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Bi-Level Optimization Problems
Consider the following convex inner problem

() min { ()= () + g (x)},
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Bi-Level Optimization Problems
Consider the following convex inner problem

(P)  min {iw (x) == (1) + g (x)}
where

@ f:R” — Ris convex and continuously differentiable.
@ Vfis Lipschitz continuous with constant L;.

@ g:R" — (—o0,+00] is proper, convex and lower semicontinuous.
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Bi-Level Optimization Problems
Consider the following convex inner problem
(P)  min {e (x) = F(x) + g (x)}
XER!
where

@ f:R” — Ris convex and continuously differentiable.
@ Vfis Lipschitz continuous with constant L;.

@ g:R" — (—o0,+00] is proper, convex and lower semicontinuous.

We denote by X* the optimal solutions set.
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Bi-Level Optimization Problems
Consider the following convex inner problem

() min { ()= () + g (x)},

where
@ f:R” — Ris convex and continuously differentiable.
@ Vfis Lipschitz continuous with constant L;.
@ g:R" — (—o0,+00] is proper, convex and lower semicontinuous.

We denote by X* the optimal solutions set.

In this talk we are interested in the following outer problem

min - w (x)
st xe X,

(MNP)
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Bi-Level Optimization Problems
Consider the following convex inner problem
(P)  min {o(x) :=f(x) +g(x)},
XER!
where

@ f:R” — Ris convex and continuously differentiable.
@ Vfis Lipschitz continuous with constant L;.

@ g:R" — (—o0,+00] is proper, convex and lower semicontinuous.

We denote by X* the optimal solutions set.

In this talk we are interested in the following outer problem

min - w (x)

(MNP) st xe X,

where
@ w: R" — R is strongly convex with parameter o.
@ Vw is Lipschitz continuous with constant L,,.
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Bi-Level Optimization Problems
Consider the following convex inner problem

(P)  min{p (x):=f(x) +g (%)},

where
@ f:R” — Ris convex and continuously differentiable.
@ Vfis Lipschitz continuous with constant L;.
@ g:R" — (—o0,+00] is proper, convex and lower semicontinuous.

We denote by X* the optimal solutions set.

In this talk we are interested in the following outer problem

min - w (x)

(MNP) st xe X,

where
@ w: R" — R is strongly convex with parameter o.
@ Vw is Lipschitz continuous with constant L,,.

A particular case: the classical minimal norm solution problem min {% X2 :x e X*}.
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Tikhonov Regularization

Given e > 0, consider the regularized convex problem

@) min {p(X) +ew (0}
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Tikhonov Regularization

Given e > 0, consider the regularized convex problem

Q) min {p(x) +ew (x)} .

The unique optimal solution of (Q.) is denoted by x°.
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Tikhonov Regularization
Given e > 0, consider the regularized convex problem
(Q.) min {p(x)+ew (x)}.
XERN

The unique optimal solution of (Q.) is denoted by x°.

Let @ # X be closed and convex. We consider here the case g(-) = ox (*)

;rglikq{f(x)+aw(x): xe X}.
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Tikhonov Regularization
Given e > 0, consider the regularized convex problem
(Q.) min {p(x)+ew (x)}.
XERN

The unique optimal solution of (Q.) is denoted by x°.

Let @ # X be closed and convex. We consider here the case g(-) = ox (*)

;rgliRr),{f(x)-i-aw(x): xe X}.

For w (x) = (1/2) ||x||* we have the following results:
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Tikhonov Regularization
Given e > 0, consider the regularized convex problem
Q) min {p(x) +ew (x)} .
The unique optimal solution of (Q.) is denoted by x°.
Let @ # X be closed and convex. We consider here the case g (-) = dx ()

;rgliRr),{f(x)-i-aw(x): xe X}.

For w (x) = (1/2) ||x||* we have the following results:

@ Tikhonov (1977) showed, in the linear case, that x°* — x,, as ¢ — 0™.
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Tikhonov Regularization
Given ¢ > 0, consider the regularized convex problem
Q) min {p(x) +ew (x)} .

The unique optimal solution of (Q.) is denoted by x*.

