Mixed Integer Second Order Cone Optimization (MISOCO): Conic Cuts, Warm Start, and Rounding

Tamás Terlaky, Mohammad Shahabsafa, Julio C. Góez, Sertalp Cay, Imre Pólik

OPDGTP, Tel Aviv, Israel

April 2018

Outline

Disjunctive Conic Cuts (DCCs) for MISOCO

- MISOCO
- DCCs
- MISOCO Solution Approaches

2 Portfolio Optimization Model

Pathological Cases for Disjunctions

4 Rounding Procedure and Warm Start

- Jordan Frames, Primal and Dual Rounding
- Warm Start

MISOCO OCCs MISOCO Solution Approaches

Outline

1 Disjunctive Conic Cuts (DCCs) for MISOCO

- MISOCO
- $\bullet~\mathrm{DCCs}$
- MISOCO Solution Approaches

Portfolio Optimization Model

B Pathological Cases for Disjunctions

Rounding Procedure and Warm Start

- Jordan Frames, Primal and Dual Rounding
- Warm Start

Conic Optimization

• A general conic optimization (CO) problem is defined as

$$\begin{array}{ll} \min & \langle c, x \rangle \\ \mathrm{s.t.} & \langle a^i, x \rangle = b \quad \forall i \\ & x \in \mathcal{K} \end{array}$$

 ${\cal K}$ denotes a closed pointed convex cone

 $\langle c, x \rangle$ denotes the inner product of vectors c and x.

- $\mathcal{K} = \mathbb{R}^n_+$: Linear Optimization (LO)
- $\mathcal{K} = \mathcal{L}^{n_1} \times \mathcal{L}^{n_2} \times \cdots \times \mathcal{L}^{n_m}$: Second Order Cone Optimization (SOCO)
- $\mathcal{K} = S_+^n$: Semidefinite Optimization (SDO) In this case c, x, and a^i are symmetric matrices, and $\langle c, x \rangle = \text{Tr}(cx)$.

4/35

MISOCO OCCs MISOCO Solution Approaches

MISOCO DCCs MISOCO Solution Approaches

The MISOCO problem

• Mixed Integer Second-Order Conic Optimization (MISOCO) problems

min
$$c^T x$$

s.t. $Ax = b$
 $x \in \mathcal{L}$
 $x \in \mathbb{Z}^d \times \mathbb{R}^{n+1-d}$

in which \mathcal{L} is the Cartesian product of second-order cones.

For simplicity, we assume that \mathcal{L} is a single second-order cone.

• A Second-Order Cone (SOC) is defined as follows

 $\mathcal{L}^{n+1} = \{ x = (x_0, x_1, ..., x_n) | \ \| (x_1, x_2, ..., x_n) \|_2 \le x_0 \}.$

- MISOCO problems can be solved using a branch and cut methodology. We can add cuts to strengthen the formulation and reduce the solution time.
- Nonlinear cuts for MISOCO problems have recently received attention

MISOCO DCCs MISOCO Solution Approaches

Disjunction on a convex set

• Let $\mathcal{X} \in \mathbb{R}^n, n > 1$ be a full dimensional closed convex set. Consider two half-spaces

$$\mathcal{A} = \{ x \in \mathbb{R}^n : a^T x \ge \alpha \}$$
$$\mathcal{B} = \{ x \in \mathbb{R}^n : b^T x \le \beta \},$$

where $a, b \in \mathbb{R}^n$ and (a^T, α) , (b^T, β) are not scalar multiple of each other.

• Assumptions:

- The intersection $\mathcal{A} \cap \mathcal{B} \cap \mathcal{X}$ is empty.
- The intersections $\mathcal{X} \cap \mathcal{A}^{=}$ and $\mathcal{X} \cap \mathcal{B}^{=}$ are nonempty.

• Disjunctive Conic Cut (DCC):

A closed convex cone $\mathcal{K} \in \mathbb{R}^n$ with dim $(\mathcal{K}) > 1$ is called a *DCC* for \mathcal{X} and the disjunction $\mathcal{A} \cup \mathcal{B}$ if

$$\operatorname{conv}(\mathcal{X} \cap (\mathcal{A} \cup \mathcal{B}) = \mathcal{X} \cap \mathcal{K}.$$

• DCCs always exist for MISOCO problems (Belotti et al.).

