A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations

Marcel de Carli Silva Levent Tunçel

April 26, 2018
A vector in \(\mathbb{R}^n \) is *integral* if each of its components is an integer,
A vector in \mathbb{R}^n is *integral* if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called *totally dual integral (TDI)*.
A vector in \mathbb{R}^n is *integral* if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called *totally dual integral (TDI)* if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle : Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all.

In this case, the polyhedron P determined by $Ax \leq b$ is integral, i.e., each nonempty face of P has an integral vector; thus, (under the assumption that both primal and dual are feasible) equality holds throughout in the chain from the board. This was proved in seminal work of Edmonds and Giles [1977] as a consequence of the following fundamental result:

Theorem (Edmonds-Giles [1977]) If $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ satisfy $\sup \{ \langle c, x \rangle : Ax \leq b \} \in \mathbb{Z} \cup \{\pm \infty\}$ for each $c \in \mathbb{Z}^n$, then the polyhedron $\{ x \in \mathbb{R}^n : Ax \leq b \}$ is integral.
A vector in \mathbb{R}^n is **integral** if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called **totally dual integral (TDI)** if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle : Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all.

In this case, the polyhedron P determined by $Ax \leq b$ is **integral**, i.e., each nonempty face of P has an integral vector;
A vector in \mathbb{R}^n is *integral* if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called *totally dual integral (TDI)* if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle : Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all. In this case, the polyhedron P determined by $Ax \leq b$ is *integral*, i.e., each nonempty face of P has an integral vector; thus, (under the assumption that both primal and dual are feasible)
A vector in \mathbb{R}^n is *integral* if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called *totally dual integral (TDI)* if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle : Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all.

In this case, the polyhedron P determined by $Ax \leq b$ is *integral*, i.e., each nonempty face of P has an integral vector; thus, (under the assumption that both primal and dual are feasible) equality holds throughout in the chain from the board.
A vector in \mathbb{R}^n is \textit{integral} if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called \textit{totally dual integral (TDI)} if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle : Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all. In this case, the polyhedron P determined by $Ax \leq b$ is \textit{integral}, i.e., each nonempty face of P has an integral vector; thus, (under the assumption that both primal and dual are feasible) equality holds throughout in the chain from the board. This was proved in seminal work of Edmonds and Giles [1977] as a consequence of the following fundamental result:
A vector in \mathbb{R}^n is *integral* if each of its components is an integer, and a rational system of linear inequalities $Ax \leq b$ is called *totally dual integral (TDI)* if, for every integral vector $c \in \mathbb{Z}^n$, the LP problem dual to $\sup \{ \langle c, x \rangle \mid Ax \leq b \}$ has an integral optimal solution whenever it has an optimal solution at all.

In this case, the polyhedron P determined by $Ax \leq b$ is *integral*, i.e., each nonempty face of P has an integral vector; thus, (under the assumption that both primal and dual are feasible) equality holds throughout in the chain from the board.

This was proved in seminal work of Edmonds and Giles [1977] as a consequence of the following fundamental result:

Theorem

(Edmonds-Giles [1977]) If $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ satisfy

$$\sup \{ \langle c, x \rangle \mid Ax \leq b \} \in \mathbb{Z} \cup \{ \pm \infty \} \text{ for each } c \in \mathbb{Z}^n,$$

then the polyhedron $\{ x \in \mathbb{R}^n : Ax \leq b \}$ is integral.
(Edmonds and Giles [1977]) If $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ satisfy

\[
\sup \{ \langle c, x \rangle : Ax \leq b \} \in \mathbb{Z} \cup \{ \pm \infty \}
\]

for each $c \in \mathbb{Z}^n$, then the polyhedron $\{ x \in \mathbb{R}^n : Ax \leq b \}$ is integral.
Theorem

(Edmonds and Giles [1977]) If $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ satisfy
\[
\sup \left\{ \langle c, x \rangle : Ax \leq b \right\} \in \mathbb{Z} \cup \{\pm \infty\}
\]
for each $c \in \mathbb{Z}^n$, then the polyhedron \(\{x \in \mathbb{R}^n : Ax \leq b\}\) is integral.

Corollary

(Hoffman [1974]) Let $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$. If
\[
P := \{x \in \mathbb{R}^n : Ax \leq b\}
\]
is bounded and \(\max_{x \in P} \langle c, x \rangle \in \mathbb{Z}\) for each $c \in \mathbb{Z}^n$, then P is integral.
To define the *integrality constraint* for the dual SDP, we shall consider the dual slack.

Definition

Let S be feasible in the dual SDP. We say that "S is integral" if S is a sum $S = \sum_{k=1}^{N} S_k$ of rank-one matrices $S_1, \ldots, S_N \in S_{n+1}$ such that, for each $k \in [N]$, we have $(S_k)^{00} = 1$, $(S_k)^{0j} + (S_k)^{jj} = 0 \forall j \in [n]$.

