Easier derivation of bounded pitch inequalities for set covering problems +

Daniel Bienstock

Columbia University

Tel Aviv April 2018

$$min cT x$$
s.t. $Ax \ge \mathbf{e}$, x binary

A is a 0/1 matrix, ${\bf e} = (1, \dots, 1)^T$

min
$$c^T x$$

s.t. $Ax \ge \mathbf{e}$, x binary

A is a 0/1 matrix, $\mathbf{e} = (1, \dots, 1)^T$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

min
$$c^T x$$

s.t. $Ax \ge \mathbf{e}$, x binary

A is a 0/1 matrix, $\mathbf{e} = (1, \dots, 1)^T$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

ightarrow There are examples with exponentially many such facets

min
$$c^T x$$

s.t. $Ax \ge \mathbf{e}$, x binary

A is a 0/1 matrix, ${\bf e} = (1, \dots, 1)^T$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

→ There are examples with exponentially many such facets

Can we account for all valid inequalities with small coefficients?

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0,1,\ldots,k\}$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0,1,\ldots,k\}$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for valid has pitch $\le k$ if: the sum of the smallest k positive α_i is at least b

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0,1,\ldots,k\}$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for valid has **pitch** $\le k$ if: the sum of the smallest k positive α_i is at least b

Hence, inequalities with coefficients in $\{0,1,\ldots,k\}$ have pitch $\leq k$

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\leq k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\leq k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for valid has pitch $\le k$ if:

the sum of the smallest $m{k}$ positive $lpha_{m{j}}$ is at least $m{b}$

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch < k.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for **valid** has **pitch** $\le k$ if:

the sum of the smallest $m{k}$ positive $lpha_{m{j}}$ is at least $m{b}$

Hence, inequalities with coefficients in $\{0,1,\ldots,k\}$ have pitch $\leq k$

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\leq k$.

```
"compact:" of polynomial size (for fixed k)
```

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\leq k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Corollary: For any fixed positive integer $r\geq 1$ and $0<\epsilon<1$, there is a compact extended formulation for set-covering whose solutions satisfy the rank-r Gomory closure within multiplicative error ϵ

For any fixed integer $k \geq 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\leq k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Corollary: For any fixed positive integer $r\geq 1$ and $0<\epsilon<1$, there is a compact extended formulation for set-covering whose solutions satisfy the rank-r Gomory closure within multiplicative error ϵ

$$orall c \in \mathbb{R}^n$$
:
$$\min c^T x \quad \text{s.t. } x \in \text{projected formulation } \geq \\ (1-\epsilon) \left(\min c^T x \quad \text{s.t. } x \in \text{rank-r Gomory closure} \right)$$

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)
- They point out that the B-Z formulation is 'complex'

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)
- They point out that the B-Z formulation is 'complex'

• Today, a shorter proof +

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a binary optimization problem.

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a binary optimization problem.

Let
$$S = \{j_1, j_2, \dots, j_t\}.$$

Consider a (known) valid inequality

$$\sum_{j \in S} a_j x_j \geq a_0 \quad (>0)$$

for a binary optimization problem.

Let $S = \{j_1, j_2, \dots, j_t\}$. Then

•
$$x_{i_1} = 1$$
, or

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem.

Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1}=1$, or
- $x_{j_1} = 0$ and $x_{j_2} = 1$, or

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem.

Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1} = 1$, or
- $x_{j_1} = 0$ and $x_{j_2} = 1$, or
- $x_{j_1} = x_{j_2} = 0$ and $x_{j_3} = 1$, or

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a binary optimization problem.

Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1} = 1$, or
- $x_{i_1} = 0$ and $x_{i_2} = 1$, or
- $x_{j_1} = x_{j_2} = 0$ and $x_{j_3} = 1$, or
- ...
- $x_{j_1} = \ldots = x_{j_{t-1}} = 0$ and $x_{j_t} = 1$,

is a valid disjunction

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a binary optimization problem.

Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{i_1} = 1$, or
- $x_{i_1} = 0$ and $x_{i_2} = 1$, or
- $x_{j_1} = x_{j_2} = 0$ and $x_{j_3} = 1$, or
- ...
- $x_{j_1} = \ldots = x_{j_{t-1}} = 0$ and $x_{j_t} = 1$,

is a valid disjunction

Gives rise to an alternate scheme for branch-and-bound

Theorem

Given a set-covering problem, suppose we apply vector branching to a given constraint

$$\sum_{j\in H} x_j \geq 1$$

Theorem

Given a set-covering problem, suppose we apply vector branching to a given constraint

$$\sum_{j\in H} x_j \geq 1$$

Then, the solution to any **node** of the branch-and-bound (sub)tree thus created satisfies every valid inequality

$$\alpha^T x \geq 2$$

where

- $\alpha_j \in \{0, 1, 2\} \text{ for } j = 1, \dots, n$
- ullet H contained in the support of lpha

Consider a valid inequality

$$\sum_{i \in S} x_j \geq 2 \tag{1}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But:

Consider a valid inequality

$$\sum_{j \in S} x_j \geq 2 \tag{1}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_t} x_j \geq 1 \tag{2}$$

But, set-covering,

Consider a valid inequality

$$\sum_{j \in S} x_j \geq 2 \tag{1}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_t} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) must be implied by a set-covering constraint.

Consider a valid inequality

$$\sum_{j \in S} x_j \geq 2 \tag{1}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_t} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) must be implied by a set-covering constraint. So the solution to the node must satisfy (1).

Consider a valid inequality

$$\sum_{j \in S} x_j \geq 2 \tag{1}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_t} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) must be implied by a set-covering constraint. So the solution to the node must satisfy (1). Related: Letchford 2001

Consider a valid inequality of pitch *k*:

$$\sum_{j \in S} \alpha_j x_j \geq \alpha_0 \tag{3}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But:

Consider a valid inequality of pitch k:

$$\sum_{j \in S} \alpha_j x_j \geq \alpha_0 \tag{3}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{i \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S - j_t} \alpha_j x_j \geq \alpha_0 - \alpha_{j_t} \tag{4}$$

But,

Consider a valid inequality of pitch k:

$$\sum_{j \in S} \alpha_j x_j \geq \alpha_0 \tag{3}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S - j_t} \alpha_j x_j \geq \alpha_0 - \alpha_{j_t} \tag{4}$$

But, (4) has **pitch** $\leq k-1$

Consider a valid inequality of pitch k:

$$\sum_{j \in S} \alpha_j x_j \geq \alpha_0 \tag{3}$$

and suppose we vector-branch on a set covering constraint

$$\sum_{j \in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_t} = 1$ with $j_t \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S - j_t} \alpha_j x_j \geq \alpha_0 - \alpha_{j_t} \tag{4}$$

But, (4) has **pitch** $\leq k - 1$ So all we need is a **recursive** construction

Construction

Construction – a few corners are cut

- Set-covering system $Ax \ge e$.
- Pitch p > 2
- \mathbb{Z}^{p-1} : recursively constructed formulation whose solutions satisfy all valid inequalities of pitch $\leq p-1$.
- For p=2,

Construction - a few corners are cut

- Set-covering system $Ax \ge e$.
- Pitch p > 2
- \mathbb{Z}^{p-1} : recursively constructed formulation whose solutions satisfy all valid inequalities of pitch $\leq p-1$.
- For p=2, \mathcal{Z}^{p-1} is the original formulation $Ax \geq e$
- Now we will consider a row i of $Ax \ge e$ and, effectively, vector-branch on it
- Actually we will write the corresponding disjunction

Let the row be

$$\sum_{j \in S^i} x_j \geq 1$$

where
$$S^{i} = \{j_{1}, j_{2}, \dots, j_{|S^{i}|}\}.$$

Row i of $Ax \ge e$: $\sum_{j \in S^i} x_j \ge 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$.

(a) For $1 \leq t \leq |S^i|$, polyhedron $D_i^p(t) \subseteq \mathbb{R}^n$ given by

$$x_{j_t} = 1 \tag{5}$$

$$x_{j_h} = 0 \quad \forall \ 1 \le h < t, \quad \text{and}$$
 (6)
 $x \in \mathcal{Z}^{p-1}$ (7)

(b) Polyhedron
$$D_i^p \doteq \operatorname{conv}\{D_i^p(t) : 1 \leq t \leq |S^i|\}$$

Row \boldsymbol{i} of $\boldsymbol{A}\boldsymbol{x} \geq \boldsymbol{e}$: $\sum_{j \in S^i} x_j \geq 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$.