MISOCO DCCs MISOCO Solution Approaches

Illustration of a disjunctive conic cut for a MISOCO problem

• Illustration of DCC for a MISOCO problem

The figure is from Góez

MISOCO DCCs MISOCO Solution Approaches

Uni-parametric family of quadrics

Definition 1

Let $P \in \mathbb{R}^{\ell \times \ell}$, $p, w \in \mathbb{R}^{\ell}$ and $\rho \in \mathbb{R}$, then the quadric \mathcal{Q} is the set defined as

$$\mathcal{Q} = \{ w \in \mathbb{R}^{\ell} \mid w^{\top} P w + 2p^{\top} w + \rho \leq 0 \}.$$

Theorem 2

Let (P, p, ρ) be a quadric and consider two hyperplanes

$$\mathcal{A}^{=} = \{ z \mid a^{\top} z = \alpha \} \text{ and } \mathcal{B}^{=} = \{ z \mid d^{\top} z = \beta \}.$$

The family of quadrics $(P(\tau), p(\tau), \rho(\tau))$ parameterized by $\tau \in \mathbb{R}$ b having the same intersection with $\mathcal{A}^{=}$ and $\mathcal{B}^{=}$ as the quadric (P, p, ρ) is given by

$$P(\tau) = P + \tau \frac{ad^T + da^T}{2}$$
$$p(\tau) = p - \tau \frac{\beta a + \alpha d}{2}$$
$$\rho(\tau) = \rho + \tau \alpha \beta.$$

8/35

MISOCO DCCs MISOCO Solution Approaches

MISOCO Solution Approaches

• Linear Approximation of SOCOs ;

(GaTech: Nemhauser, Savelsberg, ...; Lehigh: Ralphs, Bulut)

++ Allows to use advanced MILO methodology

- Inferior for MISOCO with higher dimensional cones

• Use IPMS fof MISOCO with B&DCCs

(Lehigh and descendants)

++ New powerful cuts, power of IPMs for SOCO

- Novel methodology Conic-MILO methodology needed

Outline

Disjunctive Conic Cuts (DCCs) for MISOCC

- MISOCO
- DCCs
- MISOCO Solution Approaches

2 Portfolio Optimization Model

- B Pathological Cases for Disjunctions
- a Rounding Procedure and Warm Start
 - Jordan Frames, Primal and Dual Rounding
 - Warm Start

Mean variance portfolio optimization model

Round Lot constraints

minimize: $x^{\top} \Sigma x$ subject to: $\mu_0 x_0 + \mu^{\top} x \ge r$ $x_0 + e^{\top} x = 1$ $x_i = a_i z_i \qquad i = 1, \dots, n$ $0 \le x_i \le 1$ $z \in \mathbb{Z}_+^n$, (1)

- Denote $\hat{\Sigma} = \operatorname{diag}(a)^{\top} \Sigma \operatorname{diag}(a)$.
- Denote $\hat{\mu} = -\text{diag}(\mu)a + \mu_0 a$, and $\hat{r} = \mu_0 r$

 $\bullet\,$ Send quadratic objective function to the constraint and define new variable t

Comparison of solution approaches

• For round lot problems, we compared BB, BCC-I and MOSEK

	Ν	Number of	nodes	Solution Time					
Data	BB	BCC-I	MOSEK	BB	BCC-I	MOSEK			
AA	47	15	50	2.254	1.074	0.418			
RD0	135	119	73	4.822	3.021	0.196			
RD1	83	71	80	3.370	7.353	0.526			
RD2	223	127	206	4.336	8.776	0.393			
RD3	27	29	143	0.619	1.146	0.444			
RD4	6	3	4	0.223	0.205	0.077			
RD5	35	36	168	0.668	2.363	0.480			
RD6	32	29	51	0.440	1.020	0.217			
RD7	17	9	26	0.222	0.472	0.139			
RD8	167	183	219	5.460	11.171	0.576			
RD9	12	3	4	0.348	0.096	0.076			

Comparison of number of nodes and solution time of solution approaches for round-lot AAPs.

Outline

Disjunctive Conic Cuts (DCCs) for MISOCC

- MISOCO
- DCCs
- MISOCO Solution Approaches

Portfolio Optimization Model

3 Pathological Cases for Disjunctions

Rounding Procedure and Warm Start

- Jordan Frames, Primal and Dual Rounding
- Warm Start

Pathological Disjunctions

See Julio Góez's presentation!