Marcel de Carli Silva, Levent Tunçel

Total Dual Integrality
To define the *integrality constraint* for the dual SDP, we shall consider the dual slack.

Definition

Let S be feasible in the dual SDP. We say that “S is *integral*” if S is a sum

$$S = \sum_{k=1}^{N} S_k$$

of rank-one matrices $S_1, \ldots, S_N \in \mathbb{S}_+^{n+1}$ such that, for each $k \in [N]$, we have

$$\begin{align*}
(S_k)_{00} &= 1, \\
(S_k)_{0j} + (S_k)_{jj} &= 0 \quad \forall j \in [n].
\end{align*}$$
Theorem

If $C \subset \mathbb{R}^n$ is a compact convex set, then

$$C = \{ x \in \mathbb{R}^n : \langle w, x \rangle \leq \delta^*(C|w) \forall w \in \mathbb{Z}^n \}.$$

Let $C_I := \operatorname{conv}(C \cap \mathbb{Z}^n)$.

Using a bit more from IP theory, we conclude the following generalization of Hoffman's Theorem.

Corollary

If $C \subset \mathbb{R}^n$ is a nonempty compact convex set, then $C = C_I$ if and only if $\delta^*(C|w) \in \mathbb{Z}$ for every $w \in \mathbb{Z}^n$.
Theorem

If $C \subset \mathbb{R}^n$ is a compact convex set, then

$C = \{ x \in \mathbb{R}^n : \langle w, x \rangle \leq \delta^* (C|w) \forall w \in \mathbb{Z}^n \}$.

Let

$C_I := \text{conv}(C \cap \mathbb{Z}^n)$.
Theorem

If $C \subseteq \mathbb{R}^n$ is a compact convex set, then
\[C = \{ x \in \mathbb{R}^n : \langle w, x \rangle \leq \delta^*(C|w) \forall w \in \mathbb{Z}^n \} . \]

Let
\[C_I := \text{conv} (C \cap \mathbb{Z}^n) . \]

Using a bit more from IP theory, we conclude the following generalization of Hoffman’s Theorem.
Theorem

If $C \subset \mathbb{R}^n$ is a compact convex set, then

$$C = \{x \in \mathbb{R}^n : \langle w, x \rangle \leq \delta^*(C|w) \forall w \in \mathbb{Z}^n\}.$$

Let

$$C_I := \text{conv}(C \cap \mathbb{Z}^n).$$

Using a bit more from IP theory, we conclude the following generalization of Hoffman’s Theorem.

Corollary

If $C \subset \mathbb{R}^n$ is a nonempty compact convex set, then $C = C_I$ if and only if $\delta^*(C|w) \in \mathbb{Z}$ for every $w \in \mathbb{Z}^n$.
Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_{\text{i}}$;
(ii) every nonempty face of C contains an integral point;
(iii) for every $w \in \mathbb{R}^n$, $\max \{ \langle w, x \rangle : x \in C \}$ is attained by an integral vector;
(iv) every rational supporting hyperplane for C contains integral points;
(v) $\exists \bar{x} \in C$ such that for each $w \in \mathbb{Z}^n$, $\langle w, \bar{x} \rangle + \inf \{ \eta \in \mathbb{R}^+ : 1/\eta w \in (C - \bar{x}) \}$ is integrally attainable.
Theorem

Let $C \subset \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_I$;

(ii) every nonempty face of C contains an integral point;

(iii) for every $w \in \mathbb{R}^n$, $\max\{\langle w, x \rangle : x \in C\}$ is attained by an integral vector;

(iv) every rational supporting hyperplane for C contains integral points;

(v) $\exists \bar{x} \in C$ such that for each $w \in \mathbb{Z}^n$, $\langle w, \bar{x} \rangle + \inf\{\eta \in \mathbb{R}^+ : 1/\eta w \in (C - \bar{x})^o\} \in \mathbb{Z}$.
Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_I$;

(ii) every nonempty face of C contains an integral point;
Theorem

Let $C \subset \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_I$;

(ii) every nonempty face of C contains an integral point;

(iii) for every $w \in \mathbb{R}^n$, $\max\{\langle w, x \rangle : x \in C\}$ is attained by an integral vector;

(iv) every rational supporting hyperplane for C contains integral points;

(v) there exists $\bar{x} \in C$ such that for each $w \in \mathbb{Z}^n$, $\langle w, \bar{x} \rangle + \inf\{\eta \in \mathbb{R}^+ : \frac{1}{\eta}w \in (C - \bar{x})^o\} \in \mathbb{Z}$.

