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Problems of inkerest for DNNs

Expressiveness: What family of functions can one represent
wsing DNNs?

Efficiency: How many layers (depth) and vertices (size)
needed represent functions in the family?

Training the network: Given architecture, data points (x,y),
find weights for the “best fit” function.

Greneralization error: Rademacher complexity, VC dimension
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Theorem (Arora, Basu, Miamjj, Mulkcher jee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function § in this family, we have:

1. £ is i RelU-DNN(N?, N2),
2. £ s NOT in RelLU-DNN(N, (1/2)NN - 1),

Moreover, this ﬁfogmiij is i owhe-to-one torresFoudQMte with

the Etorus Un N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.
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Opem Questions

Theore 1. Finer gaps and n »= 2. Recenkt resulk bﬁ
hatura Eldan-Shamir shows exgonem&iat W
such tb gap bebweenn 1 and 2 hidden Lave_rs.
Extend to k v/s k+l? Kk = 0(1) vW/s k =

Log(n)?
. Restrict function to Boolean hsjpemuba.
Obtain gap results Like in Boolean circuit

Moreon complexiby,
the tor

Remark: More general versions, Appraxima&mm versions.
n>=2 versioh using z.omoﬁopai NoTMS,




[ Depth v/s size tradeotfs for RelU DNNs ]

Restricting inputs to Boolean vaem‘:ube (Mulkher jee, Basu
2017):

1. 2 hidden layers always suffice: Any function on Boolean
hypercube is a Linear combination of the vertex-indicator
functions. Each vertex indicator function can be
implemented by a single RelU gate.

. Exponential lower bounds on RelU DNNs of 0O(ne) depth
to implement certain Boolean functions (Jor ¢ < 1/%)
under certain weight restrictions on first layer. Also
implies some new Boolean circuil complexity resulls with
LTF gates.

Discrete Greomelry Techniques: Method of sign-rank and
random restrictions.
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[ Training Algorithm for RelU-DNN(1,w) )

Theorem (Arora, Basu, Miamjj, Mulkcherjee 2016): For. Let n,
«» be natural numbers, and (x!, vl), e v“) a set of D
data points in R* x R. There exists an algorithm that solves
the following training erca«bi.am to global optimality

minf [F(x2) - g + o+ [P - 9Pl 0 F i RelU-DNN(L,w) §

The running time of the algorithm is 2« D Pcriy(b,u,w)ﬁ

Remark: More qgeneral convex loss functions can be handled
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Equév&i&hﬂv:

There is a hyperplane arrangement such that the function is
affine Linear in each cell of the hyperplane arrangement and
whenever we “cross” a hyperplane in the arrangement, the
value changes b:j the same Linear function.,
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[ Training Algorithm for RelU-DNN(1,w) )

Theorevw
w be n
daka p<
the foll

Opeh Questions

1. Exponen&mi dependemae on size
Me«cessarv?

2. Training with 2 or more hidden layers.
mim{ ‘

The runiing time of the alqorithm is 2% D Fwi.v(‘ﬁ,m,w)

Remark: More general convex loss functions can be handled




Thanlke vc:)u,!

Questions/Comments/Answers?