(a) For $1 \leq t \leq |S^i|$, polyhedron $D_i^p(t) \subseteq \mathbb{R}^n$ given by

$$x_{j_t} = 1 \tag{5}$$

$$x_{j_h} = 0 \quad \forall \ 1 \le h < t, \quad \text{and}$$
 (6)
 $x \in \mathcal{Z}^{p-1}$ (7)

(b) Polyhedron
$$D_i^p \doteq \operatorname{conv}\{D_i^p(t): 1 \leq t \leq |S^i|\}$$

Finally:
$$Z^p \doteq \bigcap_i D_i^{p-1}$$

Row i of $Ax \ge e$: $\sum_{j \in S^i} x_j \ge 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$.

(a) For $1 \leq t \leq |S^i|$, polyhedron $D_i^p(t) \subseteq \mathbb{R}^n$ given by

$$x_{j_t} = 1 (5)$$

$$x_{j_h} = 0 \quad \forall \ 1 \le h < t, \quad \text{and}$$
 (6)

$$x \in \mathcal{Z}^{p-1} \tag{7}$$

(b) Polyhedron
$$D_i^p \doteq \operatorname{conv}\{D_i^p(t) : 1 \leq t \leq |S^i|\}$$

Finally:
$$Z^p \doteq \bigcap_i D_i^{p-1}$$

Lemma

 Z^p can be described by a polynomial-size formulation for fixed p, and its feasible solutions satisfy all valid inequalities of pitch $\leq p$.

s.t.
$$\sum_{j}^{\min} c^{T} x$$
 $\sum_{j}^{\infty} w_{j} x_{j} \geq b$, x binary

 $w \geq 0$, b > 0

• "FPTAS" exists

s.t.
$$\sum_{j}^{\min} c^{T} x$$
 $\sum_{j} w_{j} x_{j} \geq b$, x binary

 $w \geq 0$, b > 0

"FPTAS" exists (the one I know requires a disjunction)

$$\text{s.t.} \quad \sum_{j}^{\min} c^{T} x$$

$$\sum_{j} w_{j} x_{j} \geq \mathbf{b}, \quad x \text{ binary}$$

w > 0, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

s.t.
$$\min_{j} c^{T} x$$

$$\sum_{j} w_{j} x_{j} \geq b, \quad x \text{ binary}$$

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question:

s.t.
$$\sum_{j}^{\min} c^{T} x$$
 $\sum_{j} w_{j} x_{j} \geq b$, x binary

 $w \geq 0$, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question: Given w, b is there a compact extended formulation that yields a constant factor approximation, $\forall c$?

s.t.
$$\min_{j} c^{T} x$$

$$\sum_{j} w_{j} x_{j} \geq b, \quad x \text{ binary}$$

 $\overline{w} > 0$, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question: Given w, b is there a compact extended formulation that yields a constant factor approximation, $\forall c$?

ANY constant whatsoever?

 $w \ge 0$, b > 0, integral

Well-known result: equivalent to set-covering problem,

 $w \ge 0$, b > 0, integral

Well-known result: equivalent to set-covering problem, with constraints

$$\sum_{j\in S} x_j \geq 1, \quad \forall S \quad \text{with} \quad \sum_{j\in S} w_j \geq w^* \doteq \sum_j w_j - b + 1$$

 $w \ge 0$, b > 0, integral

Well-known result: equivalent to set-covering problem, with constraints

$$\sum_{j \in S} x_j \geq 1$$
, $\forall S$ with $\sum_{j \in S} w_j \geq w^* \doteq \sum_j w_j - b + 1$

But exponentially many constraints

Using equivalence with set-covering,

 Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k?

Using equivalence with set-covering,

 Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?
- Polynomial-time separation over valid inequalities with **coefficients** in $0, 1, \ldots, k$, for fixed k?

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k? (implied)

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?
- Polynomial-time separation over valid inequalities with **coefficients** in $0, 1, \ldots, k$, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in $0, 1, \ldots, k$, for fixed k.

Using equivalence with set-covering,

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?
- Polynomial-time separation over valid inequalities with **coefficients** in $0, 1, \ldots, k$, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in $0, 1, \ldots, k$, for fixed k.

Given y, either

- Find a valid inequality with coefficients in $0, 1, \ldots, k$, violated by y, or
- Certify that $\alpha^T y \ge \alpha_0 o(1)$ for all valid $\alpha^T x \ge \alpha_0$ with $\alpha_j \in \{0, 1, ..., k\}$ for all j.

Using equivalence with set-covering,

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0,1,...,k, for fixed k?
- Polynomial-time separation over valid inequalities with **coefficients** in $0, 1, \ldots, k$, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in $0, 1, \ldots, k$, for fixed k.

