
Amitabh Basu

Johns Hopkins University

Discrete Geometry meets
Machine Learning

Optimization and Discrete Geometry conference

Tel-Aviv University, April 24, 2018

Joint work with Raman Arora, Poorya Mianjy, Anirbit Mukherjee

What is a Deep Neural Network (DNN) ?

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• Weights on every edge and
every vertex

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• Weights on every edge and
every vertex

2

1.65

�6.8
3

�1

0.53

2.45

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• Weights on every edge and
every vertex

2

1.65

�6.8
3

�1

0.53

2.45

• R -> R “Activation Function”
Examples:
f(x) = max{0,x} — Rectified
Linear Unit (ReLU)
f(x) = ex/(1 + ex) — Sigmoid

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• Weights on every edge and
every vertex

2

1.65

�6.8
3

�1

0.53

2.45

• R -> R “Activation Function”
Examples:
f(x) = max{0,x} — Rectified
Linear Unit (ReLU)
f(x) = ex/(1 + ex) — Sigmoid

• Sources = input, Sinks = output

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• Weights on every edge and
every vertex

• R -> R “Activation Function”
Examples:
f(x) = max{0,x} — Rectified
Linear Unit (ReLU)
f(x) = ex/(1 + ex) — Sigmoid

• Sources = input, Sinks = output

2

1.65

�6.8
3

�1

0.53

2.45

x1

x2

x3

y1

y2

• Weights on every edge and
every vertex

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• R -> R “Activation Function”
Examples:
f(x) = max{0,x} — Rectified
Linear Unit (ReLU)
f(x) = ex/(1 + ex) — Sigmoid

• Sources = input, Sinks = output

2

1.65

�6.8
3

�1

0.53

2.45

x1

x2

x3

y1

y2

a1

a2

a

k

b

u1

u2

u

k

o

o = f (a1u1 + a2u2 + . . . + a

k

u

k

+ b)

• Weights on every edge and
every vertex

What is a Deep Neural Network (DNN) ?

• Directed Acyclic Graph (Network Architecture)

• R -> R “Activation Function”
Examples:
f(x) = max{0,x} — Rectified
Linear Unit (ReLU)
f(x) = ex/(1 + ex) — Sigmoid

• Sources = input, Sinks = output

2

1.65

�6.8
3

�1

0.53

2.45

x1

x2

x3

y1

y2

a1

a2

a

k

b

u1

u2

u

k

o

o = max{0, a1u1+a2u2+ . . .+a

k

u

k

+ b}

Problems of interest for DNNs

• Expressiveness: What family of functions can one represent
using DNNs?

• Efficiency: How many layers (depth) and vertices (size)
needed represent functions in the family?

• Training the network: Given architecture, data points (x,y),
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension

Problems of interest for DNNs

• Expressiveness: What family of functions can one represent
using DNNs?

• Efficiency: How many layers (depth) and vertices (size)
needed represent functions in the family?

• Training the network: Given architecture, data points (x,y),
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension

Calculus of DNN functions

Calculus of DNN functions

• f in DNN(k,s), c in R => cf in DNN(k,s)

• f1 in DNN(k1,s1), f2 in DNN(k2,s2) => f1 + f2 in DNN(max{k1,k2}, s1+s2)

• f1 in DNN(k1,s1), f2 in DNN(k2,s2) => f1 o f2 in DNN(k1+k2, s1+s2)

• f1 in ReLU-DNN(k1,s1), f2 in ReLU-DNN(k2,s2) =>
max{f1 , f2} in ReLU-DNN(max{k1,k2}+1, s1+s2+4)

• Affine functions can be implemented in ReLU-DNN(1,2n)

Problems of interest for DNNs

• Expressiveness: What family of functions can one represent
using DNNs?

• Efficiency: How many layers (depth) and vertices (size)
needed to represent functions in the family?

