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Arbitrarily-grown cost functions



Online Algs and Alg. Game Theory

0 Online algorithms: requests arrive online, optimize some quality
of service.

0Worst-case paradigm  Competitive ratio = max ALG(I)/OPT(I)

0 Algorithmic Game Theory: players are self-interested, characterize
the inefficiency of games.

0 Worst-case paradigm Price of anarchy = max NE(I)/OPT(I)
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——General online problem
Resources: R. The cost of a resource fe : oN S RT

Requests: arrive online. Set of feasible strategies of
Si=45,; CR:1<7<my}

Goal: minimize the total cost incurred on resources
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——General game

Resources: R. The cost of a resource f. : oN S RT

Players: self-interested. Set of feasible strategies of
Si={si; CR:1<j<m;}

Goal: characterize the price of anarchy
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——Energy minimization

Example

Machine: unrelated machines, speed scalable

Jobs: arrive at 7, deadline d;, volume p;;, preemptive
non-migration

Energy: energy power function is P(s(t)), typically s(?)

Goal: complete all jobs and minimize the total energy
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@ Known results:

online one machine (Bansal et al/05)  e™-competitive

offline unrelated machines (Makarychev et al.)
a“-competitive
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k-edge disjoint paths

O costs on edges
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Examples

0 Online Vector Scheduling

© multiple machines
© online multi-dimensional jobs

O minimize the norms of the load vector.

0 Online Non-Convex Facility Location
o clients assigned online to facility
O facilities: opening cost + serving cost

O minimize total cost.
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Integrality gap

a lower fractional
bound OPT OPT ALG

— >

© Natural linear formulation: one request
min Z e L/m
- e=1 ‘/l/m\:‘ OPT =1
erzl \1/m/ OPTf:m-L
e=1

r. € {0,1}




Configuration LPs:a new way

o Systematically reduce integrality gap for (non-linear) problems.

o Design (online) primal-dual algorithms

© No need of separation oracles and rounding
(typical approaches for configuration LPs)

O Light-weight algorithms.



Smoothness

0 Definition: a function f is (A, it)-smooth if

VA1 CAyC...CA,=A B={by,...,b,}

n

D (A Ub) — f(A)] < A f(B) + - f(A)

1=1

© Similar notion in algorithmic game theory (Roughgarden’|5)
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A configuration A is subset of requests
x;; = 1 if request ; selects strategy s;; € S;

zea = 1 iff for every request i € A, z;; =1
for some strategy s;; : € € Sy,

HllIlE :fe(A)Ze,A
e,A
J:8:i; €S
E ZeA = E Tij Vi, e
AeA j:eES,,;j
g Zoa = 1 Ve
A

TijyZeA € {071} \V/ivjveaA



Primal-Dual
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Primal-Dual
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decision rule

AneA J:€ESi; Ye + Z Bie < fe(A)

E LeA — 1 €A

smooth inequality

0 Algorithm: at the arrival of a request, select a strategy that
incurs the minimum marginal cost
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o Theorem: Assume that resource cost functions are (A, i)
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Competitiveness

o Theorem: Assume that resource cost functions are (A, i)
-smooth.Then the algorithm is A/(1 — u)-competitive.

O Proof: _— Z i Z .

(4 (&
1 . . .
a; = — (increase of the total cost a; < Z Bio Vi, ]
due to the request) =iy
(increase of the cost on Ve T Z Bie < fe(A) Ve, A
Bie = — the resource if the request 1€A

uses this resource)

Ye = —% (the total cost of the resource)



Price of anarchy

o Theorem: Assume that resource cost functions are (A, i)
-smooth.Then the price of anarchy is A\/(1 — u)-competitive.

0 Proof:  Fix a Nash equilibrium ax Z a4 Z 5
1 , Z 6 .
i =+ (cost of player i) Qi < e; Bie V1,

1
Bie = X (cost of player i on resource e)

Ye = —% (cost of the Nash equilibrium)



Applications

@ Corollary: If the cost functions are f(z) = 2 then the
algorithm is O(Ozo‘)-competitive.This is optimal for several
problems.

0O Proof:

a— 1

84

The functions is (6 (Oza_l) : ) -smooth



Non-Convex Packing

——MNon-convex packing problem

Resources: R revealed online, one by one.

Constraints: offline Zbi,eﬂi‘e <1 Wi

Goal: minimize a cost function of resources subject to the
constraints.
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Resources: R revealed online, one by one.
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¥ Known results:

linear: elegant online primal-dual framework Buchbinder and Naor

convex: recent online primal-dual framework (Azar et al. | 6)



Configuration LP

maXZf(S)ZS minZOéz' + 7
S i
Zbi,e " Le < 1 Wi Zbi,e o7 Z 56 Ve
Zzszxe Ve 7+Zﬁer(S) VS
S:ecS ecS
ZZS =1 8% Z 0 Vi
S

T.,z5 € {0,1} Ve, S



Algorithm

F 10,1 = R is the multilinear extension of f

Pe) =3 £(5) ] #e [T (1 — o)
S

e€S  e¢S
d := max |{bjc : bie > 0} pi=max max bie/bier
0 Algorithm

while meai < %VeF(x) & V. F(z) >0 do

1
VF(x)-In(1+ dp)
6‘041- bz e " Le 1
O Increase «; such that ¢ : |

oT VeF(x) dA

O Increase x. with rate




Result

0 Definition: a function F'is (A, 1t)-max-locally smooth if

Z V.F(x) > AF(1g) — pF () VS, .

ecS

@ Theorem: Assume that cost function is (A, i )-locally

smooth. Then there exists an algorithm with competitive

ratio 21n(1—|—dp)+,u)

O 3

o Corollary: If the cost function is submodular then the
algorithm has competitive ratio O(ln(l + dp))
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Result

0 Definition: a function F'is (A, 1t)-min-locally smooth if

Y VF(x)<A-F(ls)+pu-F(x) VSCR

ecS

& Theorem: Assume that resource cost function is ()\, u/ log m)
-locally smooth. Then there exists an algorithm that outputs
a \/(1 — p)-competitive fractional solution.

@ Corollary: If the cost functions are f(z) = z“ then the
algorithm is O(a® log™ m)-competitive. This competitive ratio
is tight.
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& Primal-dual framework for non-linear/non-convex functions.
o Applicable for different classes of optimization problems.

o Applicable for game theory problems.
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