Let @ # X be closed and convex. We consider here the case g (-) = dx ()

g}i}g){f(x)-ﬁ-aw(x): xe X}.

For w (x) = (1/2) ||x||* we have the following results:
@ Tikhonov (1977) showed, in the linear case, that x°* — x,, as ¢ — 0™.

@ Mangasarian and Meyer (1979) showed, in the linear case, that for a small
enough ¢, x° is exactly the same as x;,,.

Shoham Sabach (Technion) Bi-Level Optimization Problems

25.04.2018



Tikhonov Regularization
Given ¢ > 0, consider the regularized convex problem
Q) min {p(x) +ew (x)} .

The unique optimal solution of (Q.) is denoted by x*.

Let @ # X be closed and convex. We consider here the case g (-) = dx ()

)[g]ier{f(x)-i-sw(x): xe X}.

For w (x) = (1/2) ||x||* we have the following results:
@ Tikhonov (1977) showed, in the linear case, that x°* — x,, as ¢ — 0™.

@ Mangasarian and Meyer (1979) showed, in the linear case, that for a small
enough ¢, x° is exactly the same as x;,,.

@ Ferris and Mangasarian (1991) showed the same in a general convex case.
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Tikhonov Regularization
Given ¢ > 0, consider the regularized convex problem
Q) min {p(x) +ew (x)} .

The unique optimal solution of (Q.) is denoted by x*.

Let @ # X be closed and convex. We consider here the case g (-) = dx ()

;giRr)?{f(x)-i-aw(x): xe X}.

For w (x) = (1/2) ||x||* we have the following results:
@ Tikhonov (1977) showed, in the linear case, that x°* — x,, as ¢ — 0™.

@ Mangasarian and Meyer (1979) showed, in the linear case, that for a small
enough ¢, x° is exactly the same as x;,,.

@ Ferris and Mangasarian (1991) showed the same in a general convex case.

Solodov (2007) showed that the projected gradient when applied on (Q, ) with
ex — 0and )2, ex = oo, would generates a sequence which converges to X,.
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Direct Algorithms

There are few more methods BUT
without proven convergence rates
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Direct Algorithms

There are few more methods BUT
without proven convergence rates J

Recently Beck-S. (2014) proposed the Minimal Norm Gradient (MNG) method for
solving the (MNP) problem, when g (:) = dx (*).
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Direct Algorithms

There are few more methods BUT
without proven convergence rates

Recently Beck-S. (2014) proposed the Minimal Norm Gradient (MNG) method for
solving the (MNP) problem, when g () = dx (-).

Input: L - a Lipschitz constant of V.
Initialization: x° = a.
General Step (k=1,2,...):
xf = argmin{w(x) cxe@n Wk},

where
@ = feer: (@ (e) 0 =)= e ()],
wk = {z cER": <Vw (xk”) ,z—xk*‘> > 0},
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Direct Algorithms

There are few more methods BUT
without proven convergence rates

Recently Beck-S. (2014) proposed the Minimal Norm Gradient (MNG) method for
solving the (MNP) problem, when g () = dx (-).

Input: L - a Lipschitz constant of V.
Initialization: x° = a.
General Step (k=1,2,...):
xf = argmin{w(x) cxe@n Wk},

where
= frew(a () w22 S ()
wk = {z eR": <Vw (xk”) ,z—xk*‘> > 0} ,
The gradient mapping is defined by G (x) = L [x — Px (x — } V£ (x))].
25.04.2018




The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:

(i) Computing the gradient of f and the projection onto the set X.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:

(i) Computing the gradient of f and the projection onto the set X.

(ii) Computing the gradient of w.
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The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:

(i) Computing the gradient of f and the projection onto the set X.
(ii) Computing the gradient of w.

(iii) Minimizing w over the intersection of two (given) half spaces.
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The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:
(i) Computing the gradient of f and the projection onto the set X.

(i) Computing the gradient of w.

(iii) Minimizing w over the intersection of two (given) half spaces.