Jordan Frames, Primal and Dual Rounding Warm Start

Outline

Disjunctive Conic Cuts (DCCs) for MISOCC

- MISOCO
- DCCs
- MISOCO Solution Approaches

Portfolio Optimization Model

B Pathological Cases for Disjunctions

4 Rounding Procedure and Warm Start

- Jordan Frames, Primal and Dual Rounding
- Warm Start

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}$

Rounding - Jordan Frames

Rounding

Jordan frames and values

Figure: Jordan frames in a cone

Jordan Frame LO

Jordan Frames, Primal and Dual Rounding Warm Start

Let $x^i \in L_{n_i}$, then the the eigenvalues and Jordan vectors are given as:

$$\begin{split} \lambda_i^+ &= x_1^i + \|x_{2:n_i}^i\| \qquad \quad \lambda_i^- &= x_1^i - \|x_{2:n_i}^i\| \\ f_i^+ &= \frac{1}{2} \left(\begin{array}{c} 1 \\ \frac{x_{2:n_i}^i}{\|x_{2:n_i}^i\|} \end{array} \right) \qquad \qquad f_i^- &= \frac{1}{2} \left(\begin{array}{c} 1 \\ -\frac{x_{2:n_i}^i}{\|x_{2:n_i}^i\|} \end{array} \right) \end{split}$$

and we have:

 $x^i = \lambda_i^+ f_i^+ + \lambda_i^- f_i^-.$

Jordan Frame LO

Rounding

Notation

Denote
$$F = \begin{bmatrix} F^+ & F^- \end{bmatrix}$$
 where

$$F^+ = \begin{bmatrix} f_1^+ & 0 & \dots & 0 \\ 0 & f_2^+ & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f_k^+ \end{bmatrix}, \qquad F^- = \begin{bmatrix} f_1^- & 0 & \dots & 0 \\ 0 & f_2^- & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f_k^- \end{bmatrix}$$
Also, $\lambda = \begin{bmatrix} \lambda^+ \\ \lambda^- \end{bmatrix}$ where
 $\lambda^+ = \begin{bmatrix} \lambda_1^+ \\ \vdots \\ \lambda_k^+ \end{bmatrix}, \qquad \lambda^- = \begin{bmatrix} \lambda_1^- \\ \vdots \\ \lambda_k^- \end{bmatrix}.$
Let $x = F_P \lambda$ and $z = F_D \kappa$ are Jordan frames and values for prim

Let $x = F_P \lambda$ and $z = F_D \kappa$ are Jordan frames and values for primal and dual problems, respectively.

Tamás Terlaky, Mohammad Shahabsafa, Julio C. Góez, MISOCO: Conic Cuts, Warm Start, and Rounding

Jordan Frames, Primal and Dual Rounding Warm Start

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}$

The Rounding LO Problem

Rounding

Rounding problems

Idea

Fix Jordan frames and optimize over Jordan values λ and κ

Rounding on fixed Jordan frames

minimize: $c^{\top}F_{P}\lambda$ subject to: $AF_{P}\lambda = b$ $\lambda \geq 0$

maximize:
$$b^{\top}y$$

subject to: $A^{\top}y + F_D\kappa = c$
 $\kappa \ge 0$

20/35

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Illustration: Primal and Dual Rounding

Rounding Illustrations

Figure: Primal rounding

Figure: Dual of dual rounding

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}$

Duality in Rounding Schemes

Rounding

Relations between problems

Implications: Weak duality, optimality, infeasibility

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Primal Penalty and Rounding problems

minimize:
$$c^{\top} x$$

subject to: $Ax = b$,
 $x = F^* \lambda$,
 $x_1^i \ge 0$, $i \in 1, \dots, k$
 $x_j \in \mathbb{Z}$, $j \in J \subseteq N$
 $\lambda \in \mathbb{R}^{2k}_+$.
(MIPR)

subject to:
$$Ax = b$$
,
 $x_j = x_j^* \quad \forall j \in J \subseteq N$,
 $x \in \mathcal{K}$.
(FR)

minimize:
$$\varphi \frac{c^{\top}}{\|c\|} x + (1 - \varphi) \sum_{\ell} \left\| \hat{F}_{\ell}^{\top} x \right\|$$

subject to: $Ax = b$,
 $x \in \mathcal{K}$, (PEN)

