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Conic Optimization

o A general conic optimization (CO) problem is defined as
min (¢, z)
st.  (ab,z)=b Vi
zeK

K denotes a closed pointed convex cone

(¢, z) denotes the inner product of vectors ¢ and x.

- K =RY: Linear Optimization (LO)
- K=L"1 X L"2 X - x L": Second Order Cone Optimization (SOCO)
- K = 8}: Semidefinite Optimization (SDO)

In this case ¢, x, and a® are symmetric matrices, and (c, ) = Tr(cz).




Disjunctive Conic Cuts (DCCs) for MISOCO

Solution Approaches

The MISOCO problem

o Mixed Integer Second-Order Conic Optimization (MISOCO)

problems
min Lz
st. Ax=0b
€L

z € Z% x Rnti=d
in which L is the Cartesian product of second-order cones.

For simplicity, we assume that £ is a single second-order cone.

o A Second-Order Cone (SOC) is defined as follows

L = {z = (x0, 21, ., zn)| [|(Z1, 22, ey 20) |2 < 20}

e MISOCO problems can be solved using a branch and cut methodology.

We can add cuts to strengthen the formulation and reduce the solution time.

e Nonlinear cuts for MISOCO problems have recently received attention
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Disjunctive Conic Cuts (DCCs) for MISOCO MISOCO

Solution Approaches

Disjunction on a convex set

o Let X € R™,n > 1 be a full dimensional closed convex set.
Consider two half-spaces

A={zeR":a"z>a}
B={zeR":bTx < g},

where a,b € R and (aT,a), (b7, B) are not scalar multiple of each other.

e Assumptions:

e The intersection AN BN X is empty.
o The intersections X N A~ and X N B~ are nonempty.

e Disjunctive Conic Cut (DCC):
A closed convex cone K € R™ with dim(K) > 1 is called a DCC
for X and the disjunction AU B if

conv(XN(AUB)=XNK.

e DCCs always exist for MISOCO problems (Belotti et al.).
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junctive Conic Cuts (DCCs) for MISOCO

Solution Approache

[lustration of a disjunctive conic cut for a MISOCO problem

(a) A=, B=, and X (b) The cone yielding conv(X N (AU B))
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SOCO Solution Approaches

Uni-parametric family of quadrics

Definition 1
Let P € R4 p w € RY and p € R, then the quadric Q is the set defined as

O={weR|w Pw+2p"w+p<0}.

Theorem 2
Let (P, p, p) be a quadric and consider two hyperplanes
A= ={z|a"z=a} and B= ={z|d"z = 8}.

The family of quadrics (P(7),p(T), p(T)) parameterized by 7 € R b having the
same intersection with A= and B~ as the quadric (P,p, p) is given by

T 7
P(r) = P+‘rad + da

Ba + ad
pr)=p-—T—0—
p(T) =p+Tap.
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MISOCO Solution Approaches

o Linear Approximation of SOCOs ;
(GaTech: Nemhauser, Savelsberg, ...; Lehigh: Ralphs, Bulut)
++ Allows to use advanced MILO methodology
— Inferior for MISOCO with higher dimensional cones

o Use IPMS fof MISOCO with B&DCCs
(Lehigh and descendants)
++ New powerful cuts, power of IPMs for SOCO
— Novel methodology Conic-MILO methodology needed
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Portfolio Optimization Model

Mean variance portfolio optimization model

Round Lot constraints
minimize: z ' Sz
subject to: pozo+p'z > T
xo + elr = 1 (1)
T, = a;z; 1=1,...,n
0<z < 1 i=1,...,n
z € s

o Denote 3 = diag(a) T Ldiag(a).
e Denote ji = —diag(p)a + poa, and 7 = pg — r

Roundin,



Portfolio Optimization Model

e Send quadratic objective function to the constraint and define new variable t

Revised RL-MVPO
minimize: t
subject to: Atz < 7
T
a'z < 1
0 < a2 < 1 (RL-MVPO)
2Tz < t
N
z € Z+

Rounding




Portfolio Optimization Model

Comparison of solution approaches

e For round lot problems, we compared BB, BCC-I and MOSEK

Number of nodes

Solution Time

Data BB BCC-I MOSEK BB BCC-I MOSEK
AA 47 15 50 2.254 1.074 0.418
RDO 135 119 73 4.822 3.021 0.196
RD1 83 71 80 3.370 7.353 0.526
RD2 223 127 206 4.336 8.776 0.393
RD3 27 29 143 0.619 1.146 0.444
RD4 6 3 4 0.223 0.205 0.077
RD5 35 36 168 0.668 2.363 0.480
RD6 32 29 51 0.440 1.020 0.217
RD7 17 9 26 0.222 0.472 0.139
RD8 167 183 219 5.460 11.171 0.576
RD9 12 3 4 0.348 0.096 0.076

Comparison of number of nodes and solution time of solution approaches for round-lot AAPs.
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Patholc for Disjunctions