Marcel de Carli Silva, Levent Tunçel

Total Dual Integrality
Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_I$;

(ii) every nonempty face of C contains an integral point;

(iii) for every $w \in \mathbb{R}^n$, $\max\{\langle w, x \rangle : x \in C\}$ is attained by an integral vector;

(iv) every rational supporting hyperplane for C contains integral points;
Theorem

Let $C \subseteq \mathbb{R}^n$ be a nonempty compact convex set. Then, TFAE

(i) $C = C_I$;

(ii) every nonempty face of C contains an integral point;

(iii) for every $w \in \mathbb{R}^n$, $\max\{\langle w, x \rangle : x \in C \}$ is attained by an integral vector;

(iv) every rational supporting hyperplane for C contains integral points;

(v) $\exists \bar{x} \in C$ such that for each $w \in \mathbb{Z}^n$,

$$\langle w, \bar{x} \rangle + \inf \left\{ \eta \in \mathbb{R}_{++} : \frac{1}{\eta} w \in (C - \bar{x})^o \right\} \in \mathbb{Z}.$$
Definition

Let $\mathcal{L} : \mathbb{R}^k \rightarrow \mathbb{S}^{n+1}$ be a linear map. The system

$$\mathcal{A}(\hat{X}) \leq b, \hat{X} \succeq 0$$

is **TDI through \mathcal{L}**
Definition

Let $\mathcal{L} : \mathbb{R}^k \rightarrow \mathbb{S}^{n+1}$ be a linear map. The system

$$\mathcal{A}(\hat{\mathbf{X}}) \leq \mathbf{b}, \hat{\mathbf{X}} \succeq \mathbf{0}$$

is **TDI through \mathcal{L}** if for every $c \in \mathbb{Z}^k$, the SDP dual to

$$\sup \left\{ \langle \mathcal{L}(c), \hat{\mathbf{X}} \rangle : \mathcal{A}(\hat{\mathbf{X}}) \leq \mathbf{b}, \hat{\mathbf{X}} \succeq \mathbf{0} \right\}$$

has an “integral” optimal solution, whenever it has an optimal solution.
Definition

Let $\mathcal{L} : \mathbb{R}^k \to \mathbb{S}^{n+1}$ be a linear map. The system

$$\mathcal{A}(\hat{X}) \leq b, \hat{X} \succeq 0$$

is TDI through \mathcal{L} if for every $c \in \mathbb{Z}^k$, the SDP dual to

$$\sup \left\{ \langle \mathcal{L}(c), \hat{X} \rangle : \mathcal{A}(\hat{X}) \leq b \hat{X} \succeq 0 \right\}$$

has an “integral” optimal solution, whenever it has an optimal solution.

Note,

$$\hat{X} \text{ is of the form } \begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix}$$
Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $L : \mathbb{R}^k \to \mathbb{S}^{n+1}$. If b is integral, C is compact, and \hat{C} has a positive definite matrix, then $C = C_I$.

Marcel de Carli Silva, Levent Tunçel
Total Dual Integrality
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L}: \mathbb{R}^k \to \mathbb{S}^{n+1}$. Set $\hat{C} := \{ \hat{X} \in \mathbb{S}^{n+1}_+ : A(\hat{X}) \leq b \}$ and $C := \mathcal{L}^*(\hat{C}) \subseteq \mathbb{R}^k$. If b is integral, C is compact, and \hat{C} has a positive definite matrix, then $C = C^I$.

Marcel de Carli Silva, Levent Tunçel
Total Dual Integrality
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $L : \mathbb{R}^k \to \mathbb{S}^{n+1}$. Set $\hat{C} := \left\{ \hat{X} \in \mathbb{S}^{n+1}_+ : A(\hat{X}) \leq b \right\}$ and $C := L^*(\hat{C}) \subseteq \mathbb{R}^k$. If b is integral, C is compact, and \hat{C} has a positive definite matrix, then $C = C_I$.

Marcel de Carli Silva, Levent Tunçel
Total Dual Integrality
Theorem

Let $\mathcal{A}(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L} : \mathbb{R}^k \to \mathbb{S}_+^{n+1}$. Set $\hat{\mathcal{C}} := \left\{ \hat{X} \in \mathbb{S}_+^{n+1} : \mathcal{A}(\hat{X}) \leq b \right\}$ and $\mathcal{C} := \mathcal{L}^*(\hat{\mathcal{C}}) \subseteq \mathbb{R}^k$. If b is integral, \mathcal{C} is compact, and $\hat{\mathcal{C}}$ has a positive definite matrix, then $\mathcal{C} = \mathcal{C}_I$.
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $L: \mathbb{R}^k \to S^{n+1}$ such that b is integral.
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $L: \mathbb{R}^k \to \mathbb{S}^{n+1}$ such that b is integral. Suppose that $\hat{C} := \{ \hat{X} \in \mathbb{S}^{n+1}_+ : A(\hat{X}) \leq b \}$ has a positive definite matrix.
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L}: \mathbb{R}^k \to S^{n+1}$ such that b is integral. Suppose that

