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Set covering

min cT x

s.t. Ax ≥ e, x binary

A is a 0/1 matrix, e = (1, . . . , 1)T

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

→ There are examples with exponentially many such facets

Can we account for all valid inequalities with small coefficients?
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Theorem (B. and Mark Zuckerberg, 2004)

For any fixed integer k ≥ 1 there exists a compact, extended
formulation whose solutions satisfy all valid inequalities with coefficients
in {0, 1, . . . , k}.

“compact:” of polynomial size (for fixed k)

“extended:” uses additional variables, a lifted formulation

Definition: An inequality αTx ≥ b for valid has pitch ≤ k if:

the sum of the smallest k positive αj is at least b

Hence, inequalities with coefficients in {0, 1, . . . , k} have pitch ≤ k
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“extended:” uses additional variables, a lifted formulation

Corollary: For any fixed positive integer r ≥ 1 and 0 < ε < 1,

there is a compact extended formulation for set-covering whose solutions
satisfy the rank-r Gomory closure within multiplicative error ε

∀c ∈ Rn :

min cT x s.t. x ∈ projected formulation ≥

(1− ε)
(

min cT x s.t. x ∈ rank-r Gomory closure
)
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Two recent, related papers:

• M. Mastrolilli (sum-of-squares mod 2)

• S. Fiorini, T. Huynh and S. Weltge (circuit complexity)

• They point out that the B-Z formulation is ’complex’

Et tu
,

Brute ?

• Today, a shorter proof +
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Vector Branching (from Z’s PhD thesis)

Consider a (known) valid inequality∑
j∈S

ajxj ≥ a0 ( > 0 )

for a binary optimization problem.

Let S = {j1, j2, . . . , jt}. Then

• xj1 = 1, or

• xj1 = 0 and xj2 = 1, or

• xj1 = xj2 = 0 and xj3 = 1, or

• . . .
• xj1 = . . . = xjt−1 = 0 and xjt = 1,

is a valid disjunction
Gives rise to an alternate scheme for branch-and-bound
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Theorem

Given a set-covering problem, suppose we apply vector branching to a
given constraint ∑

j∈H
xj ≥ 1

Then, the solution to any node of the branch-and-bound (sub)tree thus
created satisfies every valid inequality

αTx ≥ 2

where

• αj ∈ {0, 1, 2} for j = 1, . . . , n

• H contained in the support of α
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Example

Consider a valid inequality ∑
j∈S

xj ≥ 2 (1)

and suppose we vector-branch on a set covering constraint∑
j∈H

xj ≥ 1, with H ⊆ S

And now consider a node where xjt = 1 with jt ∈ H. But:

Since (1) is valid, so is: ∑
j∈S−jt xj ≥ 1 (2)

But, set-covering, so (2) must be implied by a set-covering constraint.
So the solution to the node must satisfy (1). Related: Letchford 2001
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Pitch k

Consider a valid inequality of pitch k:∑
j∈S

αjxj ≥ α0 (3)

and suppose we vector-branch on a set covering constraint∑
j∈H

xj ≥ 1, with H ⊆ S

And now consider a node where xjt = 1 with jt ∈ H. But:

Since (3) is valid, so is:∑
j∈S−jt αjxj ≥ α0 − αjt (4)

But, (4) has pitch ≤ k − 1
So all we need is a recursive construction
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Construction

– a few corners are cut

• Set-covering system Ax ≥ e.

• Pitch p ≥ 2

• Zp−1: recursively constructed formulation whose solutions satisfy
all valid inequalities of pitch ≤ p − 1.

• For p = 2, Zp−1 is the original formulation Ax ≥ e
• Now we will consider a row i of Ax ≥ e and, effectively,

vector-branch on it

• Actually we will write the corresponding disjunction

Let the row be ∑
j∈S i

xj ≥ 1

where S i = {j1, j2, . . . , j|S i |}.
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Row i of Ax ≥ e:
∑

j∈S i xj ≥ 1, where S i = {j1, . . . , j|S i |}.

(a) For 1 ≤ t ≤ |S i |, polyhedron Dp
i (t) ⊆ Rn given by

xjt = 1 (5)

xjh = 0 ∀ 1 ≤ h < t, and (6)

x ∈ Zp−1 (7)

(b) Polyhedron Dp
i
.

