthant v v
Ap unit simplex v v
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Absolutely Symmetric Sets

@ D is an absolutely symmetric set if it is symmetric and

xeDye{-1,1}"=x0y=(xy)l, €D

’ set \ description \ sym. \ nonneg. sym. \ abs. sym.
R" entire space v v
B,[0,1](p > 0) p-ball v v
Cs s-sparse ball v v
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Summary of Examples

set \ desc. | sym. | non. sym. | abs. sym. |
R" entire space v v
R’ nonneg. orthant | v v
A, unit simplex v v
Al unit sum v
B,[0,1](p > 1) p-ball v v
Cs s-sparse ball v v
[4, u]"(¢ < u) box v
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Symmetric Sparse Projection Theorem

Notation: given x € R”

My(x) = k indices corresponding to the k largest values in x

Lx(x) = k indices corresponding to the k smallest values in x

Not uniquely defined.
Symmetric Sparse Projection Theorem B be a symmetric set,
then a supper support of a vector Jy € Pc.ng(x), k € {0,...,s} for

which

L(y) € Mi(x) U Ls_g(x)

Algorithm: Explore only s 4+ 1 supports.
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Sparse Projection Onto Simple Symmetric Sets

@ A set is called simple symmetric if it is either absolutely
symmetric or nonnegative symmetric.
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Sparse Projection Onto Simple Symmetric Sets

@ A set is called simple symmetric if it is either absolutely
symmetric or nonnegative symmetric.

@ Given an underlying simple symmetric set, the symmetry
function p : R"” — R" is given by:

x B is nonnegative symmetric,
|x| B is absolutely symmetric.

pa(x) = {
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Sparse Projection Onto Simple Symmetric Sets

@ A set is called simple symmetric if it is either absolutely
symmetric or nonnegative symmetric.

@ Given an underlying simple symmetric set, the symmetry
function p : R"” — R" is given by:

x B is nonnegative symmetric,
|x| B is absolutely symmetric.

pa(x) = {

Theorem (Sparse Projection onto Simple Symmetric Sets) Let
B be a nonempty closed convex and simple symmetric set
Then

dy € Pcng (x) s.t. h(y) € Ms(ps(x))

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Sparse Projection onto Simple Symmetric - Algorithm

Input: x € R".
Output: u € Pgnc,(x).
@ Compute T = My(ps(x)).

@ Return u: ur = P (x7),urc = 0.
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Proximal Mapping of g

82(x) = Allx[jo + d5(x)
Sparse prox over B:

. 1
prox,, (x) = argmin {Anyuo +olly —xI3:y B}
y
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Proximal Mapping of g

82(x) = Allx[jo + d5(x)
Sparse prox over B:

. 1
prox,, (x) = argmin {Anyuo +olly —xI3:y B}
y

o If B=R", then prox,,(x) is the Hard Thresholding operator

with level v2\:
{0}, x| < V2,
(proxg,(x))i = q {xi},  |x| > V2),
{O,X,'}, ‘X," =V 2)\.
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.

@ Result: a vector in prox,, can be evaluted by computing
vectors in Pgnc, forany i =0,1,...,n.
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.

@ Result: a vector in prox,, can be evaluted by computing
vectors in Pgnc, forany i =0,1,...,n.

@ The projection sequence:
PB(X; i) S PBﬁCi(X)7 T = M,’(pB(X))
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.

@ Result: a vector in prox,, can be evaluted by computing
vectors in Pgnc, forany i =0,1,...,n.

@ The projection sequence:
PB(X; i) S PBﬁCi(X)7 T = M,’(pB(X))

Theorem. Any vector in

. 1
argmin {Auyuo +5ly = xI3 v € {Pa(x:0),.... Pa( n)}}

is in prox,, (x)
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.

@ Result: a vector in prox,, can be evaluted by computing
vectors in Pgnc, forany i =0,1,...,n.

@ The projection sequence:
PB(X; i) S PBﬁCi(X)7 T = M,’(pB(X))

Theorem. Any vector in

. 1
argmin {Auyuo +5ly = xI3 v € {Pa(x:0),.... Pa( n)}}

is in prox,, (x)

Drawback: requires n projection computations.
Question: Can it be reduced to O(log n) computations?
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Computing prox,, using prox,

Underlying assumption: B is a simple symmetric set.

@ Result: a vector in prox,, can be evaluted by computing
vectors in Pgnc, forany i =0,1,...,n.

@ The projection sequence:
PB(X; i) S PBﬁCi(X)7 T = M,’(pB(X))

Theorem. Any vector in

. 1
argmin {Auyuo +5ly = xI3 v € {Pa(x:0),.... Pa( n)}}

is in prox,, (x)

Drawback: requires n projection computations.
Question: Can it be reduced to O(log n) computations? Yes,
under an additional assumption
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The Second Order Monotonicity (SOM) Property

e Definition. A simple symmetric set B C R” is said to satisfy the
second order monotonicity property if
Vx € R" i €{0,1,...,n— 2}it holds that

1P (x; 1) —xI[3—[| Pe(x; i+1)—x|[5 > || P(x; i+1)—x|[3— | Pe(x; i+2)—x|3.

