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f(x) = max{0,x} — Rectified 
Linear Unit (ReLU)              
f(x) = ex/(1 + ex) — Sigmoid
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Problems of interest for DNNs

• Expressiveness: What family of functions can one represent 
using DNNs?

• Efficiency: How many layers (depth) and vertices (size) 
needed represent functions in the family?

• Training the network: Given architecture, data points (x,y), 
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension
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2. f is NOT in ReLU-DNN(N, (1/2)NN - 1). 

Moreover, this family is in one-to-one correspondence with 
the torus in N dimensions. 

Remark: More general versions, Approximation versions.  
n>=2 version using zonotopal norms.
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Open Questions

1. Finer gaps and n >= 2. Recent result by 
Eldan-Shamir shows exponential in ’n’ 
gap between 1 and 2 hidden layers. 
Extend to k v/s k+1?  k = O(1) v/s k = 
log(n)? 

2. Restrict function to Boolean hypercube. 
Obtain gap results like in Boolean circuit 
complexity.  
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Depth v/s size tradeoffs for ReLU DNNs

Restricting inputs to Boolean Hypercube (Mukherjee, Basu 
2017):  

1. 2 hidden layers always suffice: Any function on Boolean 
hypercube is a linear combination of the vertex-indicator 
functions. Each vertex indicator function can be 
implemented by a single ReLU gate.  

2. Exponential lower bounds on ReLU DNN’s of O(nc) depth 
to implement certain Boolean functions (for c < 1/8) 
under certain weight restrictions on first layer. Also 
implies some new Boolean circuit complexity results with 
LTF gates.

Discrete Geometry Techniques: Method of sign-rank and 
random restrictions.



Problems of interest for DNNs

• Expressiveness: What family of functions can one represent 
using DNNs?

• Efficiency: How many layers (depth) and vertices (size) 
needed to represent functions in the family?

• Training the network: Given architecture, data points (x,y), 
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension



Training Algorithm for ReLU-DNN(1,w)

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For. Let n, 
w be natural numbers, and (x1, y1), … , (xD, yD) a set of D 
data points in Rn x R. There exists an algorithm that solves 
the following training problem to global optimality 

min{ |F(x1) - y1| + … + |F(xD) - yD| :  F in ReLU-DNN(1,w)  } 

The running time of the algorithm is 2w Dnw poly(D,n,w).

Remark: More general convex loss functions can be handled
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max{0, < p1, x > + q1} + … + max{0, < pk, x > + qk} 

- max{0, < n1, x > + h1} - … - max{0, < ns, x > + hs}

Equivalently: 

There is a hyperplane arrangement such that the function is  
affine linear in each cell of the hyperplane arrangement and 
whenever we ``cross” a hyperplane in the arrangement, the 
value changes by the same linear function. 
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Open Questions

1. Exponential dependence on size ‘w’ 
necessary? 

2. Training with 2 or more hidden layers.  



Thank you! 

Questions/Comments/Answers?