= conv{Dp
i (t) : 1 ≤ t ≤ |S i |}

Finally: Zp .
=
⋂

i D
p−1
i

Lemma:
Zp can be described by a polynomial-size formulation for fixed p, and
its feasible solutions satisfy all valid inequalities of pitch ≤ p.
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Subapplication 1a: minimum knapsack

min cT x

s.t.
∑
j

wjxj ≥ b, x binary

w ≥ 0, b > 0

• “FPTAS” exists (the one I know requires a disjunction)

• Problem not well understood

Open question: Given w , b is there a compact extended
formulation that yields a constant factor approximation, ∀ c?

ANY constant whatsoever?
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min cT x
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∑
j

wjxj ≥ b

w ≥ 0, b > 0, integral

Well-known result: equivalent to set-covering problem,

with constraints

∑
j∈S

xj ≥ 1, ∀S with
∑
j∈S

wj ≥ w∗
.

=
∑
j

wj − b + 1

But exponentially many constraints
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Minimum knapsack

Using equivalence with set-covering,

• Compact, extended formulation that yields valid inequalities of
pitch ≤ k , for fixed k? X

• Compact, extended formulation that yields valid inequalities with
coefficients in 0, 1, . . . , k , for fixed k? X

• Polynomial-time separation over valid inequalities with coefficients
in 0, 1, . . . , k , for fixed k? (implied)

• Polynomial-time near separation over valid inequalities with
coefficients in 0, 1, . . . , k , for fixed k .

Given y , either

• Find a valid inequality with coefficients in 0, 1, . . . , k , violated by
y , or

• Certify that αTy ≥ α0 − o(1) for all valid αT x ≥ α0 with
αj ∈ {0, 1, . . . , k} for all j . e.g. o(1) = O(1/n)
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knapsack:
∑

j wjxj ≥ b, w∗ .
=
∑

j wj − b + 1

Warmup
Given y , does it satisfy every valid inequality

∑
j∈S xj ≥ 2?

What is S here?

• Inequality is valid iff ∀k ∈ S ,
∑

j∈S−k wj ≥ w∗

• Same as:
∑

j∈S−k wj ≥ w∗ for specific k : argmaxj∈S{wj}
• For k = 1, 2, . . . , n, solve minimum-knapsack problem

min
∑
j

yjzj (8)

s.t.
∑
j 6=k

wjzj ≥ w∗, z binary (9)

zk = 1, zj = 0 ∀ j with wj > wk (10)

Wait, how do we solve?
In objective round up yj , to next multiple of 1/n2

So, get approximate separation, with violation if objective < 2
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General case? First, coefficients in 0, 1, 2, 3

Example: 8x1 + 5x2 + 4x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + 2x2 + x3 + x4 + x5 ≥ 3 (non-monotone)

Not valid: x1 + x2 + x3 + x4 + x5 ≥ 3

A non-monotone “transposition” or “error”

Example: 6x1 + 6x2 + 5x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + x2 + 2x3 + x4 + x5 ≥ 3 (non-monotone, 2 errors)

Yes valid: x1 + x2 + x3 + x4 + x5 ≥ 3

→ When right-hand side = 3, at most one error
Separation by enumeration of errors; each case is a knapsack; O(n2) cases



General case? First, coefficients in 0, 1, 2, 3

Example: 8x1 + 5x2 + 4x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + 2x2 + x3 + x4 + x5 ≥ 3 (non-monotone)

Not valid: x1 + x2 + x3 + x4 + x5 ≥ 3

A non-monotone “transposition” or “error”

Example: 6x1 + 6x2 + 5x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + x2 + 2x3 + x4 + x5 ≥ 3 (non-monotone, 2 errors)

Yes valid: x1 + x2 + x3 + x4 + x5 ≥ 3

→ When right-hand side = 3, at most one error
Separation by enumeration of errors; each case is a knapsack; O(n2) cases



General case? First, coefficients in 0, 1, 2, 3

Example: 8x1 + 5x2 + 4x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + 2x2 + x3 + x4 + x5 ≥ 3 (non-monotone)

Not valid: x1 + x2 + x3 + x4 + x5 ≥ 3

A non-monotone “transposition” or “error”

Example: 6x1 + 6x2 + 5x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + x2 + 2x3 + x4 + x5 ≥ 3 (non-monotone, 2 errors)

