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Online Algs and Alg. Game Theory

 Online algorithms: requests arrive online, optimize some quality 
of service. 

 Worst-case paradigm Competitive ratio = max
I

ALG(I)/OPT (I)

 Algorithmic Game Theory: players are self-interested, characterize 
the inefficiency of games. 

 Worst-case paradigm Price of anarchy = max
I

NE(I)/OPT (I)



Settings

Goal: minimize the total cost incurred on resources

General online problem

Requests: arrive online. Set of feasible strategies of 

Si = {sij ⇢ R : 1  j  mi}

Resources:    .  The cost of a resource fe : 2N ! R+R
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General online problem

Requests: arrive online. Set of feasible strategies of 

Si = {sij ⇢ R : 1  j  mi}

Resources:    .  The cost of a resource fe : 2N ! R+R

Goal: characterize the price of anarchy

General game

Players: self-interested. Set of feasible strategies of 

Si = {sij ⇢ R : 1  j  mi}

Resources:    .  The cost of a resource fe : 2N ! R+R
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Example

Goal: complete all jobs and minimize the total energy

Energy minimization

Machine: unrelated machines, speed scalable

rjJobs: arrive at    , deadline     , volume      , preemptive  pijdj

Energy: energy power function is             ,  typically    P (s(t)) s(t)↵

 Known results:      

e↵ -competitive

offline unrelated machines (Makarychev et al.)
↵↵-competitive

online one machine (Bansal et al.’05)

non-migration
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 Minimum Power Survival Routing

s1

s2

t2

t1
 each request demands 

k-edge disjoint paths

 costs on edges

 minimize total cost 

20

35
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Examples

 Online Vector Scheduling

 multiple machines

 online multi-dimensional jobs

 minimize the norms of the load vector.

 Online Non-Convex Facility Location

 clients assigned online to facility

 facilities: opening cost + serving cost

 minimize total cost.
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Integrality gap

min
mX

e=1

x↵
e

mX

e=1

xe = 1

xe 2 {0, 1}

OPT = 1

OPTf = m · 1

m↵

1/m

1/m

1/m

 Natural linear formulation: one request

ALGOPT
fractional 

OPT
a lower 
bound



Configuration LPs: a new way

 No need of separation oracles and rounding 
(typical approaches for configuration LPs)

 Light-weight algorithms.

 Systematically reduce integrality gap for (non-linear) problems.

 Design (online) primal-dual algorithms



Smoothness

 Definition: a function    is         -smooth if f (�, µ)

nX

i=1

[f(Ai [ bi)� f(Ai)]  � · f(B) + µ · f(A)

8A1 ⇢ A2 ⇢ . . . ⇢ An = A,B = {b1, . . . , bn}

 Similar notion in algorithmic game theory (Roughgarden’15)
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Configuration LP
A configuration A is subset of requests

xij = 1 if request    selects strategy i sij 2 Si

for some strategy
iff for every request          ,zeA = 1 i 2 A xij = 1

sij : e 2 sij

min
X

e,A

fe(A)ze,A

X

j:sij2Si

xij = 1 8i

X

A:i2A

zeA =
X

j:e2sij

xij 8i, e

X

A

zeA = 1 8e

xij , zeA 2 {0, 1} 8i, j, e, A
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Primal-Dual

 Algorithm: at the arrival of a request, select a strategy that 
incurs the minimum marginal cost

min
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Competitiveness
 Theorem:  Assume that resource cost functions are         

-smooth. Then the algorithm is               -competitive. 
(�, µ)

�/(1� µ)

 Proof:

↵i =
1

�
(increase of the total cost 

due to the request)

(increase of the cost on 
the resource if the request 

uses this resource)
�i,e =

1

�

�e = �µ

�
(the total cost of the resource)

max
X

i

↵i +
X

e

�e

↵i 
X

e:e2sij

�ie 8i, j

�e +
X

i2A

�ie  fe(A) 8e,A



Price of anarchy
 Theorem:  Assume that resource cost functions are         

-smooth. Then the price of anarchy is               -competitive. 
(�, µ)