• Training the network: Given architecture, data points (x,y),
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension

Expressiveness of ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): Any ReLU
DNN with ’n’ inputs implements a continuous piecewise
affine function on Rn. Conversely, any continuous
piecewise affine function on Rn can be implemented by
some ReLU DNN. Moreover, at most log(n+1) hidden layers
are needed.

Expressiveness of ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): Any ReLU
DNN with ’n’ inputs implements a continuous piecewise
affine function on Rn. Conversely, any continuous
piecewise affine function on Rn can be implemented by
some ReLU DNN. Moreover, at most log(n+1) hidden layers
are needed.

Proof: Result from circuits literature [Wang and Sun 2006]
says any continuous piecewise affine function can be
written as

c1max{l11,l12, …, l1n+1} + … + ckmax{lk1,lk2, …, lkn+1}

Expressiveness of ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): Any ReLU
DNN with ’n’ inputs implements a continuous piecewise
affine function on Rn. Conversely, any continuous
piecewise affine function on Rn can be implemented by
some ReLU DNN. Moreover, at most log(n+1) hidden layers
are needed.

Proof: Result from circuits literature [Wang and Sun 2006]
says any continuous piecewise affine function can be
written as

c1max{l11,l12, …, l1n+1} + … + ckmax{lk1,lk2, …, lkn+1}

ReLU-DNN(1, *)

ReLU-DNN(2, *)

ReLU-DNN(3, *)

ReLU-DNN(log(n+1), *)

Open Question

Problems of interest for DNNs

• Expressiveness: What family of functions can one represent
using DNNs?

• Efficiency: How many layers (depth) and vertices (size)
needed to represent functions in the family?

• Training the network: Given architecture, data points (x,y),
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Fact: Any R -> R PWL function with p pieces
is in ReLU-DNN(1,p+1)

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Fact: Any R -> R PWL function with p pieces
is in ReLU-DNN(1,p+1)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Calculus of DNN functions

• f in DNN(k,s), c in R => cf in DNN(k,s)

• f1 in DNN(k1,s1), f2 in DNN(k2,s2) => f1 + f2 in DNN(max{k1,k2}, s1+s2)

• f1 in DNN(k1,s1), f2 in DNN(k2,s2) => f1 o f2 in DNN(k1+k2, s1+s2)x

f2 f1 f1 � f2

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Fact: Any R -> R PWL function with p pieces
is in ReLU-DNN(1,p+1)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Fact: Any R -> R function in ReLU(k, w) has
at most O(w^k) pieces

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Fact: Any R -> R function in ReLU(k, w) has
at most O(w^k) pieces

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.4

-0.2

0

0.2

0.4

0.6

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Depth v/s size tradeoffs for ReLU DNNs

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For every
natural number N, there exists a family of R -> R functions
such that for any function f in this family, we have:

1. f is in ReLU-DNN(N2, N3).
2. f is NOT in ReLU-DNN(N, (1/2)NN - 1).

Moreover, this family is in one-to-one correspondence with
the torus in N dimensions.

Open Questions

1. Finer gaps and n >= 2. Recent result by
Eldan-Shamir shows exponential in ’n’
gap between 1 and 2 hidden layers.
Extend to k v/s k+1? k = O(1) v/s k =
log(n)?

2. Restrict function to Boolean hypercube.
Obtain gap results like in Boolean circuit
complexity.

Remark: More general versions, Approximation versions.
n>=2 version using zonotopal norms.

Depth v/s size tradeoffs for ReLU DNNs

Restricting inputs to Boolean Hypercube (Mukherjee, Basu
2017):

1. 2 hidden layers always suffice: Any function on Boolean
hypercube is a linear combination of the vertex-indicator
functions. Each vertex indicator function can be
implemented by a single ReLU gate.

2. Exponential lower bounds on ReLU DNN’s of O(nc) depth
to implement certain Boolean functions (for c < 1/8)
under certain weight restrictions on first layer. Also
implies some new Boolean circuit complexity results with
LTF gates.