Proposition (Beck-S. (2014))

Let {xk } - be the sequence generated by the MNG method. Then, the sequence
{x" } ey converges to the optimal solution x7,, and, for any k € N, we have that
2
) 4L¢ ||%0 — X
m *
12”{#%,(4)0 (7_1/Lf (X )) — @ (xmn) < 3—\/R7

where T; (X) := Px (x — tVf (X)) is the proj-grad mapping
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The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:
(i) Computing the gradient of f and the projection onto the set X.

(i) Computing the gradient of w.

(iii) Minimizing w over the intersection of two (given) half spaces.

Proposition (Beck-S. (2014))

Let {xk } - be the sequence generated by the MNG method. Then, the sequence
{x" } ey converges to the optimal solution x7,, and, for any k € N, we have that
2
) 4L¢ ||%0 — X
m *
énnggkw (7_1/Lf (X )) — @ (xmn) < 3—\/R7

where T; (X) := Px (x — tVf(x)) is the proj-grad mapping

Note: In the case that the Lipschitz constant L is unknown in advance, a backiracking
scheme can be incorporated (rate remains the same).
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost

Outline

@ The Sequential Averaging Method (SAM).
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost

Outline

@ The Sequential Averaging Method (SAM).

@ The Bi-Level Gradient Sequential Averaging Method (BiG-SAM).
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost

Outline

@ The Sequential Averaging Method (SAM).

@ The Bi-Level Gradient Sequential Averaging Method (BiG-SAM).

@ Convergence analysis of BiG-SAM.
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost

Outline

@ The Sequential Averaging Method (SAM).

@ The Bi-Level Gradient Sequential Averaging Method (BiG-SAM).

@ Convergence analysis of BiG-SAM.

@ BiG-SAM for nonsmooth w.

Joint work with Shimrit Shtern (Technion)
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Sequential Averaging Method (SAM)

Suppose we are given two mappings:

@ A nonexpansive mapping T: || T(x) — T(y)|| < |lx —y|| for all x,y € R".
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Sequential Averaging Method (SAM)

Suppose we are given two mappings:

@ A nonexpansive mapping T: || T(x) — T(y)|| < |lx —y|| for all x,y € R".

@ A g-contraction mapping S (8 < 1): ||S(x) — S(y)|| < 8||x —y|| for all x,y € R".
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Sequential Averaging Method (SAM)

Suppose we are given two mappings:
@ A nonexpansive mapping T: || T(x) — T(y)|| < |lx —y|| for all x,y € R".
@ A g-contraction mapping S (8 < 1): ||S(x) — S(y)|| < 8||x —y|| for all x,y € R".
Goal: find x* € Fix(T) = {x € R" : x = T(x)}, which satisfies
(x* —S(x*),x—x") >0, VxeFix(T). (1)
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Sequential Averaging Method (SAM)

Suppose we are given two mappings:
@ A nonexpansive mapping T: || T(x) — T(y)|| < |x —y|| for all x,y € R".
@ A g-contraction mapping S (8 < 1): ||S(x) — S(y)|| < 8||x —y|| for all x,y € R".

Goal: find x* € Fix(T) = {x € R" : x = T(x)}, which satisfies
(x* = S(x*),x—x") >0, VxeFix(T). (1)
Algorithm: x*™" = a1 S (X¥) + (1 — aks1) T (x¥).
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Sequential Averaging Method (SAM)
Suppose we are given two mappings:

@ A nonexpansive mapping T: || T(x) — T(y)|| < |lx —y|| for all x,y € R".
@ A g-contraction mapping S (8 < 1): ||S(x) — S(y)|| < 8||x —y|| for all x,y € R".

Goal: find x* € Fix(T) = {x € R" : x = T(x)}, which satisfies
(x* = S(x*),x—x") >0, VxeFix(T). (1)
Algorithm: x*™" = a1 S (X¥) + (1 — aks1) T (x¥).