“The marginal gain in increasing the size of the support is
decreasing”
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The Second Order Monotonicity (SOM) Property

e Definition. A simple symmetric set B C R” is said to satisfy the
second order monotonicity property if
Vx € R" i €{0,1,...,n— 2}it holds that

1P (x; 1) —xI[3—[| Pe(x; i+1)—x|[5 > || P(x; i+1)—x|[3— | Pe(x; i+2)—x|3.

“The marginal gain in increasing the size of the support is

decreasing”
e Result 1. Under the SOM property, a sparse prox vector can be
found in [log, n] projections.
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Sets Satisfying the SOM Property

Result 2. The following sets satisfy the SOM property:

H Name of Set \ Set H
loo-ball B [0, o]
nonnegative a-box [0, a]"
_ R"
nonnegative orthant R
fg—ba“ B2[0, Oé]
a-simplex Ap(a) ={x:e"x=a,x >0}
full a-simplex Af(@)={x:eTx < a,x >0}
€1-ball Bl[O, Oé]
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Optimality Conditions and
Algorithms
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Back to the Sparse Optimization Problem

The sparse optimization model
(P) minf(x) +&(x)

where either g(x) = g1(x) = dpnc.(x) (model 1) or g(x) = g2(x) =
Alxllo + d5(x) (model 2)

[A] f:R" — R is lower bounded, continuously differentiable.
[B] B is a simple symmetric closed and convex set.

In some cases
[C] fec
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Road Map of Optimality Conditions

(P) min f(x) + g(x)

g(x) = g1(x) = dgnc,(x) (model 1) or g(x) = g2(x) = Al[x[lo+05(x)
(model 2)

o Support Optimality - “optimality” over the
support.

o L-Stationarity - extension of stationarity over
convex sets.

o CW-optimality

To simplify the presentation - we will assume in the setting of
model 1 (g = g1) that all relevant points are with full support.
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Support Optimality (SO)

@ Notation. Set of optimal solutions over a given support
S Cnl:

O(S) = argmin{f(u) : 1(u) C S,u € dom(g)}.

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Support Optimality (SO)

@ Notation. Set of optimal solutions over a given support
S Cnl:

O(S) = argmin{f(u) : 1(u) C S,u € dom(g)}.

A vector x € R" is called support optimal if

x € O(h(x)).

@ Theorem. Any optimal solution is support optimal (no
assumptions on B and f)
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Support Optimality (SO)

@ Notation. Set of optimal solutions over a given support
S Cnl:

O(S) = argmin{f(u) : 1(u) C S,u € dom(g)}.

A vector x € R" is called support optimal if

x € O(h(x)).

@ Theorem. Any optimal solution is support optimal (no
assumptions on B and f)

@ The condition can be verified if it is possible to minimize over
restrictions of B (without the sparsity terms):

muin{f(u) cueBu=0,u¢ h(x)}
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Algorithm: How to find an SO point

@ In model 1: Take S C [n],|S| = s and compute x € O(S).
@ In model 2: Take S C [n] and compute x € O(S).
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Algorithm: How to find an SO point

@ In model 1: Take S C [n],|S| = s and compute x € O(S).
@ In model 2: Take S C [n] and compute x € O(S).

o Exponential amount of SO points.

o Extremely weak condition.
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Road Map of Optimality Conditions

min  f(x)
st. xe GGNB,

(P)

o Support Optimality - “optimality” over the
support.

o [-Stationarity - extension of stationarity over
convex sets.

o CW-optimality
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Unfortunately, the variational form F/(x*,x — x*) > 0Vx € dom(g)
is not a necessary optimality condition (in general...)
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Unfortunately, the variational form F/(x*,x — x*) > 0Vx € dom(g)
is not a necessary optimality condition (in general...)

Let L > 0. A vector x € dom(g) is an L-stationary point of (P) if

1
X € proxs <x — LVf(x)) .
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L-Stationarity

Unfortunately, the variational form F/(x*,x — x*) > 0Vx € dom(g)
is not a necessary optimality condition (in general...)

Let L > 0. A vector x € dom(g) is an L-stationary point of (P) if

1
X € proxs <x — LVf(x)) .

Example (B = R")

B =R", and ¢ € ¥(|x*|). Then x* is an L-stationary point of (P)
if and only if?

