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Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Bi-Level Optimization Problems

Consider the following convex inner problem

(P) min
x∈Rn
{ϕ (x) := f (x) + g (x)} ,

where
f : Rn → R is convex and continuously differentiable.
∇f is Lipschitz continuous with constant Lf .
g : Rn → (−∞,+∞] is proper, convex and lower semicontinuous.

We denote by X∗ the optimal solutions set.

In this talk we are interested in the following outer problem

(MNP) min ω (x)
s.t. x ∈ X∗,

where
ω : Rn → R is strongly convex with parameter σ.
∇ω is Lipschitz continuous with constant Lω.

A particular case: the classical minimal norm solution problem min
{

1
2 ‖x‖

2 : x ∈ X∗
}

.

Shoham Sabach (Technion) Bi-Level Optimization Problems 25.04.2018



Tikhonov Regularization

Given ε > 0, consider the regularized convex problem

(Qε) min
x∈Rn
{ϕ (x) + εω (x)} .

The unique optimal solution of (Qε) is denoted by xε.

Let ∅ 6= X be closed and convex. We consider here the case g (·) = δX (·)

min
x∈Rn
{f (x) + εω (x) : x ∈ X} .

For ω (x) = (1/2) ‖x‖2 we have the following results:

Tikhonov (1977) showed, in the linear case, that xε → x∗mn as ε→ 0+.

Mangasarian and Meyer (1979) showed, in the linear case, that for a small
enough ε, xε is exactly the same as x∗mn.

Ferris and Mangasarian (1991) showed the same in a general convex case.

Solodov (2007) showed that the projected gradient when applied on (Qεk ) with
εk → 0 and

∑∞
k=1 εk =∞, would generates a sequence which converges to x∗mn.
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Direct Algorithms

There are few more methods BUT
without proven convergence rates

Recently Beck-S. (2014) proposed the Minimal Norm Gradient (MNG) method for

solving the (MNP) problem, when g (·) = δX (·).

Input: L - a Lipschitz constant of ∇f .
Initialization: x0 = a.
General Step (k = 1 , 2 , . . . ):

xk = argmin
{
ω (x) : x ∈ Qk ∩W k

}
,

where

Qk =

{
z ∈ Rn :

〈
GL

(
xk−1

)
, xk−1 − z

〉
≥ 3

4L

∥∥∥GL

(
xk−1

)∥∥∥2
}
,

W k =
{

z ∈ Rn :
〈
∇ω

(
xk−1

)
, z− xk−1

〉
≥ 0

}
,

The gradient mapping is defined by GL (x) ≡ L
[
x− PX

(
x− 1

L∇f (x)
)]

.
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The Minimal Norm Gradient Method

Each iteration of the MNG method consists of 3 main computational tasks:

(i) Computing the gradient of f and the projection onto the set X .

(ii) Computing the gradient of ω.

(iii) Minimizing ω over the intersection of two (given) half spaces.

Proposition (Beck-S. (2014))

Let
{

xk}
k∈N be the sequence generated by the MNG method. Then, the sequence{

xk}
k∈N converges to the optimal solution x∗mn and, for any k ∈ N, we have that

min
1≤m≤k

ϕ
(
T1/Lf

(
xm))− ϕ (x∗mn) ≤

4Lf
∥∥x0 − x∗mn

∥∥2

3
√

k
,

where Tt (x) := PX (x− t∇f (x)) is the proj-grad mapping

Note: In the case that the Lipschitz constant L is unknown in advance, a backtracking
scheme can be incorporated (rate remains the same).
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Goal and Outline

Study a new method for solving the (MNP) problem with
better rate of convergence and lower computational cost

Outline

The Sequential Averaging Method (SAM).

The Bi-Level Gradient Sequential Averaging Method (BiG-SAM).

Convergence analysis of BiG-SAM.

BiG-SAM for nonsmooth ω.

Joint work with Shimrit Shtern (Technion)
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Sequential Averaging Method (SAM)

Suppose we are given two mappings:

A nonexpansive mapping T : ‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ Rn.

A β-contraction mapping S (β < 1): ‖S(x)− S(y)‖ ≤ β ‖x− y‖ for all x, y ∈ Rn.

Goal: find x∗ ∈ Fix(T ) = {x ∈ Rn : x = T (x)}, which satisfies

〈x∗ − S (x∗) , x− x∗〉 ≥ 0, ∀ x ∈ Fix(T ). (1)

Algorithm: xk+1 = αk+1S
(
xk)+ (1− αk+1)T

(
xk).