We say that {ax}, is “well-chosen™ sequence of real numbers from (0, 1] if

im ax =0, Y ox=o00 and lim akyr/ox=1.
k— oo k— o0
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Sequential Averaging Method (SAM)
Suppose we are given two mappings:

@ A nonexpansive mapping T: || T(x) — T(y)|| < |x —y|| for all x,y € R".
@ A g-contraction mapping S (8 < 1): ||S(x) — S(y)|| < 8||x —y|| for all x,y € R".
Goal: find x* € Fix(T) = {x € R" : x = T(x)}, which satisfies
(x* = S(x*),x—x") >0, VxeFix(T). (1)
Algorithm: x*™" = a1 S (X¥) + (1 — aks1) T (x¥).

We say that {ax}, is “well-chosen™ sequence of real numbers from (0, 1] if
k|i~>moo QK = 07 ;ak = oo and k|i~>moo Ok /ak =1.
Theorem (Xu (2004))

Given a “well-chosen" sequence {cu} .- Then

o The sequence {x“}, _ is bounded.

o The sequence {x*}, <y converges to a point x* € Fix(T).
@ The limit point x* satisfies (1).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

(x* = S(X*),x—Xx") >0, VxeFix(T). (1)J

@ We will connect problem (1) to an optimality condition of problem (MNP).

@ Meaning of (1): x* € Fix(T) is better (w.r.t criterion (1)) than any other x € Fix(T).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

(x* —S(x*),x—x*) >0, VxeX. (1)J

@ We will connect problem (1) to an optimality condition of problem (MNP).
@ Meaning of (1): x* € Fix(T) is better (w.r.t criterion (1)) than any other x € Fix(T).

@ Choosing T such that Fix(T) < argmin, ¢ (x) = X*.
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

(x* —S(x*),x—x*) >0, VxeX. (1)J

@ We will connect problem (1) to an optimality condition of problem (MNP).
@ Meaning of (1): x* € Fix(T) is better (w.r.t criterion (1)) than any other x € Fix(T).
@ Choosing T such that Fix(T) < argmin, ¢ (x) = X*.
@ This holds true for the prox-grad mapping
T (x) = Ti (x) = prox,, (X — tVF (X)),

which is nonexpansive for any t € (0,1/L].
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

(Vw (X*),x —X*) >0, VXxeX. (1)J

@ We will connect problem (1) to an optimality condition of problem (MNP).
@ Meaning of (1): x* € Fix(T) is better (w.r.t criterion (1)) than any other x € Fix(T).
@ Choosing T such that Fix(T) < argmin, ¢ (x) = X*.
@ This holds true for the prox-grad mapping
T (x) = Ti (x) = prox,, (X — tVF (X)),
which is nonexpansive for any t € (0,1/L].
@ To complete the connection, we will chose S(-) as
S(x) =x — sVw (x),

1/2
which is a contraction with parameter g = (1 — ZSLW") , whenever
s€(0,2/(c + Lu)]-

Ly+o
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

(Vw (X*),x —X*) >0, VXxeX. (1)J

@ We will connect problem (1) to an optimality condition of problem (MNP).
@ Meaning of (1): x* € Fix(T) is better (w.r.t criterion (1)) than any other x € Fix(T).
@ Choosing T such that Fix(T) < argmin, ¢ (x) = X*.
@ This holds true for the prox-grad mapping
T (x) = Ti (x) = prox,, (X — tVF (X)),

which is nonexpansive for any t € (0,1/L].

@ To complete the connection, we will chose S(-) as
S(x) =x — sVw (x),
Lo ! . 1/2
which is a contraction with parameter g = (1 — ZLiL—ig) , whenever
s€(0,2/(0 + Lu)].

@ Thus, (1) reduces to an optimality condition of problem (MNP).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

We take
T (X) = prox,, (x — tVF(x)) and S(x)=Xx—sVw(x).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

We take
T (X) = prox,, (x — tVF(x)) and S(x)=Xx—sVw(x).

(i) Input: t € (0,1/Ls] and s € (0,2/ (L., + o)].
(i) Initialization: Start with any x° € R".
(iii) General Step (k =1,2,...):
v = Prox,, (xk71 — tvf (qu)) ,
¥ =x""—svw (xkq) ,

X" = ak+1zk +(1— ak+1)yk.
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

We take
T (X) = prox,, (x — tVF(x)) and S(x)=Xx—sVw(x).

