

Handling difficult linking constraints in CG

CERMICS

Axel Parmentier Tel Aviv, April 2018 How fixed point theorems in ordered algebraic structures enable to design practically efficient algorithms for industrial routing problems.

Problem settings

time

Build sequences of tasks operated

Column generation

$$\begin{split} \min \sum_{P \in \mathcal{P}} c_P x_P \\ \sum_{P \ni v} x_P = 1 \qquad \forall v \\ x_P \in \{0, 1\} \end{split}$$

- Path cost not linear in arc costs
- Path must satisfy constraints

Constraint example Limited number of arcs in *P*

Column generation primer

Restricted master problem $\mathcal{P}' \subset \mathcal{P}$, with $|\mathcal{P}'| \ll |\mathcal{P}|$

$$\begin{array}{ll} \min_{x} & \sum_{P \in \mathcal{P}} c_{r} x_{r} \\ \mathrm{st} & \sum_{P \ni v} x_{v} = 1 \quad \forall \ell \in \mathcal{L} \\ & x_{r} \geq 0 \end{array}$$

Column generation primer

Restricted master problem $\mathcal{P}' \subset \mathcal{P}$, with $|\mathcal{P}'| \ll |\mathcal{P}|$

$$\begin{array}{ll} \min_{x} & \sum_{P \in \mathcal{P}} c_{r} x_{r} \\ \mathrm{st} & \sum_{P \ni v} x_{v} = 1 \quad \forall \ell \in \mathcal{L} \\ & x_{r} \geq 0 \end{array}$$

Restricted dual problem

$$\begin{array}{ll} \max & \sum_{v \in V} y_v \\ \text{s.t.} & \sum_{v \in P} y_P \leq c_P \quad \forall P \in \mathcal{P}' \end{array}$$

Pricing subproblem

$$\min_{P\in\mathcal{P}}c_P-\sum_{v\in P}y_P$$

Algorithm:

- \blacktriangleright solve on \mathcal{P}'
- solve pricing subproblem
- add violated dual constraint to P'

Column generation primer

Restricted master problem $\mathcal{P}' \subset \mathcal{P}$, with $|\mathcal{P}'| \ll |\mathcal{P}|$

$$\begin{array}{ll} \min_{x} & \sum_{P \in \mathcal{P}} c_{r} x_{r} \\ \mathrm{st} & \sum_{P \ni v} x_{v} = 1 \quad \forall \ell \in \mathcal{L} \\ & x_{r} \geq 0 \end{array}$$

Restricted dual problem

$$\begin{array}{ll} \max & \sum_{\nu \in V} y_{\nu} \\ \text{s.t.} & \sum_{\nu \in P} y_{P} \leq c_{P} \quad \forall P \in \mathcal{P}' \end{array}$$

Pricing subproblem

$$\min_{P\in\mathcal{P}}c_P-\sum_{v\in P}y_P$$

Key element in the performance: pricing subproblem algorithm

 $\in \mathcal{F}$

- \blacktriangleright solve on \mathcal{P}'
- solve pricing subproblem
- add violated dual constraint to *P*'

 \mathcal{T}

Resource constrained shortest path algorithm

Resource constrained shortest path algorithm

Pricing subproblem is a resource constrained shortest path algorithm

Instance	V	Alg	RCSP time	Pricing	Total time
			av (mm:ss)	time	(hh:mm:ss)
CP50	290	LS	00:00.560	97.55%	00:04:37.5
		LC	00:01.275	97.38%	00:11:36.9
		Our A*	00:00.016	59.87%	00:00:17.2
CP70	408	LS	00:11.489	99.52%	05:07:05.0
		LC	00:17.157	99.56%	07:28:22.2
		Our A*	00:00.039	58.48%	00:01:12.1
CP90	516	LS	00:40.707	Stopped after 48h	
		LC	01:42.864	Stopped after 48h	
		Our A*	00:00.340	81.86%	00:12:36.3
A318	669	LS	00:53.009	Stopped after 48h	
		LC	01:36.035	Stopped after 48h	
		Our A*	00:01.651	86.97%	01:32:49.6

Application of the method to Air France crew pairing problem (joint work with F. Meunier)

1. Monoid resource constrained shortest path

- 1.1 Frameworks
- 1.2 Algorithms
- 1.3 Computing bounds

2. Handling border constraints

For each arc *a* a resource $q_a \in \mathcal{R}$

- ▶ Associative binary operator \oplus : path resources
- Neutral element 0: empty path

 (\mathcal{R},\oplus) is a monoid.