We say that {αk}k∈N is “well-chosen" sequence of real numbers from (0, 1] if

lim
k→∞

αk = 0,
∞∑

k=1

αk =∞ and lim
k→∞

αk+1/αk = 1.

Theorem (Xu (2004))
Given a “well-chosen" sequence {αk}k∈N. Then

The sequence
{

xk}
k∈N is bounded.

The sequence
{

xk}
k∈N converges to a point x∗ ∈ Fix(T ).

The limit point x∗ satisfies (1).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

〈x∗ − S (x∗) , x− x∗〉 ≥ 0, ∀ x ∈ Fix(T ). (1)

We will connect problem (1) to an optimality condition of problem (MNP).

Meaning of (1): x∗ ∈ Fix(T ) is better (w.r.t criterion (1)) than any other x ∈ Fix(T ).

Choosing T such that Fix(T)⇔ argminxϕ (x) = X∗.

This holds true for the prox-grad mapping

T (x) ≡ Tt (x) = proxtg (x− t∇f (x)) ,

which is nonexpansive for any t ∈ (0, 1/Lf ].

To complete the connection, we will chose S (·) as

S (x) = x− s∇ω (x),

which is a contraction with parameter β =
(

1− 2sLωσ
Lω+σ

)1/2
, whenever

s ∈ (0, 2/(σ + Lω)].

Thus, (1) reduces to an optimality condition of problem (MNP).
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Bi-Level Gradient Sequential Averaging Method (BiG-SAM)

We take
T (x) ≡ proxtg (x− t∇f (x)) and S (x) = x− s∇ω (x) .

(i) Input: t ∈ (0, 1/Lf ] and s ∈ (0, 2/ (Lω + σ)].

(ii) Initialization: Start with any x0 ∈ Rn.

(iii) General Step (k = 1, 2, . . .):

yk = proxtg

(
xk−1 − t∇f

(
xk−1

))
,

xk = αk+1zk + (1− αk+1) yk .

Proposition (S.-Shtern (2015))

Let
{

xk}
k∈N be a sequence generated by BiG-SAM and a let {αk}k∈N be a

“well-chosen" sequence. Then, the sequence
{

xk}
k∈N converges to x∗ ∈ X∗ and

〈∇ω (x∗) , x− x∗〉 ≥ 0, ∀ x ∈ X∗.

Therefore x∗ = x∗mn is the optimal solution of problem (MNP).
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Rate of Convergence of BiG-SAM
Proposition (S.-Shtern (2015))

Let
{(

xk , yk , zk)}
k∈N be a sequence generated by SAM where {αk}k∈N ∈ (0, 1] such

that αk = min
{

2
k(1−β) , 1

}
. Then, for any x̃ ∈ Fix(T ) we have

∥∥∥xk − xk−1
∥∥∥ ≤ Cx̃

k
and

∥∥∥yk − xk−1
∥∥∥ ≤ Cx̃

k
, k ≥ 1,

where

Cx =
2 (J + 2)

1− β max
{∥∥∥x0 − x

∥∥∥ , ‖∇ω (x)‖
1− β

}
and J =

⌊
2

1− β

⌋
.

Theorem (S.-Shtern (2015))

Let
{(

xk , yk , zk)}
k∈N be a sequence generated by BiG-SAM. Then

ϕ
(

yk
)
− ϕ (x∗mn) ≤

C2
x∗mn

t (k + 1)
, t ∈

(
0,

1
Lf

]
.

Since xk is not necessarily feasible for the inner problem,
the convergence rate is given in terms of yk
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BiG-SAM for Nonsmooth ω

If ω is nonsmooth we can not use BiG-SAM directly (∇ω is not available).

Instead we will use the Moreau envelope Msω of ω

Msω (x) = min
z

{
ω (z) +

1
2s
‖x− z‖2

}
,

which is

I σ/(1 + sσ) strongly convex,

I Lipschitz continuous gradient with constant 1/s and

∇Msω (x) =
1
s
(x− proxsω (x)) .

We can apply Big-SAM on the following bi-level problem

(MNPs)
min Msω (x)
s.t. x ∈ X∗.

Choosing S (x) = x− s∇Msω (x) = proxsω (x) which is a β = 1/ (1 + sσ) contraction.
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BiG-SAM for Nonsmooth ω

(1) Input: t ∈ (0, 1/Lf ] and s > 0.

(2) Initialization: Start with any x0 ∈ Rn.

(3) General Step (k = 1, 2, . . .):

yk = proxtg

(
xk−1 − t∇f

(
xk−1

))
,

zk = proxsω

(
xk−1

)
,

xk = αk+1zk + (1− αk+1) yk .