$$\hat{C} := \left\{ \hat{X} \in S^{n+1}_+ : A(\hat{X}) \leq b \right\}$$

has a positive definite matrix and that $C := \mathcal{L}^*(\hat{C}) \subseteq [0, 1]^k$ is compact.
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L}: \mathbb{R}^k \to S^{n+1}$ such that b is integral. Suppose that

$$\hat{C} := \left\{ \hat{X} \in S_{+}^{n+1} : A(\hat{X}) \leq b \right\}$$

has a positive definite matrix and that $C := \mathcal{L}^*(\hat{C}) \subseteq [0, 1]^k$ is compact. If \hat{C} is a rank-one embedding of C_{I} via \mathcal{L},
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L} : \mathbb{R}^k \rightarrow \mathbb{S}^{n+1}$ such that b is integral. Suppose that

$\hat{\mathcal{C}} := \left\{ \hat{X} \in \mathbb{S}^{n+1}_+ : A(\hat{X}) \leq b \right\}$ has a positive definite matrix and that $\mathcal{C} := \mathcal{L}^*(\hat{\mathcal{C}}) \subseteq [0, 1]^k$ is compact. If $\hat{\mathcal{C}}$ is a rank-one embedding of \mathcal{C}_I via \mathcal{L}, then for every $w \in \mathbb{Z}^k$, equality holds throughout in the chain of inequalities on the board,
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $\mathcal{L}: \mathbb{R}^k \to \mathbb{S}^{n+1}$ such that b is integral. Suppose that

$$\hat{\mathcal{C}} := \left\{ \hat{X} \in \mathbb{S}^{n+1}_+ : A(\hat{X}) \leq b \right\}$$

has a positive definite matrix and that $\mathcal{C} := \mathcal{L}^*(\hat{\mathcal{C}}) \subseteq [0, 1]^k$ is compact. If $\hat{\mathcal{C}}$ is a rank-one embedding of \mathcal{C}_I via \mathcal{L}, then for every $w \in \mathbb{Z}^k$, equality holds throughout in the chain of inequalities on the board, all optimum values are equal to

$$\max \left\{ \langle w, x \rangle : x \in \mathcal{C}_I \right\} ,$$
Theorem

Let $A(\hat{X}) \leq b$, $\hat{X} \succeq 0$ be TDI through a linear map $L: \mathbb{R}^k \rightarrow \mathbb{S}^{n+1}$ such that b is integral. Suppose that

$\hat{C} := \left\{ \hat{X} \in \mathbb{S}_{+}^{n+1} : A(\hat{X}) \leq b \right\}$ has a positive definite matrix and that $C := L^*(\hat{C}) \subseteq [0, 1]^k$ is compact. If \hat{C} is a rank-one embedding of C_I via L, then for every $w \in \mathbb{Z}^k$, equality holds throughout in the chain of inequalities on the board, all optimum values are equal to

$$\max \left\{ \langle w, x \rangle : x \in C_I \right\},$$

and all suprema and infima are attained.
Open Problems/research Directions

- Obtain a primal-dual symmetric integrality condition for SDPs that applies to arbitrary ILPs, not just binary ones.
Obtain a primal-dual symmetric integrality condition for SDPs that applies to arbitrary ILPs, not just binary ones.

Given $k \geq 1$ and the LS_+ operator of Lovász and Schrijver [1991](called N_+ in their paper), determine the class of graphs for which the kth iterate of the LS_+ operator applied to the system

$$x \geq 0, \quad x_i + x_j \leq 1 \quad \forall ij \in E$$

yields a TDI system through the appropriate lifting, leading to a family of combinatorial min-max theorems involving maximum weight stable sets in such graphs.
Obtain a primal-dual symmetric integrality condition for SDPs that applies to arbitrary ILPs, not just binary ones.

Given \(k \geq 1 \) and the \(LS_+ \) operator of Lovász and Schrijver [1991] (called \(N_+ \) in their paper), determine the class of graphs for which the \(k \)th iterate of the \(LS_+ \) operator applied to the system

\[
\begin{align*}
 x &\geq 0, \\
 x_i + x_j &\leq 1 \quad \forall \ ij \in E
\end{align*}
\]

yields a TDI system through the appropriate lifting, leading to a family of combinatorial min-max theorems involving maximum weight stable sets in such graphs.

Obtain systematic, primal-dual symmetric conditions for exactness in SDP relaxations for continuous problems.
Theorem

Every pointed closed convex set is the intersection of all closed rational halfspaces containing it.
Theorem

Every pointed closed convex set is the intersection of all closed rational halfspaces containing it.

This presentation was based on:

- M. K. de Carli Silva and L. T., Pointed closed convex sets are the intersection of all rational supporting closed halfspaces, arXiv:1802.03296