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Primal Rounding Algorithm

Algorithm 1 The primal rounding heuristic for MISOCO

```
Input: A MISOCO instance (1).
    maximum number of iterations t
Output: A feasible solution \tilde{x} to MISOCO, if found
 1: Set \tilde{c} = \infty, \varphi = 0.5
 2: Solve the continuous relaxation of MISOCO, obtain its solution x^s
 3: Add F^s to the Jordan frame pool
 4: while i < t do
 5:
        Solve (MIPR), obtain its solution x^* if exists
 6:
        if (MIPR) is feasible then
 7:
            Add F^* to the Jordan frame pool
 8:
            Solve (FR) using x^*, obtain its solution x^r
 9:
            Add F^r to the Jordan frame pool
            if c^{\top} x^r \leq \tilde{c} then
10:
                \tilde{c} = c^{\top} x^r, \ \tilde{x} = x^r
11:
            \varphi = \frac{1+\varphi}{2}
12:
13:
        else
14:
            \varphi = \frac{\varphi}{2}
15:
        Solve the penalty problem (PEN), obtain its solution x^p
16:
        Add F^p to the Jordan frame pool
17:
        i = i + 1
18: return \tilde{x}
```

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Flow of Primal Rounding Algorithm

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Dual Penalty and Rounding problems

minimize:
$$c^{\top}x$$

subject to: $Ax = b$,
 $F^{\top}x \ge 0$,
 $x_1^i \ge 0, \quad i \in 1, \dots, k$
 $x_j \in \mathbb{Z}, \quad j \in J \subseteq N.$

26/35

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}$

Dual Rounding Algorithm

Algorithm 2 The dual rounding heuristic for MISOCO

```
Input: A MISOCO instance (1),
    maximum number of iterations t
Output: A feasible solution \tilde{x} to MISOCO if found, a global lower bound c_L
 1: Set \tilde{c} = \infty
 2: Solve the continuous relaxation of MISOCO, obtain its solution x^s, set c_I = c^{\top} x^s
 3: Add F^s to the Jordan frame pool
 4: while i < t do
        Solve (MIDR), obtain solution x^*
 5:
 6:
        Add F^* to the Jordan frame pool
 7:
        if c^{\top}x^* > c_L then
 8.
            c_L = c^\top x^*
        if x^* \in \mathcal{K} then
 9:
            \tilde{x} = x^*, \ \tilde{c} = c^\top x^*
10:
11:
            Terminate with an optimal solution to MISOCO x^*.
12.
        else
13:
            Solve (FR) using x^*, obtain its solution x^r if exists
14:
            if (FR) is feasible then
                 Add F^r to the Jordan frame pool
15:
                 if c^{\top} x^r < \tilde{c} then
16:
                    \tilde{c} = c^{\top} x^r, \ \tilde{x} = x^r
17:
18:
        if c_L = \tilde{c} then
            Terminate with an optimal solution to MISOCO \tilde{x}.
19:
20:
        i = i + 1
21: return \tilde{x}, c_L
```

Jordan Frames, Primal and Dual Rounding Warm Start

Flow of Dual Rounding Algorithm

Jordan Frames, Primal and Dual Rounding Warm Start $% \mathcal{T}_{\mathrm{S}}$

Test Problem Set

		Var	iables	Inte	egers	Co	nes	Cone	e sizes
Pr. Types	#P	Min	Max	Min	Max	Min	Max	Min	Max
ck	90	611	3271	25	75	10	20	27	77
classical	399	146	356	20	50	1	1	21	51
estein	9	125	246	9	18	9	18	3	3
pp	3	72	702	10	100	10	100	3	3
robust	400	198	468	21	51	2	2	22	52
shortfall	400	194	464	21	51	2	2	21	51
sssd	14	273	785	72	264	12	24	3	3
$\operatorname{turbine}$	7	121	512	11	56	25	119	3	3
QPLIB	6	3033	13538	20	400	1	1	802	4502
Summary	1328	72	13538	9	400	1	119	3	4502

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Results Primal and Dual Rounding