Pathological Disjunctions

See Julio Géez’s presentation!
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Jordan Frames, Primal and Dual Rounding
Warm Start

Rounding Procedure and Warm Star

Rounding - Jordan Frames

Rounding

Jordan frames and values

Figure: Jordan frames in a cone
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Jordan Frames, Primal and Dual Rounding

Rounding Prc dure and Warm Star

Jordan Frame LO

Let 2 € Ly, then the the eigenvalues and Jordan vectors are given as:

Af =i+ |lah, | = 2] — |22,
1 1
1 . _ 1 i
= ol fi=g | - "ani
25,1 [ET

and we have: ‘
et = XA

and Roun



Jordan Frames, Primal and Dual Rounding

Warm
Rounding Procedure and Warm Start

Jordan Frame LO

Rounding

Notation

Denote F = [F+ F*} where

ftoo 0 0 0
0 £ 0 0 f 0
Ft = 2 |, F= 2
0 0 fi- 0 0 fo
+
Also, A = [)\7} where
A
A A
A=, A=
M M

Let x = FpA and z = Fpk are Jordan frames and values for primal
and dual problems, respectively.
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Rounding Procedure and Warm Start

The Rounding LLO Problem

Rounding

Rounding problems

Fix Jordan frames and optimize over Jordan values \ and s

Rounding on fixed Jordan frames

minimize: cTFp)
subject to: AFpA = b
A >0
maximize: bTy
subject to: ATy +Fprx = ¢
k > 0
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Jordan Frames, Primal and Dual Rounding
Warm Start

[lustration: Primal and Dual Rounding

Rounding

Illustrations

Figure: Primal rounding Figure: Dual of dual rounding
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Jordan mes, Primal and Dual Rounding
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Rounding Procedure and Warm

Duality in Rounding Schemes

Rounding

Relations between problems

min (cTFp)/\ max by
st. (AFp)A = b, (PR) 4! st. FAATy+u = Flc, (D-PR)
A > 0 u > 0
[m] x [2k] [2k] X [m + 2k]
(for x = Fpx) [N Ul
min  cx e max by
st. Ax = b, (P-SOCO) = st. Aly+z = ¢ (D-SOCO)
x € K z € K
[m] x [n] [n] x [m+ n]
Im (forz:FDh)U‘
min  c'x - max bT,V
st.  Ax = b, (D-DR) BE st. Aly+Fpr = g (DR)
FIx > o vz O
[m + 2] x [n] [n] X [m + 2K]

Implications: Weak duality, optimality, infeasibility

and Rounding



Rounding Procedure and Warm Start

Primal Penalty and Rounding problems

minimize: ¢’z

subject to: Axr = b,
& = F*A,
7 >0 iel,....k
z, €2, j€JCN
A € R

minimize: ¢’z

subject to: Axr = b,
zj =z} Vje.JCN,
x e K.

minimize: \p”—CTHI +(1—¢) Z FZT"EH
¢
subject to: Az = b,
z ek,
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Jordan Frames, Primal and Dual Rounding

Rounding Procedure and Warm Start

Primal Rounding Algorithm

Algorithm 1 The primal rounding heuristic for MISOCO

Input: A MISOCO instance (1),
maximum number of iterations ¢
Output: A feasible solution & to MISOCO, if found

1: Set e =00, @ = 0.5

2: Solve the continuous relaxation of MISOCO, obtain its solution z
3: Add F'® to the Jordan frame pool

4: while i <t do

B Solve (MIPR), obtain its solution x* if exists

6: if (MIPR) is feasible then

e Add F* to the Jordan frame pool

8: Solve (FR) using z*, obtain its solution z”

9: Add FT" to the Jordan frame pool
10: if ¢T2” < ¢ then
14! é=cla", z=a"
12: =112
1138 else B
14: p=1%
1:5% Solve the penalty problem (PEN), obtain its solution x?
16: Add FP to the Jordan frame pool

1 f=dsk 1
18: return =

Mohamm Julio



Jordan Frames, Primal and Dual Rounding
Warm S
Rounding Procedu
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Flow of Primal Rounding Algorithm

Obtain Jordan
Frame

Solve (PEN)

Solve SOCO

Criteria
reached? Solve (MIPR)

Obtain Jordan
Frame

Obtain Jordan
Frame

Feasible?

