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How fixed point theorems in ordered
algebraic structures enable to design
practically efficient algorithms for
industrial routing problems.
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Column generation

AN , .
// A4 T \\
depot / ‘x/ depot
start end
time
min Z Cpxp Path cost not linear in arc costs
PeP Path must satisfy constraints
Z Xp = vv Constraint example
Pav

xp € 0,1} Limited number of arcs in P



Column generation primer

Restricted master problem P’ C P, with |P'| < |P]

min Z CrXy
PeP
st va =1 WelLl
P>v
x>0



Column generation primer

Restricted master problem P’ C P, with |P'| < |P]

min Z CrXr
PeP
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P>v
x>0

Restricted dual problem

max Z Y

veV

st. Y yp<cp VPEP
veP

Pricing subproblem

min cp — P
pince =Dy
vePpP

P € P\P'

Algorithm:
solve on P’
solve pricing
subproblem

add violated
dual constraint

to P’



Column generation primer

Restricted master problem P’ C P, with |P'| < |P]

min Z CrXr
PeP
st va =1 WelLl
P>v
x>0

Restricted dual problem

max Z Y

veV

st. Y yp<cp VPEP
veP

Pricing subproblem

min cp — E P
PEP Y
vePpP

P € P\P'

Algorithm:
solve on P’
solve pricing
subproblem

add violated

dual constraint
to P’

Key element in the performance: pricing subproblem algorithm



Resource constrained shortest path algorithm

min cp — E P
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Resource constrained shortest path algorithm

min cp — E P
PP Y
veP

depot ~ -7 depot
start end

time

Pricing subproblem is a resource constrained shortest path algorithm



What a good pricing algorithms changes — Airline crew pairing

Instance |V Alg RCSP time Pricing  Total time
av (mm:ss) time (hh:mm:ss)

CP50 290 LS 00:00.560  97.55% 00:04:37.5

LC 00:01.275  97.38% 00:11:36.9

Our A* 00:00.016  59.87% 00:00:17.2

CP70 408 LS 00:11.489  99.52% 05:07:05.0

LC 00:17.157  99.56% 07:28:22.2

Our A* 00:00.039  58.48% 00:01:12.1
CP90 516 LS 00:40.707 Stopped after 48h
LC 01:42.864 Stopped after 48h

Our A* 00:00.340  81.86% 00:12:36.3
A318 669 LS 00:53.009 Stopped after 48h
LC 01:36.035 Stopped after 48h

Our A* 00:01.651  86.97% 01:32:49.6

Application of the method to Air France crew pairing problem (joint work
with F. Meunier)



Part content

1. Monoid resource constrained shortest path
1.1 Frameworks

1.2 Algorithms

1.3 Computing bounds



Shortest Path in an Ordered Monoid

For each arc a a resource g, € R
Associative binary operator @: path resources
Neutral element 0: empty path
a1 q2 q3 QP =q1 D q2 D g3

O -0 -0 -0

(R, ®) is a monoid.

) ) - rogrdg
An order < compatible with @ : <§= -
rder < pati with & q=q {q@rjq@r

(R,®, =) is an ordered monoid.

Non-decreasing cost ¢ and
constraint p functions.



Shortest Path with Resources in an Ordered Monoid

Given an ordered monoid (R, ®, <)

Input: Output:
Digraph D = (V, A) An o-d path P such that
Two vertices o,d € V p(B.epga) =0
Resources g, € R which minimizes
Two non-decreasing c (B,ep 9a)

oraclessc: R — R
p:R—{0,1}




Shortest Path with Resources in an Ordered Monoid

Given an ordered monoid (R, ®, <)

Input: Output:
Digraph D = (V, A) An o-d path P such that
Two vertices o,d € V p(B,epqa) =0
Resources g, € R which minimizes
Two non-decreasing c (B,ep 92)
oracles c: R =+ R
p:R—{0,1}

Jerusalem — Tel Aviv by car

> q = (67 T)
» Cost: c(q) = M0+ X7 (o0 .

» On time arrival: gp=q1 P q2 p(CIP) =0
p(q) = 11(70,4-00)(7—)




Usual A* algorithm

CYB > min gp
d = pep,

bv < ap, VP € Pvd

A path P € P,, satisfying gp + b, > Cg,B is not the subpath of an
optimal path.