< Lxt,| i i€ o(x")
£(x* &) :
Vif(x )‘{ =0 if i € h(x*)

“Beck, A. & Eldar, Y. C., SIOPT, 2013
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L-Stationarity in the Hierarchy

1 L-Stationarity = SO (if f is convex)
21t f e Ci;l, Optimality = L-stationarity VL > Ly

Condition depends on L, more restrictive as L gets smaller

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Proximal Gradient Method

Proximal Gradient Method

xktl ¢ proxs (xk — %Vf(xk))
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Proximal Gradient Method

Proximal Gradient Method

1
k+1 k k
X" € proxe (x LVf(x ))

e B =R" = lterative Hard Thresholding (IHT) method
(Blumensath and Davis '08, '09, '12).

o Makes sense only when f € C11.

@ Only guarantees convergence to an L-stationary point for
L>Ly.

Theorem. If L > L¢, then all limit points of the sequence generated
by the PG method with stepsize % are L-stationary points.
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Back to L-stationarity - Example

min {f(xl,xz) = 12x7 + 20x1xp + 32x5 - H(Xl;XQ)THO < 1}

L = 48.3961

Two SO vectors: (0,—9/16) - optimal solution. (—1/12,0) -
non-optimal, SL=196.

L =250 L =500
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Road Map of Optimality Conditions

min  f(x)
st. xe N B,

(P)
o Support Optimality - “optimality” over the
support.
o L-Stationarity - extension of stationarity over
convex sets.

o CW-optimality
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Partial CW optimality

Lots of notions of “CW-optimality”. We will concentrate on a
“partial notion” where we compare the current point to (possibly)
three points with similar support sets.

vi € O(h(x)\{ix}),
x b€ O\t U{il),
vi € O(h(x)U{j})

where

ix € argmin{pg(—V,f(x))} with C(x) = argmin pg(xx)
£eC(x) keh(x)

Jx € argmin{—pg(—V,f(x))}.
fEIo(X)

Amir Beck - TAU Optimization with Sparsity Inducing Terms



Partial CW-Optimality

@ Model 1: (P1) min{F(x)
e Model 2: (P1) min{F(x)

(x):xe BN G}

f
f(x) + A|[x|[[o : x € B}

Model 1: An SO point x* is a coordinate-wise optimal point if

F(x*) < F(v™)

Model 2: An SO point x* is a coordinate-wise optimal point if

F(x™) < min{F(v™), F(vee), F(vii)}

x*
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Partial CW-Optimality in the Hierarchy

Results: |
1 Optimality = partial CW-optimality

2 If fe CLlf’l, then partial CW-optimality = L-stationarity
VL > Lf

It can be shown that Partial CW-optimality actually implies
L-stationarity for a smaller value than L = L¢

Partial CW-optimality is more restrictive than L-stationarity J
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Partial CW-Optimality in the Hierarchy

Results: |
1 Optimality = partial CW-optimality

2 If fe CLlf’l, then partial CW-optimality = L-stationarity
VL > Lf

It can be shown that Partial CW-optimality actually implies
L-stationarity for a smaller value than L = L¢

Partial CW-optimality is more restrictive than L-stationarity J

A more restrictive condition: full-CW optimality. Loosely
speaking, the point is better than any other point with a slightly
different support set.
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Hierarchy - Summary

Full CW-Optimality

Y
Partial CW-Optimality

4

L ¢-Stationarity

U
Support Optimality
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Numerical Example

min {[[Ax — b|[3 +0.2|[x[lo : [|x[]» < 1}
XERlO

supports | support optimal | L-stationary | partial CW | optimal
1024 644 153 3 1
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CD Method for Finding a CW-Optimal Point

Partial Coordinate Descent Method for Model 2
@ Initialization: x° € R” - an SO point. k < 0;

@ set x = x¥ and compute i and jy.

© compute
Ve € O(h(x)\{ix}),
v € O(h(x)U {jx}),

v P e O ((h(x)\{ix}) U {ix}) -

vi"* v 1} (unless no

Q set x*™1 € argmin {F(u) : u € {v,,v§
improvement), k < k + 1, and go to step 2.

@ Similar method exists for model 1.
@ A full coordinate descent method can be defined that finds

full CW-optimal points.
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Hierarchy of Algorithms (Best to Worst)

e Full CD
e Partial CD

e Proximal Gradient
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Numerical Example - Chances to Obtain the Optimum

min ||Ax — b||3 + 0.5|x]|o.

Monte Carlo Simulations (100 randomized initializations)

m n s PG Partial CD
32 320 2 13% | 100%
64 640 2 5% 100%
96 960 2 42% | 100%
128 | 1280 | 2 94% | 100%
32 320 4 1% 70%
64 640 4 1% 99%
96 960 4 0% 100%
128 | 1280 | 4 0% 100%
32 320 6 0% 98%
64 640 6 0% 100%
128 | 1280 | 6 0% 100%
32 320 10 | 0% 0%
64 640 10 | 0% 90%
128 | 1280 | 10 | 0% 100%
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