Discrete Geometry Techniques: Method of sign-rank and
random restrictions.

Problems of interest for DNNs

• Expressiveness: What family of functions can one represent
using DNNs?

• Efficiency: How many layers (depth) and vertices (size)
needed to represent functions in the family?

• Training the network: Given architecture, data points (x,y),
find weights for the ``best fit” function.

• Generalization error: Rademacher complexity, VC dimension

Training Algorithm for ReLU-DNN(1,w)

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For. Let n,
w be natural numbers, and (x1, y1), … , (xD, yD) a set of D
data points in Rn x R. There exists an algorithm that solves
the following training problem to global optimality

min{ |F(x1) - y1| + … + |F(xD) - yD| : F in ReLU-DNN(1,w) }

The running time of the algorithm is 2w Dnw poly(D,n,w).

Remark: More general convex loss functions can be handled

Training Algorithm for ReLU-DNN(1,w)

Characterization of ReLU(1,w) functions:

max{0, < p1, x > + q1} + … + max{0, < pk, x > + qk}

- max{0, < n1, x > + h1} - … - max{0, < ns, x > + hs}

Equivalently:

There is a hyperplane arrangement such that the function is
affine linear in each cell of the hyperplane arrangement and
whenever we ``cross” a hyperplane in the arrangement, the
value changes by the same linear function.

Equivalently:

There is a hyperplane arrangement such that the function is
affine linear in each cell of the hyperplane arrangement and
whenever we ``cross” a hyperplane in the arrangement, the
value changes by the same linear function.

Training Algorithm for ReLU-DNN(1,w)

Characterization of ReLU(1,w) functions:

max{0, < p1, x > + q1} + … + max{0, < pk, x > + qk}

- max{0, < n1, x > + h1} - … - max{0, < ns, x > + hs}

x1

x2

ya

j

i

c

j

b

j

y = c1max{0, ha1, xi + b1} + c2max{0, ha2, xi + b2} + c3max{0, ha3, xi + b3}

Training Algorithm for ReLU-DNN(1,w)

Characterization of ReLU(1,w) functions:

max{0, < p1, x > + q1} + … + max{0, < pk, x > + qk}

- max{0, < n1, x > + h1} - … - max{0, < ns, x > + hs}

Equivalently:

There is a hyperplane arrangement such that the function is
affine linear in each cell of the hyperplane arrangement and
whenever we ``cross” a hyperplane in the arrangement, the
value changes by the same linear function.

Training Algorithm for ReLU-DNN(1,w)

Training Algorithm for ReLU-DNN(1,w)

Training Algorithm for ReLU-DNN(1,w)

Training Algorithm for ReLU-DNN(1,w)

Training Algorithm for ReLU-DNN(1,w)

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For. Let n,
w be natural numbers, and (x1, y1), … , (xD, yD) a set of D
data points in Rn x R. There exists an algorithm that solves
the following training problem to global optimality

min{ |F(x1) - y1| + … + |F(xD) - yD| : F in ReLU-DNN(1,w) }

The running time of the algorithm is 2w Dnw poly(D,n,w).

Remark: More general convex loss functions can be handled

Training Algorithm for ReLU-DNN(1,w)

Theorem (Arora, Basu, Mianjy, Mukherjee 2016): For. Let n,
w be natural numbers, and (x1, y1), … , (xD, yD) a set of D
data points in Rn x R. There exists an algorithm that solves
the following training problem to global optimality

min{ |f(x1) - y1| + … + |f(xD) - yD| : f in ReLU-DNN(1,w) }

The running time of the algorithm is 2w Dnw poly(D,n,w).

Remark: More general convex loss functions can be handled

Open Questions

1. Exponential dependence on size ‘w’
necessary?

2. Training with 2 or more hidden layers.

Thank you!

Questions/Comments/Answers?