Yes valid: x1 + x2 + x3 + x4 + x5 ≥ 3

→ When right-hand side = 3, at most one error

Separation by enumeration of errors; each case is a knapsack; O(n2) cases



General case? First, coefficients in 0, 1, 2, 3

Example: 8x1 + 5x2 + 4x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + 2x2 + x3 + x4 + x5 ≥ 3 (non-monotone)

Not valid: x1 + x2 + x3 + x4 + x5 ≥ 3

A non-monotone “transposition” or “error”

Example: 6x1 + 6x2 + 5x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + x2 + 2x3 + x4 + x5 ≥ 3 (non-monotone, 2 errors)

Yes valid: x1 + x2 + x3 + x4 + x5 ≥ 3

→ When right-hand side = 3, at most one error
Separation by enumeration of errors; each case is a knapsack;

O(n2) cases



General case? First, coefficients in 0, 1, 2, 3

Example: 8x1 + 5x2 + 4x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + 2x2 + x3 + x4 + x5 ≥ 3 (non-monotone)

Not valid: x1 + x2 + x3 + x4 + x5 ≥ 3

A non-monotone “transposition” or “error”

Example: 6x1 + 6x2 + 5x3 + 4x4 + 4x5 ≥ 13 (the knapsack)

Valid: x1 + x2 + 2x3 + x4 + x5 ≥ 3 (non-monotone, 2 errors)

Yes valid: x1 + x2 + x3 + x4 + x5 ≥ 3

→ When right-hand side = 3, at most one error
Separation by enumeration of errors; each case is a knapsack; O(n2) cases



General case? (coefficients in 0, 1, 2, ..., k)

Basic principle: an inequality

k x(Sk) + (k − 1) x(Sk−1) + . . .+ x(S1) ≥ k (11)

is equivalent to its set of covers –

so (11) is valid iff its covers are also covers for the original knapsack

Corollary: can show that (11) can have at most < k errors

or else it is dominated, or invalid

Separation by enumeration of errors; each case is a knapsack;
O(nF (k)) cases
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Application 2: polynomial optimization
problems and NN training

Polynomial optimization:

min cT x

s.t. fi (x) ≤ 0, i = 1, . . . ,m (polynomial ineq.)

0 ≤ xj ≤ 1, all j (12)

• Intersection graph
A vertex for each variable and an edge anytime two variables appear in
the same fi

• Tree-width
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Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width ω and the fi of degree ≤ ρ.

Then, for every 0 < ε < 1 there is a disjunctive LP relaxation with

O
(
(2ρ/ε)ω+1 n log(ρ/ε)

)
variables and constraints

Optimality and feasibility errors O(ε) (additive)
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Subapplication 2a: training of deep
neural networks with RLUs

As per Arora Basu Mianjy Mukherjee ICLR ’18

The setup:

• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R
• Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

• σ(t) = max{0, t}
• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherwise.
Similarly with the bh.
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• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherwise.

Similarly with the bh.



Subapplication 2a: training of deep
neural networks with RLUs

As per Arora Basu Mianjy Mukherjee ICLR ’18

The setup:

• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R
• Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

• σ(t) = max{0, t}
• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherwise.
Similarly with the bh.



• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R

• Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

• σ(t) = max{0, t}

• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherise.
Similarly with the bh.

Theorem (Arora et al 2018).
If k = 1 (one “hidden layer”) there is an exact algorithm of complexity

O ( 2wDnwpoly(D, n,w) )

Polynomial in the size of the data set, for fixed n,w



• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R

• Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

• σ(t) = max{0, t}

• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherise.
Similarly with the bh.

Theorem (Arora et al 2018).
If k = 1 (one “hidden layer”) there is an exact algorithm of complexity

O ( 2wDnwpoly(D, n,w) )

Polynomial in the size of the data set, for fixed n,w



• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R

• Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

• f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

• σ(t) = max{0, t}

• Each Th affine: Th(y) = Ahy + bh,

• For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherise.
Similarly with the bh.

Theorem (Arora et al 2018).
If k = 1 (one “hidden layer”) there is an exact algorithm of complexity

O ( 2wDnwpoly(D, n,w) )

Polynomial in the size of the data set, for fixed n,w



• D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R
• Task: compute f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 to minimize

1
D

∑
i=1 (yi − f (xi ))2

• A1 is n × w , Ak+1 is w × 1, Ah is w × w otherise.

Theorem (Arora et al 2018).
If k = 1 (one “hidden layer”) there is an exact algorithm of complexity

O ( 2wDnwpoly(D, n,w) )

Application of B. and Muñoz poly-opt result:
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