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A vector in Rn is integral if each of its components is an integer,

and a rational system of linear inequalities Ax ≤ b is called totally
dual integral (TDI) if, for every integral vector c ∈ Zn, the LP
problem dual to sup {〈c , x〉 : Ax ≤ b} has an integral optimal
solution whenever it has an optimal solution at all.
In this case, the polyhedron P determined by Ax ≤ b is integral,
i.e., each nonempty face of P has an integral vector; thus, (under
the assumption that both primal and dual are feasible) equality
holds throughout in the chain from the board.
This was proved in seminal work of Edmonds and Giles [1977] as a
consequence of the following fundamental result:

Theorem

(Edmonds-Giles [1977]) If A ∈ Qm×n and b ∈ Qm satisfy
sup {〈c , x〉 : Ax ≤ b} ∈ Z ∪ {±∞} for each c ∈ Zn, then the
polyhedron {x ∈ Rn : Ax ≤ b} is integral.
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To define the integrality constraint for the dual SDP, we shall
consider the dual slack.

Definition

Let S be feasible in the dual SDP. We say that “S is integral ” if S
is a sum

S =
N∑

k=1

Sk

of rank-one matrices S1, . . . ,SN ∈ Sn+1
+ such that, for each

k ∈ [N], we have

(Sk)00 = 1,
(Sk)0j + (Sk)jj = 0 ∀j ∈ [n].
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Theorem

If C ⊂ Rn is a compact convex set, then
C = {x ∈ Rn : 〈w , x〉 ≤ δ∗(C|w) ∀w ∈ Zn}.

Let
CI := conv (C ∩ Zn) .

Using a bit more from IP theory, we conclude the following
generalization of Hoffman’s Theorem.

Corollary

If C ⊂ Rn is a nonempty compact convex set, then C = CI if and
only if δ∗(C|w) ∈ Z for every w ∈ Zn.
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Theorem

Let C ⊂ Rn be a nonempty compact convex set. Then, TFAE

(i) C = CI ;
(ii) every nonempty face of C contains an integral point;

(iii) for every w ∈ Rn, max{〈w , x〉 : x ∈ C} is attained by an
integral vector;

(iv) every rational supporting hyperplane for C contains integral
points;

(v) ∃x̄ ∈ C such that for each w ∈ Zn,

〈w , x̄〉+ inf

{
η ∈ R++ :

1

η
w ∈ (C − x̄)o

}
∈ Z.
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Definition

Let L : Rk → Sn+1 be a linear map. The system

A(X̂ ) ≤ b, X̂ � 0

is TDI through L

if for every c ∈ Zk , the SDP dual to

sup
{〈
L(c), X̂

〉
: A(X̂ ) ≤ b X̂ � 0

}
has an “integral” optimal solution, whenever it has an optimal
solution.

Note,

X̂ is of the form

[
1 x>

x X

]
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Theorem

Let A(X̂ ) ≤ b, X̂ � 0 be TDI through a linear map

L : Rk → Sn+1.

Set Ĉ :=
{
X̂ ∈ Sn+1

+ : A(X̂ ) ≤ b
}

and

C := L∗(Ĉ) ⊆ Rk . If b is integral, C is compact, and Ĉ has a
positive definite matrix, then C = CI .
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Theorem

Let A(X̂ ) ≤ b, X̂ � 0 be TDI through a linear map L : Rk → Sn+1

such that b is integral.

Suppose that

Ĉ :=
{
X̂ ∈ Sn+1

+ : A(X̂ ) ≤ b
}

has a positive definite matrix and

that C := L∗(Ĉ) ⊆ [0, 1]k is compact. If Ĉ is a rank-one embedding
of CI via L, then for every w ∈ Zk , equality holds throughout in the
chain of inequalities on the board, all optimum values are equal to

max {〈w , x〉 : x ∈ CI} ,

and all suprema and infima are attained.
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Open Problems/research Directions

Obtain a primal-dual symmetric integrality condition for SDPs
that applies to arbitrary ILPs, not just binary ones.

Given k ≥ 1 and the LS+ operator of Lovász and
Schrijver [1991](called N+ in their paper), determine the class
of graphs for which the kth iterate of the LS+ operator
applied to the system

x ≥ 0, xi + xj ≤ 1 ∀ij ∈ E

yields a TDI system through the appropriate lifting, leading to
a family of combinatorial min-max theorems involving
maximum weight stable sets in such graphs.

Obtain systematic, primal-dual symmetric conditions for
exactness in SDP relaxations for continuous problems.
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Theorem

Every pointed closed convex set is the intersection of all closed
rational halfspaces containing it.

This presentation was based on:

M. K. de Carli Silva and L. T., A notion of total dual
integrality for convex, semidefinite, and extended
formulations, arXiv:1801.09155

M. K. de Carli Silva and L. T., Pointed closed convex sets are
the intersection of all rational supporting closed halfspaces,
arXiv:1802.03296
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