Generate all the paths satisfying
gp + bv < Cé{fB

Update Cgf



Generalized A* algorithm

b, < qp, VP € Py
A path P € P, satisfying c(qp @ b,) > C(%,B or p(gp ® b,) = 1 is not
the subpath of an optimal path.

Generalized A* Algorithm: a Branch & Bound
Generate all the paths satisfying

c(gp®b,) < Cyf and p(gp @ by,) =0 (Low)

Update Cé{,B



Generalized A* algorithm (2/2)

Initially: L < empty path in o
CUB

O od T @

_While L is not empty:
extract r,pin c(gp @ by)

plap @ by) =0

If (Low) is satisfied, { c(gp @ by) < Cng

P |
lad?) | CmmnOF0
\ |

L: list of paths to be
considered

Cé{,B: upper bound
on optimal solution
cost

Preprocessing: b,
lower bound on v-d
paths resources

Key: c(qp & by)
Test: (Low)



Generalized A* algorithm

Theorem

Under general assumptions (corresponding to the absence of negative cy-
cles), A* converges after a finite number of iterations and

if Cg,B = 00, then there is no feasible o-d paths,

otherwise, Cgf is the cost of an optimal solution.

Instance | V/| Alg RCSP iter Cut RCSP time
av. nb. Dom. av (mm:ss)
CP50 290 LS 1.020e+04 - 00:00.560
LC 1.308e+-04 - 00:01.275
Our A* 4.914e4-02 4.01% 00:00.016
CP70 408 LS 5.644e+-04 - 00:11.489
LC 7.730e+-04 - 00:17.157
Our A* 1.994e+03 4.28% 00:00.039
CP90 516 LS 9.779e+-04 - 00:40.707
LC 2.007e+05 - 01:42.864
Our A* 9.966e+-03 5.88% 00:00.340
A318 669 LS 1.319e+05 - 00:53.009
LC 3.802e-+05 - 01:36.035
Our A* 2.549e+04 3.72% 00:01.651




Bound Computation

Definition: /attice
A partially ordered set (R, <) is a lattice if any pair (g, §) admits:

qVvg
A greatest lower bound A least upper bound or
or meet denoted g A § q F join denoted g V ¢
b=<gq - b>q N
- ~ = -
bja}‘:’qu“’ IR bza}ﬁb—qvq
Example:

(R?, <) endowed < with the product
order
q A (7 = (min(Cha &1)7 min(q27 E']2))
qV G = (max(q1, §1), max(q2, G2))



Ford-Bellman algorithm for usual shortest path problem

Minimum costs b, of v-d paths satisfy the dynamic programming equation:

bv;éd = min (bw uErInVLr}v) (q(v,u) + bu))

(by) is a fixed point of:
b, =0

F: (b)), — b(,vs.t.: .
(bv) (by) b, .4 = min (bv, uerInVLrEv) (qqv,u) + bu))

Usual Ford-Bellman algorithm

(b%) = FKk(c0) is the cost of a shortest v-d path with at most k arcs.

If there is no cycles of negative costs, (b,) = F"(c0) satisfies the dynamic
programming equation. n = |V/|.



Generalized dynamic programming (1/2)

Generalized dynamic programming equation
by =0,

buza =N\ |av A\ (9. @ bu)

ueN*(v)

Admits a greatest solution bl (Knaster-Tarski fixed-point theorem)

b, =0

F:(by)y — b(/ v st
(by)y — (b,) Bo=Nlbv A (dvuw®bi)
ueN*(v)

Generalized Ford-Bellman algorithm

(b%) = Fk(c0) < gp for of any v-d path P with at most k arcs.



Generalized dynamic programming (2/2)

) b, =0
v)v st
b(,;éo = /\ (bw /\ueN*(v) (q(V,U) ©® bu))

bk = Fk(b,) bl = F(bi) *: nb arcs in
by = Nez, bk boPt = Npep,, 9P longest elem. path
Theorem

bi < b® < bﬁ* < bP" < gp forall Pin Py.