Terminate

Obtain Jordan
Frame

Solve (FR)




Jordan Frames, Primal and Dual Rounding

Rounding Procedure and Warm Start

Dual Penalty and Rounding problems

minimize: ¢ x

subject to: Az = b,
FTz >0, (MIDR)
zi >0, iel,... k
wy i€ Ly e JCTH.
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Jordan Frames, Primal and Dual Rounding

Rounding Prc lure and Warm Start

Dual Rounding Algorithm

Algorithm 2 The dual rounding heuristic for MISOCO

Input: A MISOCO instance (1),
maximum number of iterations ¢
Output: A feasible solution  to MISOCO if found, a global lower bound ¢y,
: Set ¢ =00

2: Solve the continuous relaxation of MISOCO, obtain its solution z*, set ¢f, = ¢! 25

1
2
3: Add F'* to the Jordan frame pool
4: while : <t do

5: Solve (MIDR), obtain solution z*

6: Add F* to the Jordan frame pool
7. if ¢/ 2* > cf, then
8: & = el z*

if =* € K then
f=a*é=c'z
Terminate with an optimal solution to MISOCO z*.
else

*

Solve (FR) using z*, obtain its solution =" if exists
if (FR) is feasible then

Add F" to the Jordan frame pool

if ¢Ta” < then

é=cla", i=a"
18: if ¢;, = ¢ then
19: Terminate with an optimal solution to MISOCO z.

1=1+41
21: return z,cy,




Jordan Frames, Primal and Dual Rounding
Warm Start

Rounding Procedu d rm Start

Flow of Dual Rounding Algorithm

Feasible? Solve (FR)

No

Criteria
reached?

Conic
feasible?

Solve SOCO

Obtain Jordan
Frame

Yes Yes

Terminate Optimal
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Rounding Procedure and Warm Start

Test Problem Set

Variables Integers Cones Cone sizes
Pr. Types #P Min Max Min Max Min Max Min Max
ck 90 611 3271 25 75 10 20 27 T
classical 399 146 356 20 50 1 1 21 51
estein 9 125 246 9 18 9 18 3 3
pp 3 72 702 10 100 10 100 3 3
robust 400 198 468 21 51 2 2 22 52
shortfall 400 194 464 21 11 2 2 21 51
sssd 14 273 785 72 264 12 24 3 3
turbine T 121 512 11 56 25 119 3 3
QPLIB 6 3033 13538 20 400 1 1 802 4502
Summary 1328 72 13538 9 400 1 119 3 4502
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Jordan Frames, Primal and Dual Rounding

Rounding Procedu 1d Warm Start

Results Primal and Dual Rounding

# lters
Heur  P.Type 1 2 3 4 5 6 7 8 9 10 Failed Total
P 647 628 28 2 3 1 1 18 1328
ck 90 90
classical 5 303 1 399
estein 9 9
PP 2 1 3
robust 136 231 24 2 3 1 1 2 400
shortfall 400 400
sssd 14 14
turbine 2 2 2 1 7
QPLIB 5 1 6
D 445 146 73 80 50 57 52 46 50 44 285 1328
ck 0 15 13 8 8 5 6 9 3 13 90
classical 140 42 19 30 15 19 16 9 18 14 77 399
estein 9 9
PP 2 1 3
robust 120 40 24 33 16 16 19 20 17 13 82 100
shortfall 142 45 17 8 11 17 10 8 12 17 113 400
sssd 14 14
turbine 1 2 1 7

QPLIB 6 6




Results Primal-Dual adn Hybrid Rounding

Rounding Procedu

> and Warm

rt

Jordan
Warn

mes, Primal and Dual Rounding

PD 647 230 8 68 36 2 53 1 23 260 1328
ck 90 90
classical 5 138 42 18 30 15 151 399
estein 9 9
pp 3 3
robust 136 73 5 25 18 2 23 il 8 109 400

400 400
sssd 14 14
turbine 2 4 1 7
QPLIB 5 1 6

HS 647 629 27 16 2 2 3 1328
ck 90 90
classical 5 393 1 399
estein 9 9
PP 3 3
robust 136 231 24 2 2 3 400
shortfall 400 400
sssd 13 1 14
turbine 2 2 2 1 7
QPLIB 5 1 6

and Roundi



Jordan Frames, Primal and Dual Rounding
Warm Start

Rounding Procedure and Warm Start

Warm Start Methodology

Warm-start methodology
Branching

1. Solve continuous relaxation and obtain solution x*.
2. Obtain optimal Jordan frames, Fp and Fp.
3. Choose a variable to branch and add the corresponding bound
constraint.
4. Solve dual rounding problem.
> |f it is unbounded, then primal SOCO is infeasible.
5. Solve primal rounding problem.
» If objectives are equal, then the solution is optimal.
6. If both feasible, take the convex combination of an IPM
iteration and the rounding solutions.
7. Warm-start self-dual embedding IPM from this initial point.
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Rounding Procedure and Warm Start

Numerical Experiences — Proof of the pie

Numerical experiments

Comparison to cold-start
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Conclusion

e We presented Disjunctive Conic Cuts (DCCs) for MISOCO.
o We demonstrated the power of DCCs.

o The identification of the pathological cases is important for the efficient
implementation of DCCs (see Géez).

o Utilized Jordan frames to developed Primal, Dual, and Prima-Dual Hybrid
rounding heuristics for MISOCOs.

e Developed an efficient warm-start method for SOCO.

e Both the rounding and warm-start methodologies are proved to be efficient.
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Jordan Frames, Primal and Dual Rounding
Warm Start

Rounding Procedure and Warm Start

Thanks

Any questions?
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