► An order \leq compatible with \oplus : $q \leq \tilde{q} \Rightarrow \begin{cases} r \oplus q \leq r \oplus \tilde{q} \\ a \oplus r \leq \tilde{q} \oplus r \end{cases}$

 $(\mathcal{R},\oplus,\preceq)$ is an ordered monoid.

Non-decreasing cost c and constraint ρ functions.

- Digraph D = (V, A)
- ▶ Two vertices $o, d \in V$
- ▶ Resources $q_a \in \mathcal{R}$
- ► Two non-decreasing oracles $c : \mathcal{R} \to \mathbb{R}$ $\rho : \mathcal{R} \to \{0, 1\}$

Output:

An *o*-*d* path *P* such that $\rho\left(\bigoplus_{a\in P} q_a\right) = 0$

which minimizes

$$c\left(\bigoplus_{a\in P}q_a\right)$$

Given an ordered monoid
$$(\mathcal{R}, \oplus, \preceq)$$

Input:

- Digraph D = (V, A)
- Two vertices $o, d \in V$
- Resources $q_a \in \mathcal{R}$
- ► Two non-decreasing oracles $c : \mathcal{R} \to \mathbb{R}$ $\rho : \mathcal{R} \to \{0, 1\}$

Output:

An o-d path P such that

$$ho\left(igoplus_{a\in P}q_a
ight)=0$$

which minimizes

$$c\left(\bigoplus_{a\in P}q_a\right)$$

• $q = (\delta, \tau)$

• Cost:
$$c(q) = \lambda_1 \delta + \lambda_2 \tau$$

• On time arrival: $ho(m{q}) = \mathbb{1}_{(au_0,+\infty)}(au)$

Usual A* algorithm

A path $P \in \mathcal{P}_{ov}$ satisfying $q_P + b_v > C_{od}^{UB}$ is not the subpath of an optimal path.

Generate all the paths satisfying

$$q_P + b_v \leq C_{od}^{UB}$$

Update C^{UB}_{od}

Generalized A* algorithm

A path $P \in \mathcal{P}_{ov}$ satisfying $c(q_P \oplus b_v) > C_{od}^{UB}$ or $\rho(q_P \oplus b_v) = 1$ is not the subpath of an optimal path.

Generalized A* Algorithm: a Branch & Bound

Generate all the paths satisfying

$$c(q_P \oplus b_v) \leq C_{od}^{UB}$$
 and $\rho(q_P \oplus b_v) = 0$ (Low)

► Update C^{UB}_{od}

Generalized A* algorithm (2/2)

L: list of paths to be considered C_{od}^{UB} : upper bound on optimal solution cost

Preprocessing: b_v lower bound on v-dpaths resources

```
Key: c(q_P \oplus b_v)
Test: (Low)
```


Theorem

Under general assumptions (corresponding to the absence of negative cycles), A^{\ast} converges after a finite number of iterations and

- if $C_{od}^{UB} = \infty$, then there is no feasible *o*-*d* paths,
- otherwise, C_{od}^{UB} is the cost of an optimal solution.

Instance	V	Alg	RCSP iter	Cut	RCSP time
			av. nb.	Dom.	av (mm:ss)
CP50	290	LS	1.020e+04	-	00:00.560
		LC	1.308e+04	-	00:01.275
		Our A*	4.914e+02	4.01%	00:00.016
CP70	408	LS	5.644e+04	-	00:11.489
		LC	7.730e+04	-	00:17.157
		Our A*	1.994e+03	4.28%	00:00.039
CP90	516	LS	9.779e+04	-	00:40.707
		LC	2.007e+05	-	01:42.864
		Our A*	9.966e+03	5.88%	00:00.340
A318	669	LS	1.319e+05	-	00:53.009
		LC	3.802e+05	-	01:36.035
		Our A*	2.549e+04	3.72%	00:01.651