Given y, either

- Find a valid inequality with coefficients in $0, 1, \ldots, k$, violated by y, or
- Certify that $\alpha^T y \ge \alpha_0 o(1)$ for all valid $\alpha^T x \ge \alpha_0$ with $\alpha_j \in \{0, 1, ..., k\}$ for all j. e.g. o(1) = O(1/n)

knapsack: $\sum_{j} w_{j} x_{j} \ge b$, $\mathbf{w}^{*} \doteq \sum_{j} w_{j} - b + 1$

knapsack: $\sum_{i} w_{j} x_{j} \ge b$, $\mathbf{w}^{*} \doteq \sum_{i} w_{j} - b + 1$

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$?

knapsack:
$$\sum_{i} w_{j} x_{j} \geq b$$
, $\mathbf{w}^{*} \doteq \sum_{i} w_{j} - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

• Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$

knapsack:
$$\sum_{j} w_{j} x_{j} \geq b$$
, $\mathbf{w}^{*} \doteq \sum_{j} w_{j} - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- ullet Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$

knapsack:
$$\sum_{j} w_{j} x_{j} \geq b$$
, $\mathbf{w}^{*} \doteq \sum_{j} w_{j} - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{i \in S-k} w_i \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \ge w^*$ for specific $k : \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

$$\min \sum_{j} y_{j} z_{j} \tag{8}$$

s.t.
$$\sum_{j\neq k} w_j z_j \geq w^*, \qquad z \text{ binary}$$
 (9)

$$\mathbf{z_k} = \mathbf{1}, \ \mathbf{z_j} = \mathbf{0} \ \forall j \text{ with } w_j > w_k$$
 (10)

knapsack:
$$\sum_{j} w_{j}x_{j} \geq b$$
, $\mathbf{w}^{*} \doteq \sum_{j} w_{j} - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{i \in S-k} w_i \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \ge w^*$ for specific $k : \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

$$\min \sum_{j} y_{j} z_{j} \tag{8}$$

s.t.
$$\sum_{j \neq k} w_j z_j \geq w^*, \qquad z \text{ binary}$$
 (9)

$$\mathbf{z_k} = \mathbf{1}, \ \mathbf{z_j} = \mathbf{0} \ \forall j \text{ with } w_j > w_k \tag{10}$$

Wait, how do we solve?

knapsack:
$$\sum_j w_j x_j \ge b$$
, $\mathbf{w}^* \doteq \sum_j w_j - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{i \in S-k} w_i \geq w^*$
- ullet Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- ullet For $k=1,2,\ldots,n$, solve minimum-knapsack problem

$$\min \sum_{j} y_{j} z_{j} \tag{8}$$

s.t.
$$\sum_{j \neq k} w_j z_j \geq w^*, \qquad z \text{ binary}$$
 (9)

$$\mathbf{z_k} = \mathbf{1}, \ \mathbf{z_j} = \mathbf{0} \ \forall j \text{ with } w_j > w_k \tag{10}$$

Wait, how do we solve? In objective round up y_i , to next multiple of $1/n^2$

knapsack:
$$\sum_{j} w_{j} x_{j} \ge b$$
, $\mathbf{w}^{*} \doteq \sum_{j} w_{j} - b + 1$

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{i \in S-k} w_i \geq w^*$
- ullet Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- ullet For $k=1,2,\ldots,n$, solve minimum-knapsack problem

$$\min \sum_{j} y_{j} z_{j} \tag{8}$$

s.t.
$$\sum_{j\neq k} w_j z_j \geq w^*, \qquad z \text{ binary}$$
 (9)

$$\mathbf{z_k} = \mathbf{1}, \ \mathbf{z_j} = \mathbf{0} \ \forall j \text{ with } w_j > w_k \tag{10}$$

Wait, how do we solve? In objective round up y_j , to next multiple of $1/n^2$ So, get approximate separation, with violation if objective < 2

General case? First, coefficients in 0, 1, 2, 3

Example: $8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$ (the knapsack) Valid: $x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$ (non-monotone)

Not valid: $x_1 + x_2 + x_3 + x_4 + x_5 > 3$

A non-monotone "transposition" or "error"

General case? First, coefficients in 0, 1, 2, 3

Example:
$$8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$$
 (non-monotone)

Not valid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

A non-monotone "transposition" or "error"