Part content

2. Handling border constraints
2.1 Problem setting

2.2 Constraints on subpaths
2.3 Coupling constraints



Battery charge
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Battery charge

depot | --- "~ / depot
start end
time
min Z cpxp
PeP
Z xp=1 Vv Additional constraints on P
Pav

Xp € {0, 1}



Modeling the eletricity consumption constraint

Constraint easily modeled by a monoid if on full path
(R7 @, <) = (Z—‘ra +, S) p(Z) = ]lz>capacity

Then constraint on subpath modeled using

First subpath ~ Middle subpaths  Last subpath

use pairs (r°, r®) of resources in R?,

turn them into an ordered monoid



Modeling the eletricity consumption constraint

Constraint easily modeled by a monoid if on full path
(R7 b, g) = (Z—‘ra +, S) p(Z) = ILz>capacity

Then constraint on subpath modeled using

First subpath Middle subpaths Last subpath

Ordered monoid S = R> UR U {oo}

gBHoco=ccBHg=o00, VgeS g2 VqeS,
(M)B(,r5) = (n®r,r5) (M) E(r) if n=xh,
b e — (/P e b
(P, ) B (r) = (A, ®r) (rlb,rf) C(n) i { rle ;_< rn
(M) B () =(n®r) 1=

5 b < /b
B .0 b ey o] |fp(rf®r§):1, P rb7re i { nr,
(rl,rl)BH(rl,rz)f{ (2,5)  cihanie (0, ) E(r2,13) e <.



Coupling constraints
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Coupling constraints

depot depot depot
start end end

gi-ngs
P e /@@ ,@\

ti'me

How to handle such constraints in column generation?



Handling coupling constraints

Lattice ordered
monoid for
constraints on
subpath



Handling coupling constraints

Lattice ordered @/t
monoid for @ @

constraints on
\ de ot
subpath depot p
start

2 8




Handling coupling constraints

Define graph H on U = 52 by
adding
Hasse diagrams
(ti,s;) if thereis P € P
with resources (gj, gi)

arcs (s, tj) if

p(qi © q;) =0

and

p(qi ©q) =1,Yq > q;

Given P and P’ in P, then P ends in s;, and P’ starts in tj,
P and P’ can be operated in a
sequence

& there is an s;-t; path



Column generation formulation with coupling constraints

H=(U,A)

Primal A vk-P

~

min Z cpxp
PeP
ZXP =1 Vv eV
P>v
Z X3 = Z X, YueU
acd—(u) acdt(u)
X3 >0 Vae A




Column generation formulation with coupling constraints

H=(U,A)

Primal A vk-P

~

min Z cpxp
PeP
ZXP =1 YveV

P>v

Z Xy < Z X; Yue U
acd—(u) acdt(u)
X3 >0 Vaec A




Column generation formulation with coupling constraints

Primal

min Z cpXxXp H— (U,A/)
PepP
ZXPZ]. YveV ,—(/\;\)«\E)
P>v - N - .
Z Xa < Z Xa Yue U /J /
acd—(u) acodt(u) !
%2 >0 Vac A |

s.t. cp— )‘t(p) + )\s(p) — Zyv >0, VPeP
veP
Au < Ay, V(u, ') e A\P
A>0



Pricing subproblem solved using the same monoid

max Zyv

st Cp— Ae(p) F As(p) — D _ W =0, YVPEP

veP
Au < Ay Y(u, ') € AP
A>0
. . 7)\1“' S 7)\1“'
. { . 1 J
qi = q; implies { W , hence

gr = qq implies cp—Ayp)y+Asp)— ZYVSCQ At(Q
veP

)= W

veQ

Border constraints do not change (too much) the pricing subproblem



Pricing subproblem solved using the same monoid

max Zyv

st Cp— Ae(p) F As(p) — D _ W =0, YVPEP

veP
Au < Ay Y(u, ') € AP
A>0
. . 7)\1“' S 7)\1“'
. { . 1 J
qi = q; implies { W , hence

gr = qq implies cp—Ayp)y+Asp)— ZYVSCQ At(Q
veP

)= W

veQ

Border constraints do not change (too much) the pricing subproblem

Numerical experiments in progress. Works well if no heuristic branching.

Not that well if heuristic branching.



	Monoid resource constrained shortest path
	Frameworks
	Algorithms
	Computing bounds

	Handling border constraints
	Problem setting
	Constraints on subpaths
	Coupling constraints