Bound Computation

Definition: lattice

A partially ordered set (\mathcal{R}, \preceq) is a lattice if any pair (q, \tilde{q}) admits:

A greatest lower bound
or meet denoted $q \wedge \tilde{q}$ $q \vee \tilde{q}$ A least upper bound or
join denoted $q \vee \tilde{q}$ $b \leq q$
 $b \leq \tilde{q}$ $\Leftrightarrow b \leq q \wedge \tilde{q}$ $q \wedge \tilde{q}$ $b \geq q$
 $b \geq \tilde{q}$ $\Leftrightarrow b \geq q \vee \tilde{q}$

Example:

 (\mathbb{R}^2,\leq) endowed \leq with the product order

$$\mathbf{p} \wedge \tilde{q} = (\min(q_1, \tilde{q}_1), \min(q_2, \tilde{q}_2))$$
$$\mathbf{p} \vee \tilde{q} = (\max(q_1, \tilde{q}_1), \max(q_2, \tilde{q}_2))$$

Ford-Bellman algorithm for usual shortest path problem

 b_0

 b_1

 b_2

 $q_{(v,u_0)}$

 $q_{(v,u_1)}$

 $q_{(v,u_2)}$

 b_v

Minimum costs b_v of v-d paths satisfy the dynamic programming equation:

$$\begin{cases} b_d = 0, \\ b_{v \neq d} = \min\left(b_v, \min_{u \in N^+(v)}\left(q_{(v,u)} + b_u\right)\right) \end{cases}$$

 (b_v) is a fixed point of:

$$F: (b_{v})_{v} \mapsto (b'_{v})_{v} \text{ s.t.: } \begin{cases} b'_{d} = 0\\ b'_{v \neq d} = \min\left(b_{v}, \min_{u \in N^{+}(v)}\left(q_{(v,u)} + b_{u}\right)\right) \end{cases}$$

Usual Ford-Bellman algorithm

 $(b_v^k) = F^k(\infty)$ is the cost of a shortest v-d path with at most k arcs.

If there is no cycles of negative costs, $(b_v) = F^n(\infty)$ satisfies the dynamic programming equation. n = |V|.

Generalized dynamic programming (1/2)

Generalized dynamic programming equation

$$\begin{cases} b_d = 0, \\ b_{v \neq d} = \bigwedge \left(q_v, \bigwedge_{u \in N^+(v)} \left(q_{(v,u)} \oplus b_u \right) \right) \end{cases}$$

Admits a greatest solution b_v^{\dagger} (Knaster-Tarski fixed-point theorem)

$$F: (b_{\nu})_{\nu} \mapsto (b'_{\nu})_{\nu} \text{ st: } \begin{cases} b'_{d} = 0 \\ b'_{\nu \neq o} = \bigwedge \left(b_{\nu}, \bigwedge_{u \in N^{+}(\nu)} \left(q_{(\nu,u)} \oplus b_{u} \right) \right) \end{cases}$$

Generalized Ford-Bellman algorithm

 $(b_v^k) = F^k(\infty) \leq q_P$ for of any v-d path P with at most k arcs.

Generalized dynamic programming (2/2)

$$F: (b_{\nu})_{\nu} \mapsto (b'_{\nu})_{\nu} \text{ st: } \begin{cases} b'_{d} = 0\\ b'_{\nu \neq o} = \bigwedge \left(b_{\nu}, \bigwedge_{u \in N^{+}(\nu)} \left(q_{(\nu,u)} \oplus b_{u} \right) \right) \end{cases}$$

$$b_{v}^{k} = F^{k}(b_{v}) \qquad b_{v}^{\dagger} = F(b_{v}^{\dagger}) \qquad \ell^{*}: \text{ nb arcs in}$$

$$b_{v}^{\infty} = \bigwedge_{k \in \mathbb{Z}_{+}} b_{v}^{k} \qquad b_{v}^{\text{opt}} = \bigwedge_{p \in \mathcal{P}_{vd}} q_{P} \qquad \text{ longest elem. path}$$

Theorem

$$b_{v}^{\dagger} \preceq b_{v}^{\infty} \preceq b_{v}^{\ell^{*}} \preceq b_{v}^{\mathrm{opt}} \preceq q_{P}$$
 for all P in \mathcal{P}_{vd} .