Example:
$$6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + x_2 + 2x_3 + x_4 + x_5 \ge 3$$
 (non-monotone, 2 errors)

Yes valid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

General case? First, coefficients in 0, 1, 2, 3

Example:
$$8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$$
 (non-monotone)

Not valid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

A non-monotone "transposition" or "error"

Example:
$$6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + x_2 + 2x_3 + x_4 + x_5 \ge 3$$
 (non-monotone, 2 errors)

Yes valid:
$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$$

 \rightarrow When right-hand side = 3, at most one error

General case? First, coefficients in 0, 1, 2, 3

Example:
$$8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$$
 (non-monotone)

Not valid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

A non-monotone "transposition" or "error"

Example:
$$6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + x_2 + 2x_3 + x_4 + x_5 \ge 3$$
 (non-monotone, 2 errors)

Yes valid:
$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$$

 \rightarrow When right-hand side = 3, at most one error Separation by enumeration of errors; each case is a knapsack;

General case? First, coefficients in 0, 1, 2, 3

Example:
$$8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$$
 (non-monotone)

Not valid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

A non-monotone "transposition" or "error"

Example:
$$6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 \ge 13$$
 (the knapsack)

Valid:
$$x_1 + x_2 + 2x_3 + x_4 + x_5 \ge 3$$
 (non-monotone, 2 errors)

Yes valid:
$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$$

 \rightarrow When right-hand side = 3, at most one error Separation by enumeration of errors; each case is a knapsack; $O(n^2)$ cases

Basic principle: an inequality

$$k \times (S_k) + (k-1) \times (S_{k-1}) + \ldots + \times (S_1) \geq k$$
 (11)

is equivalent to its set of covers -

Basic principle: an inequality

$$k x(S_k) + (k-1)x(S_{k-1}) + \ldots + x(S_1) \geq k$$
 (11)

is **equivalent** to its set of covers –

so (11) is valid iff

Basic principle: an inequality

$$k x(S_k) + (k-1)x(S_{k-1}) + \ldots + x(S_1) \geq k$$
 (11)

is **equivalent** to its set of covers –

so (11) is valid **iff** its covers are also covers for the original knapsack

Basic principle: an inequality

$$k x(S_k) + (k-1)x(S_{k-1}) + \ldots + x(S_1) \geq k$$
 (11)

is **equivalent** to its set of covers –

so (11) is valid **iff** its covers are **also** covers for the original knapsack

Corollary: can show that (11) can have at most < k errors

Basic principle: an inequality

$$k x(S_k) + (k-1)x(S_{k-1}) + \ldots + x(S_1) \geq k$$
 (11)

is **equivalent** to its set of covers –

so (11) is valid **iff** its covers are also covers for the original knapsack

Corollary: can show that (11) can have at most < **k** errors or else it is dominated, or invalid

Separation by **enumeration** of errors; each case is a knapsack;

Basic principle: an inequality

$$k x(S_k) + (k-1)x(S_{k-1}) + \ldots + x(S_1) \geq k$$
 (11)

is equivalent to its set of covers -

so (11) is valid iff its covers are also covers for the original knapsack

Corollary: can show that (11) can have at most < **k** errors or else it is dominated, or invalid

Separation by enumeration of errors; each case is a knapsack; $O(n^{F(k)})$ cases

Application 2: polynomial optimization

problems and NN training

Application 2: polynomial optimization problems and NN training

Polynomial optimization:

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.) $0 \le x_j \le 1$, all j (12)

Intersection graph

Application 2: polynomial optimization problems and NN training

Polynomial optimization:

min
$$c^T x$$

s.t. $f_i(x) \leq 0, \quad i = 1, ..., m$ (polynomial ineq.) $0 \leq x_j \leq 1, \quad \text{all } j$ (12)

- Intersection graph
 A vertex for each variable and an edge anytime two variables appear in the same f:
- Tree-width

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ 0 \leq x_j \leq 1, & \text{all } j \end{array} \tag{polynomial ineq.}$$

Intersection graph

min
$$c^T x$$

s.t. $f_i(x) \leq 0, \qquad i = 1, \dots, m$ (polynomial ineq.) $0 \leq x_j \leq 1, \qquad \text{all } j$

Intersection graph

A vertex for each variable and an edge anytime two variables appear in the same f_i

Tree-width of a graph G
 Minimum clique number (minus one) over all chordal supergraphs of G

$$\begin{aligned} & \text{min } c^T x \\ \text{s.t.} & & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ & & 0 \leq x_j \leq 1, \qquad \text{all } j \end{aligned} \tag{polynomial ineq.}$$

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width $\,\omega\,$ and the $\,f_i$ of degree $\,\leq\,
ho.$

min
$$c^T x$$

s.t. $f_i(x) \leq 0, \qquad i=1,\ldots,m$ (polynomial ineq.) $0 \leq x_j \leq 1, \qquad \text{all } j$

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width $\,\omega\,$ and the $\,f_i$ of degree $\,\leq\,
ho\,$.