(i) Input: t € (0,1/Ls] and s € (0,2/ (L., + o)].
(i) Initialization: Start with any x° € R".
(iii) General Step (k =1,2,...):
v = Prox,, (xk71 — tvf (qu)) ,

[zk =x"—svw (xk*‘)], = no need to optimize w over 2 half spaces

X = ak+1ZK +(1— ak+1)yk.
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

We take
T (X) = prox,, (x — tVF(x)) and S(x)=Xx—sVw(x).

(i) Input: t € (0,1/Ls] and s € (0,2/ (L., + o)].
(i) Initialization: Start with any x° € R".
(iii) General Step (k =1,2,...):
vy = Prox,, (xk71 — tvf (qu)) ,
Z=x""-svw (xk’1) ,

X = ap 2+ (1 — apq) Y-

Proposition (S.-Shtern (2015))

Let {x*},_ be a sequence generated by BiG-SAM and a let {c} ., be a
“well-chosen" sequence. Then, the sequence {xk } xen Converges to xX* € X* and

(Vw(x*),x—x*) >0, VxeX

Therefore x* = Xp,, is the optimal solution of problem (MNP).

v
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Rate of Convergence of BiG-SAM
Proposition (S.-Shtern (2015))

Let { (x,y",2)},_, be a sequence generated by SAM where {c} .y € (0,1] such
that ox = min {ﬁ, 1 } Then, for any X € Fix(T) we have

- )

) |2

pe-xt< % an fyoxt <% e
where

szzg%i_ﬂz)max{wxo—x
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Rate of Convergence of BiG-SAM
Proposition (S.-Shtern (2015))

Let {(x",y",2)},
that ox = min {ﬁ, 1 } Then, for any X € Fix(T) we have

be a sequence generated by SAM where {ax}, .y € (0, 1] such

- S FL S

where

Cx:wmax{”xo—x

(L VS0 gy g | 2]

1-5 1-8

Theorem (S.-Shtern (2015))

Let {(x*,y*,2")},_, be a sequence generated by BiG-SAM. Then

@2 1
k e Xmn _
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Rate of Convergence of BiG-SAM
Proposition (S.-Shtern (2015))

Let {(x",y",2)},
that ox = min {ﬁ, 1 } Then, for any X € Fix(T) we have

be a sequence generated by SAM where {ax}, .y € (0, 1] such

- )

pe-xt< % an fyoxt <% e
where
2(J+2)

Cx = Wmax{”xo—x

Y ool

Theorem (S.-Shtern (2015))

Let {(x*,y*,2")},_, be a sequence generated by BiG-SAM. Then

@2 1
k e Xmn _

v

Since x* is not necessarily feasible for the inner problem,
the convergence rate is given in terms of y*
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BiG-SAM for Nonsmooth w

@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).
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BiG-SAM for Nonsmooth w
@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).
@ Instead we will use the Moreau envelope M, of w
I 1 2
Ms., (x) = min {w(z) + 25 Ix — z|| } ,

which is
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BiG-SAM for Nonsmooth w
@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).

@ Instead we will use the Moreau envelope M, of w

Ms.; (x) = min {w (2) + é [lx — zHZ} ,

which is
> o/(1 + so) strongly convex,
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BiG-SAM for Nonsmooth w
@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).

@ Instead we will use the Moreau envelope M, of w

Ms.; (x) = min {w (2) + é [lx — zHZ} ,

which is
> o/(1 + so) strongly convex,

» Lipschitz continuous gradient with constant 1/s and

VMs, (X) = 1; (x — proxg,, (X)) .
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BiG-SAM for Nonsmooth w
@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).
@ Instead we will use the Moreau envelope M, of w
I 1 2
Ms., (x) = min {w(z) + 25 Ix — z|| } ,

which is
> o/(1 + so) strongly convex,

» Lipschitz continuous gradient with constant 1/s and

VMs, (X) = 1; (x — proxg,, (X)) .