Proposition (S.-Shtern (2015))

Let
{

xk}
k∈N be a sequence generated by BiG-SAM and a let {αk}k∈N be a

“well-chosen" sequence. Then, the sequence
{

xk}
k∈N converges to x∗s ∈ X∗ and

〈∇Msω (x∗s ) , x− x∗s 〉 ≥ 0, ∀ x ∈ X∗.

Therefore x∗s is the optimal solution of problem (MNPs).
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〈∇Msω (x∗s ) , x− x∗s 〉 ≥ 0, ∀ x ∈ X∗.

Therefore x∗s is the optimal solution of problem (MNPs).
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BiG-SAM for Nonsmooth ω

Our goal is to solve the following problem

(MNP) min ω (x)
s.t. x ∈ X∗.

We assume that ω is Lipschitz continuous with constant `ω.

Let δ > 0 be the required accuracy in terms of the outer objective function

ω
(

xk
)
−Msω

(
xk
)
≤ δ, ∀ k ≥ 1.

The rate of convergence of Big-SAM, in this case, depends on δ

ϕ
(

yk
)
− ϕ (x∗) ≤ 4C2

x∗

t (k + 1)

(
2 +

3`2
ω

2σδ
+

`4
ω

4σ2δ2

)
.

Therefore the convergence rate is O(1/(εδ2)), where ε is the desired inner function
accuracy.

It should be noted that outer accuracy parameter δ also controls the following gap

ω (x∗s )− ω (x∗mn) ≤ δ.
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Discretizations of Fredholm integral equations

The Phillips problem of estimating a function f (t) that solves the integral equation∫ 6

−6
k (s − t) f (t) = g (s) ,

where

k (t) =
{

1 + cos
(
πt
3

)
, |t | < 3,

0, else

and

g (s) = (6− |s|)
(

1 +
1
2

cos
(πs

3

))
+

9
2π

sin
(
π |s|

3

)
.

(i) Discretize and reduce it to a linear system of the form AxT = bT using Galerkin
method (n = 1000).

(ii) The observed right-hand side vector is given by b = bT + σw (each component of
w generated from a standard normal distribution and ρ = 10−1, 10−2, 10−3).
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Comparison between MNG and BiG-SAM

We are interested in the following least squares core problem

min
x≥0
‖Ax− b‖2 .

Since the matrix A has zero eigenvalues, we consider outer objective function

ω (x) =
1
2

xT Qx,

where Q = LT L + I and L approximates the first-derivative operator.

Figure : The progress of the algorithms in time for a Phillips example with ρ = 0.01 and n = 100
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Comparison between MNG and BiG-SAM

Problem ρ Mean time (Number of realization terminated at time limit)

BiG-SAM MNG

γ = 0.1 γ = 0.5 γ = 1

Baart

10−1 5.37e−3 (0) 3.62e−2 (0) 6.08e−2 (0) 2.92e−1 (0)

10−2 1.51e−1 (0) 5.03e−1 (0) 8.26e−1 (0) 4.40 (0)

10−3 9.78 (0) 2.23e+1 (0) 3.57e+1 (0) 4.18e+2 (31)

Foxgood

10−1 1.51e−2 (0) 6.88e−2 (0) 1.06e−1 (0) 3.33e−1 (0)

10−2 4.47e−1 (0) 1.20 (0) 2.17 (0) 3.65 (0)

10−3 1.30e+1 (1) 2.99e+1 (0) 4.43e+1 (1) 2.93e+1 (1)

Phillips

10−1 1.13e−2 (0) 3.90e−2 (0) 6.58e−2 (0) 4.02e−1 (0)

10−2 2.44 (0) 6.77 (0) 9.83 (0) 1.67e+2 (5)

10−3 4.93e+2 (97) 4.98e+2 (98) 4.99e+2 (99) 5.00e+2 (100)

Table : Averaged over 100 realization for each instance of problem and noise magnitude ρ
(number of realizations terminated because of the time limit of 500 seconds).
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For the MNG method see

Beck, A. and Sabach, S., A first order method for finding minimal norm-like
solutions of convex optimization problems, Mathematical Programming (Ser. A)
147 (2014), 25–46.

For the BiG-SAM method see

Sabach, S. and Shtern, S., A first order method for solving convex bi-level
optimization problems. Accepted in SIAM Journal on Optimization (2017).

Many thanks for your attention!

Email: ssabach@ie.technion.ac.il

Website: http://ssabach.net.technion.ac.il/
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