1. Monoid resource constrained shortest path

- 2. Handling border constraints
- 2.1 Problem setting
- 2.2 Constraints on subpaths
- 2.3 Coupling constraints

Battery charge

Battery charge

$$\min \sum_{P \in \mathcal{P}} c_P x_P$$

$$\sum_{P \ni v} x_P = 1 \qquad \forall v \qquad \triangleright \text{ Additional constraints on } \mathcal{P}$$

$$x_P \in \{0, 1\}$$

Ecole des Ponts

Constraint easily modeled by a monoid if on full path

$$(\mathcal{R},\oplus,\leqslant)=(\mathbb{Z}_+,+,\leq)$$
 $ho(z)=\mathbb{1}_{z> ext{capacity}}$

Then constraint on subpath modeled using

• use pairs $(r^{\rm b}, r^{\rm e})$ of resources in \mathcal{R}^2 ,

turn them into an ordered monoid

Modeling the eletricity consumption constraint

Constraint easily modeled by a monoid if on full path

$$(\mathcal{R},\oplus,\leqslant)=(\mathbb{Z}_+,+,\leq)$$
 $ho(z)=\mathbb{1}_{z> ext{capacity}}$

Then constraint on subpath modeled using

Ordered monoid $\mathcal{S} = \mathcal{R}^2 \cup \mathcal{R} \cup \{\infty\}$

$$\begin{array}{c|c} q \boxplus \infty = \infty \boxplus q = \infty, \quad \forall q \in \mathcal{S} \\ (r_1) \boxplus (r_2^{\mathrm{b}}, r_2^{\mathrm{e}}) = (r_1 \oplus r_2^{\mathrm{b}}, r_2^{\mathrm{e}}) \\ (r_1) \boxplus (r_2) = (r_1^{\mathrm{b}}, r_1^{\mathrm{e}} \oplus r_2) \\ (r_1) \boxplus (r_2) = (r_1 \oplus r_2) \\ (r_1^{\mathrm{b}}, r_1^{\mathrm{e}}) \boxplus (r_2) = (r_1 \oplus r_2) \\ (r_1^{\mathrm{b}}, r_1^{\mathrm{e}}) \boxplus (r_2) = (r_1 \oplus r_2) \\ (r_1^{\mathrm{b}}, r_1^{\mathrm{e}}) \boxplus (r_2^{\mathrm{b}}) = \begin{cases} \infty & \text{if } \rho(r_1^{\mathrm{e}} \oplus r_2^{\mathrm{e}}) = 1, \\ (r_1^{\mathrm{b}}, r_1^{\mathrm{e}}) \boxplus (r_2^{\mathrm{b}}, r_2^{\mathrm{e}}) = \begin{cases} \infty & \text{if } \rho(r_1^{\mathrm{e}} \oplus r_2^{\mathrm{e}}) = 1, \\ (r_1^{\mathrm{b}}, r_1^{\mathrm{e}}) \boxplus (r_2^{\mathrm{b}}, r_2^{\mathrm{e}}) & \text{if } \end{cases} \begin{cases} r_1^{\mathrm{b}} \preceq r_2 \\ r_1^{\mathrm{e}} \preceq r_2 \\ r_1^{\mathrm{e}} \preceq r_2^{\mathrm{e}} \end{cases} \end{cases}$$

Coupling constraints

time

Coupling constraints

How to handle such constraints in column generation?

Lattice ordered monoid for constraints on subpath

Handling coupling constraints

Lattice ordered monoid for constraints on subpath

Handling coupling constraints

Define graph H on $U = S^2$ by adding

- Hasse diagrams
- (t_i, s_j) if there is $P \in \mathcal{P}$ with resources (q_j, q_i)
- arcs (s_i, t_j) if

$$\rho(q_i\oplus q_j)=0$$

and

 $\rho(q_i \oplus q) = 1, \forall q > q_j$

Given P and P' in \mathcal{P} , then P ends in s_i , and P' starts in t_j , P and P' can be operated in a \Leftrightarrow there is an s_i - t_j path sequence