We can apply Big-SAM on the following bi-level problem

min  Ms,, (X)
st xe X"

(MNP,)
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BiG-SAM for Nonsmooth w
@ If w is nonsmooth we can not use BiG-SAM directly (Vw is not available).

@ Instead we will use the Moreau envelope M, of w

Ms.; (x) = min {w (2) + 2ls [lx — zHZ} ,

which is
> o/(1 + so) strongly convex,

» Lipschitz continuous gradient with constant 1/s and

VM, (X) = © (X~ proxg, (4)).

We can apply Big-SAM on the following bi-level problem

min  Ms,, (X)

(MNPs) st xe X"

Choosing S(x) = x — sV Ms., (X) = prox,,, (x) whichiis a 8 = 1/ (1 + so) contraction.
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BiG-SAM for Nonsmooth w

(1) Input: t € (0,1/L7] and s > 0.
(2) Initialization: Start with any x° € R".
(3) General Step (k =1,2,...):

v = Prox,, (xk_1 — tVf (xk_1>) ,

ZF = Proxg,, (xk_1) ,

XK = ap1Z + (1 — aner) Y-
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BiG-SAM for Nonsmooth w

(1) Input: t € (0,1/L7] and s > 0.
(2) Initialization: Start with any x° € R".
(3) General Step (k =1,2,...):

v = Prox,, (xk_1 — tVf (xk_1)) ,

ZF = Proxg,, (Xk_1) ,

XK = a1 Z 4+ (1 — apn) Y-

Proposition (S.-Shtern (2015))
Let {xk}kGN be a sequence generated by BiG-SAM and a let {ax}, . be a

“well-chosen" sequence. Then, the sequence {xk} ey CoNverges to x; € X* and

<VMSLU (x:)7x_x;>207 VXGX*

Therefore x; is the optimal solution of problem (MNP;).
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min - w (x)

(MNP) st xe X*.
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min - w (x)

(MNP) st xe X*.

We assume that w is Lipschitz continuous with constant 4,,.
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min - w (x)

(MNP) st xe X*.

We assume that w is Lipschitz continuous with constant 4,,.
Let § > 0 be the required accuracy in terms of the outer objective function

w(xk) ~ My, (xk) <48, Vk>1.
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min - w (x)

(MNP) st xe X*.

We assume that w is Lipschitz continuous with constant 4,,.
Let § > 0 be the required accuracy in terms of the outer objective function

w(xk) ~ My, (xk) <48, Vk>1.

The rate of convergence of Big-SAM, in this case, depends on §

K\ s 4C2. 372 o
e (v") P = 1y (B aos T a0 )
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min  w (x)

(MNP) st xe X*.

We assume that w is Lipschitz continuous with constant 4,,.
Let 6 > 0 be the required accuracy in terms of the outer objective function

w(xk) ~ My, (xk) <48, Vk>1.

The rate of convergence of Big-SAM, in this case, depends on §
4C2. 372 o

w(yk)fw(X*)Sm(2+ﬁ+W).

Therefore the convergence rate is O(1/(£6%)), where ¢ is the desired inner function
accuracy.
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BiG-SAM for Nonsmooth w

Our goal is to solve the following problem

min  w(x)

(MNP) st xe X*.

We assume that w is Lipschitz continuous with constant 4,,.
Let 6 > 0 be the required accuracy in terms of the outer objective function

w(xk) ~ My, (xk) <48, Vk>1.

The rate of convergence of Big-SAM, in this case, depends on §
4CE. 3¢2 !
K\ *) < X et w )
o (v) -0y < tk+1) (2+ 205 40252)
Therefore the convergence rate is O(1/(£6%)), where ¢ is the desired inner function
accuracy.