						# It	ers						
Heur	P.Type	1	2	3	4	5	6	7	8	9	10	Failed	Total
Р		647	628	28	2	3			- 1		1	18	1328
	ck	90											90
	classical	5	393	1									399
	estein	9											9
	pp		2	1									3
	robust	136	231	24	2	3			1		1	2	400
	shortfall	400											400
	sssd											14	14
	turbine	2	2	2								1	7
	QPLIB	5										1	6
D		445	146	73	80	50	57	52	46	50	44	285	1328
	ck	10	15	13	8	8	5	6	9	3		13	90
	classical	140	42	19	30	15	19	16	9	18	14	77	399
	estein	9											9
	pp		2					1					3
	robust	120	40	24	33	16	16	19	20	17	13	82	400
	shortfall	142	45	17	8	11	17	10	8	12	17	113	400
	sssd	14											14
	turbine	4	2		1								7
	QPLIB	6											6

Jordan Frames, Primal and Dual Rounding $\operatorname{Warm}\,\operatorname{Start}\,$

Results Primal-Dual adn Hybrid Rounding

PD		647	230	8	68		36	2	53	1	23	260	1328
	ck	90											90
	classical	5	138		42		18		30		15	151	399
	estein	9											9
	pp			3									3
	robust	136	73	5	25		18	2	23	1	8	109	400
	shortfall	400											400
	sssd		14										14
	turbine	2	4		1								7
	QPLIB	5	1										6
$_{\mathrm{HS}}$		647	629	27	16	2	2			2		3	1328
HS	ck	647 90	629	27	16	2	2			2		3	1328 90
HS	ck classical		629 393	27 1	16	2	2			2		3	1328 90 399
HS	ck classical estein	647 90 5 9	629 393	27 1	16	2	2			2		3	1328 90 399 9
HS	ck classical estein pp	647 90 5 9	629 393 3	27 1	16	2	2			2		3	1328 90 399 9 3
HS	ck classical estein pp robust	647 90 5 9 136	629 393 3 231	27 1 24	16 2	2	2			2		3	1328 90 399 9 3 400
HS	ck classical estein pp robust shortfall	647 90 5 9 136 400	629 393 3 231	27 1 24	16 2	2	2			2		3	1328 90 399 9 3 400 400
HS	ck classical estein pp robust shortfall sssd	647 90 5 9 136 400	629 393 3 231	27 1 24	16 2 13	2	2			2		3	$ \begin{array}{r} 1328 \\ 90 \\ 399 \\ 9 \\ 3 \\ 400 \\ 400 \\ 14 \end{array} $
HS	ck classical estein pp robust shortfall sssd turbine	647 90 5 9 136 400 2	629 393 3 231 2	27 1 24 2	16 2 13	2	2			2		3	$ \begin{array}{r} 1328 \\ 90 \\ 399 \\ 9 \\ 3 \\ 400 \\ 400 \\ 14 \\ 7 \end{array} $

Jordan Frames, Primal and Dual Rounding Warm Start

Warm Start Methodology

Warm-start methodology

Branching

- 1. Solve continuous relaxation and obtain solution x^* .
- 2. Obtain optimal Jordan frames, F_P and F_D .
- 3. Choose a variable to branch and add the corresponding bound constraint.
- 4. Solve dual rounding problem.
 - ▶ If it is unbounded, then primal SOCO is infeasible.
- 5. Solve primal rounding problem.
 - ► If objectives are equal, then the solution is optimal.
- 6. If both feasible, take the convex combination of an IPM iteration and the rounding solutions.
- 7. Warm-start self-dual embedding IPM from this initial point.

Jordan Frames, Primal and Dual Rounding Warm Start

Numerical Experiences – Proof of the pie

Numerical experiments

Comparison to cold-start

Tamás Terlaky, Mohammad Shahabsafa, Julio C. Góez,

MISOCO: Conic Cuts, Warm Start, and Rounding

33/35

Conclusion

- We presented Disjunctive Conic Cuts (DCCs) for MISOCO.
- We demonstrated the power of DCCs.
- The identification of the pathological cases is important for the efficient implementation of DCCs (see Góez).
- Utilized Jordan frames to developed Primal, Dual, and Prima-Dual Hybrid rounding heuristics for MISOCOs.
- Developed an efficient warm-start method for SOCO.
- Both the rounding and warm-start methodologies are proved to be efficient.

Jordan Frames, Primal and Dual Rounding $\mathbf{Warm}\ \mathbf{Start}$

Thanks

Any questions?