�/(1� µ)

 Proof:

↵i =
1

�
(cost of player i)

Fix a Nash equilibrium

(cost of player i on resource e)�i,e =
1

�

�e = �µ

�
(cost of the Nash equilibrium)

max
X

i

↵i +
X

e

�e

↵i 
X

e:e2sij

�ie 8i, j

�e +
X

i2A

�ie  fe(A) 8e,A



Applications

 Proof:

The functions is                                -smooth  

✓
⇥
�
↵↵�1

�
,
↵� 1

↵

◆

 Corollary: If the cost functions are                  then the 
algorithm is            -competitive. This is optimal for several 
problems. 

f(z) = z↵

O
�
↵
↵
�
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Goal: minimize a cost function of resources subject to the 
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Non-Convex Packing

Goal: minimize a cost function of resources subject to the 
constraints.

Non-convex packing problem

Constraints: offline  

Resources:     revealed online, one by one.R

 Known results:      

convex: recent online primal-dual framework (Azar et al.’16)

linear: elegant online primal-dual framework Buchbinder and Naor

X

e

bi,exe  1 8i



Configuration LP

max
X

S

f(S)zS

X

e

bi,e · xe  1 8i

X

S:e2S

zS = xe 8e

X

S

zS = 1

xe, zS 2 {0, 1} 8e, S

min
X

i

↵i + �

X

i

bi,e · ↵i � �e 8e

� +
X

e2S

�e � f(S) 8S

↵i � 0 8i

zS =
Y

e2S

xe

Y

e/2S

(1� xe)



Algorithm

dowhile
X

i

bi,e↵i 
1

�
reF (x) & reF (x) > 0

 Increase      with ratexe
1

reF (x) · ln(1 + d⇢)

 Increase      such that↵i
@↵i

@⌧
 bi,e · xe

reF (x)
+

1

d�

 Algorithm

⇢ := max
i

max
e,e0:bie0>0

bie/bie0d := max
i

|{bie : bie > 0}|

F : [0, 1]n ! R is the multilinear extension of f

F (x) :=
X

S

f(S)
Y

e2S

xe

Y

e/2S

(1� xe)



Result

 Definition: a function    is         -max-locally smooth if (�, µ)F

 Corollary: If the cost function is submodular then the 
algorithm has competitive ratio 

X

e2S

reF (x) � �F
�
1S

�
� µF

�
x
�

8S, x.

(�, µ) Theorem:  Assume that cost function is         -locally 
smooth.  Then there exists an algorithm with competitive 
ratio 

O
�2 ln(1 + d⇢) + µ

�

�

O
�
ln(1 + d⇢)

�
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Goal: minimize the cost subject to the constraints.

Non-convex covering problem

Constraints: arrive online  
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Resources:     given offline.  R

 Known results:      

convex: recent online primal-dual framework (Azar et al.’16)

linear: elegant online primal-dual framework Buchbinder and Naor
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Result

 Definition: a function    is         -min-locally smooth if (�, µ)

X

e2S

reF (x)  � · F
�
1S

�
+ µ · F

�
x
�

8S ⇢ R

F

 Theorem:  Assume that resource cost function is                     
-locally smooth. Then there exists an algorithm that outputs 
a                -competitive fractional solution. �/(1� µ)

�
�, µ/ logm

�

 Corollary: If the cost functions are                  then the 
algorithm is                       -competitive. This competitive ratio 
is tight.

f(z) = z↵

O(↵↵ log↵ m)



Conclusion

 Primal-dual framework for non-linear/non-convex functions.

 Applicable for different classes of optimization problems.

 Applicable for game theory problems.
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 Primal-dual framework for non-linear/non-convex functions.

 Applicable for different classes of optimization problems.

 Applicable for game theory problems.