Column generation formulation with coupling constraints

Primal

 $\begin{array}{ll} \min & \sum_{P \in \mathcal{P}} c_P x_P \\ & \sum_{P \ni v} x_P = 1 & \forall v \in V \\ & \sum_{a \in \delta^-(u)} x_a = \sum_{a \in \delta^+(u)} x_a & \forall u \in U \\ & x_a \ge 0 & \forall a \in A' \end{array}$

Column generation formulation with coupling constraints

Primal

 $\begin{array}{ll} \min & \sum_{\substack{P \in \mathcal{P} \\ \sum_{\substack{P \ni v}} x_P = 1 \\ x_a \leq \sum_{a \in \delta^+(u)} x_a \leq \sum_{a \in \delta^+(u)} x_a & \forall u \in U \\ x_a \geq 0 & \forall a \in A' \end{array}$

Column generation formulation with coupling constraints

Primal

$$\begin{array}{ll} \min & \sum_{P \in \mathcal{P}} c_P x_P \\ & \sum_{P \ni v} x_P = 1 \\ & x_a \leq \sum_{a \in \delta^+(u)} x_a \quad \forall v \in V \\ & \sum_{a \in \delta^-(u)} x_a \leq \sum_{a \in \delta^+(u)} x_a \quad \forall u \in U \\ & x_a \geq 0 \\ \end{array} \quad \forall a \in A' \\ \begin{array}{l} \text{Dual} \\ \max & \sum_{v} y_v \\ \text{s.t.} & c_P - \lambda_{t(p)} + \lambda_{s(P)} - \sum_{v \in P} y_v \geq 0, \quad \forall P \in \mathcal{P} \\ & \lambda_u \leq \lambda_{u'}, \quad \forall (u, u') \in A' \setminus \mathcal{P} \\ & \lambda \geq 0 \end{array}$$

Pricing subproblem solved using the same monoid

$$\begin{array}{ll} \max & \sum_{v} y_{v} \\ \text{s.t.} & c_{P} - \lambda_{t(P)} + \lambda_{s(P)} - \sum_{v \in P} y_{v} \geq 0, \ \forall P \in \mathcal{P} \\ & \lambda_{u} \leq \lambda_{u'}, \ \forall (u, u') \in \mathcal{A}' \backslash \mathcal{P} \\ & \lambda \geq 0 \end{array}$$
$$q_{i} \leq q_{j} \quad \text{implies} \quad \left\{ \begin{array}{l} -\lambda_{t_{i}} \leq -\lambda_{t_{j}} \\ & \lambda_{s_{i}} \leq \lambda_{s_{j}} \end{array} \right., \text{ hence} \\ q_{P} \leq q_{Q} \quad \text{implies} \quad c_{P} - \lambda_{t(P)} + \lambda_{s(P)} - \sum_{v \in P} y_{v} \leq c_{Q} - \lambda_{t(Q)} + \lambda_{s(Q)} - \sum_{v \in Q} y_{v} \end{array}$$

Border constraints do not change (too much) the pricing subproblem

Pricing subproblem solved using the same monoid

$$\begin{array}{ll} \max & \sum_{v} y_{v} \\ \mathrm{s.t.} & c_{P} - \lambda_{t(P)} + \lambda_{s(P)} - \sum_{v \in P} y_{v} \geq 0, \ \forall P \in \mathcal{P} \\ & \lambda_{u} \leq \lambda_{u'}, \ \forall (u, u') \in A' \backslash \mathcal{P} \\ & \lambda \geq 0 \end{array}$$
$$q_{i} \leq q_{j} \quad \text{implies} \quad \left\{ \begin{array}{l} -\lambda_{t_{i}} \leq -\lambda_{t_{j}} \\ & \lambda_{s_{i}} \leq \lambda_{s_{j}} \end{array} \right., \text{ hence} \\ q_{P} \leq q_{Q} \quad \text{implies} \quad c_{P} - \lambda_{t(P)} + \lambda_{s(P)} - \sum_{v \in P} y_{v} \leq c_{Q} - \lambda_{t(Q)} + \lambda_{s(Q)} - \sum_{v \in Q} y_{v} \end{array} \right.$$

Border constraints do not change (too much) the pricing subproblem

Numerical experiments in progress. Works well if no heuristic branching. Not that well if heuristic branching.