Then, for every $\ 0<\epsilon<1$ there is a $\$ disjunctive LP relaxation with

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ 0 \leq x_j \leq 1, & \text{all } j \end{array} \tag{polynomial ineq.}$$

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width $\,\omega\,$ and the $\,f_i$ of degree $\,\leq\,
ho.$

Then, for every $\ 0 < \epsilon < 1$ there is a $\$ disjunctive LP relaxation with

 $O\left((2
ho/\epsilon)^{\omega+1}\, n \log(
ho/\epsilon)
ight)$ variables and constraints

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ 0 \leq x_j \leq 1, & \text{all } j \end{array} \tag{polynomial ineq.}$$

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width $\,\omega\,$ and the $\,f_{i}$ of degree $\,\leq\,\rho.$

Then, for every $\ 0 < \epsilon < 1$ there is a $\ disjunctive \ \mathsf{LP}$ relaxation with

 $O\left((2
ho/\epsilon)^{\omega+1}\, n \log(
ho/\epsilon)
ight)$ variables and constraints

Optimality and feasibility errors $O(\epsilon)$ (additive)

Subapplication 2a: training of deep

neural networks with RLUs

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

• **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{n}(y_i-f(x_i))^2$$

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

•
$$f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$$
 (" \circ " = composition)

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0,t\}$

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0, t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0, t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherwise.

As per Arora Basu Mianjy Mukherjee ICLR '18

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0,t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherwise. Similarly with the b_h .

- **D** data points (x_i, y_i) , 1 < i < D, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0,t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0,t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

If $\mathbf{k}=\mathbf{1}$ (one "hidden layer") there is an exact algorithm of complexity

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute a function $f: \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}(y_i-f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\bullet \ \sigma(t) = \max\{0,t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

If k = 1 (one "hidden layer") there is an exact algorithm of complexity

$$O(2^w D^{nw} poly(D, n, w))$$

Polynomial in the size of the data set, for fixed n, w

- D data points $(x_i, y_i), 1 \le i \le D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

If $\mathbf{k}=\mathbf{1}$ (one "hidden layer") there is an exact algorithm of complexity

$$O(2^w D^{nw} \operatorname{poly}(D, n, w))$$

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

If k=1 (one "hidden layer") there is an exact algorithm of complexity

$$O(2^w D^{nw} \operatorname{poly}(D, n, w))$$

Application of B. and Muñoz poly-opt result:

- **D** data points (x_i, y_i) , $1 \le i \le D$, $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

If $\mathbf{k}=\mathbf{1}$ (one "hidden layer") there is an exact algorithm of complexity

$$O\left(2^w D^{nw} \operatorname{poly}(D, n, w)\right)$$

Application of B. and Muñoz poly-opt result:

• Weakening: Assume that a bound on the absolute value of the entries in the A_h , b_h is known

- D data points $(x_i, y_i), 1 \le i \le D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

If $\mathbf{k}=\mathbf{1}$ (one "hidden layer") there is an exact algorithm of complexity

$$O(2^w D^{nw} \operatorname{poly}(D, n, w))$$

Application of B. and Muñoz poly-opt result:

- Weakening: Assume that a bound on the absolute value of the entries in the A_h , b_h is known
- Weakening: For any $0 < \epsilon < 1$, additive errors $O(\epsilon)$

- D data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

If k = 1 (one "hidden layer") there is an exact algorithm of complexity

$$O(2^w D^{nw} poly(D, n, w))$$

Application of B. and Muñoz poly-opt result:

- Weakening: Assume that a bound on the absolute value of the entries in the A_h , b_h is known
- Weakening: For any $0<\epsilon<1$, additive errors $O(\epsilon)$

Theorem. For any k, n, w, ϵ approximate LP of size

$$O\left(\left(\frac{4}{\epsilon}\right)^{O((k-1)w^2+nw)}\operatorname{poly}(D,n,w,k)\right)$$