It should be noted that outer accuracy parameter § also controls the following gap

w(Xs) — w (Xmn) < 0.
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation

6
[Gk(s—t)f(t)=g(s)7
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation

6
[Gk(s—t)f(t)=g(s)7

where

_ [ 1+cos(%), |t|<3,
k(t)= { 0, else
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation

6
[Gk(s—t)f(t)=g(s)7

where

_ [ 14cos(%), |t<3,
k() = { 0, else

g(s)=(6 |s|)(1 +fcos(7r33)> +%sin (%)

and
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation

6
[Gk(s—t)f(t)=g(s)7

where

_ [ 14cos(%), |t<3,
k() = { 0, else

and

g(s)=(6 |s|)<1 +fcos(7r35)> +%sin (%)

(i) Discretize and reduce it to a linear system of the form Axr = br using Galerkin
method (n = 1000).
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation

| Kls=nrn=g(s).

where

_ [ 1+cos(%), |t|<3,
k() = { 0, else

g(s)=(6 |s|)<1 +fcos(7;3)) +%sin (%)

(i) Discretize and reduce it to a linear system of the form Axr = by using Galerkin
method (n = 1000).

(ii) The observed right-hand side vector is given by b = bt + ow (each component of
w generated from a standard normal distribution and p = 10™",1072,1073).

and
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Comparison between MNG and BiG-SAM

We are interested in the following least squares core problem
min || Ax — b|%.
x>0
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Comparison between MNG and BiG-SAM
We are interested in the following least squares core problem
min || Ax — b|%.
x>0
Since the matrix A has zero eigenvalues, we consider outer objective function
_ 1.
w(X) = 3X Qx,
where Q = L"L + 1 and L approximates the first-derivative operator.
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Comparison between MNG and BiG-SAM
We are interested in the following least squares core problem
min || Ax — b|%.
x>0
Since the matrix A has zero eigenvalues, we consider outer objective function
_ 1.
w(X) = 3X Qx,
where Q = L"L + 1 and L approximates the first-derivative operator.

[
——— BIG-SAM 1=1 S ==
—— BIG-SAM 1-05
N BIG-SAM 1=0.1
10 MNGM
55
10
- =
= S
10°
5
BiG-SAM 7=1
107 BIG-SAM 1=0.5
BIG-SAM 1=0.1
MNGM
-
10 a5
w0 w0 107 10° 10 10 0* 10 10 10 10" 10 10° 10

Tima (sac)

Figure : The progress of the algorithms in time for a Phillips example with p = 0.01 and n = 100
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Comparison between MNG and BiG-SAM

Problem P Mean time (Number of realization terminated at time limit)
BiG-SAM MNG
v =0.1 v =0.5 vy=1
10~1 5.37e—3 (0) 3.62e—2 (0) 6.08e—2 (0) 2.92e—1(0)
Baart 1072 1.51e—1 (0) 5.03e—1 (0) 8.26e—1 (0) 4.40 (0)
1073 9.78 (0) 2.23e+1 (0) 3.57e+1 (0) 4.18e+2 (31)
1071 1.51e—2 (0) 6.88e—2 (0) 1.06e—1 (0) 3.33e—1(0)
Foxgood 1072 4.47e—1 (0) 1.20 (0) 2.17 (0) 3.65 (0)
1073 1.30e+1 (1) 2.99e+1 (0) 4.43e+1 (1) 2.93e+1 (1)
10~" 1.13e—2 (0) 3.90e—2 (0) 6.58e—2 (0) 4.02e—1 (0)
Phillips 1072 2.44 (0) 6.77 (0) 9.83 (0) 1.67e+2 (5)
1072 4.93e+2 (97) 4.98e+2 (98) 4.99e+2 (99) 5.00e+2 (100)

Table : Averaged over 100 realization for each instance of problem and noise magnitude p
(number of realizations terminated because of the time limit of 500 seconds).
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For the MNG method see

Beck, A. and Sabach, S., A first order method for finding minimal norm-like
solutions of convex optimization problems, Mathematical Programming (Ser. A)
147 (2014), 25-46.
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For the MNG method see

Beck, A. and Sabach, S., A first order method for finding minimal norm-like
solutions of convex optimization problems, Mathematical Programming (Ser. A)
147 (2014), 25-46.

For the BiG-SAM method see

Sabach, S. and Shtern, S., A first order method for solving convex bi-level
optimization problems. Accepted in SIAM Journal on Optimization (2017).

Many thanks for your attention!

Email: ssabach@ie.technion.ac.il

Website: http://ssabach.net.technion.ac.il/
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