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Cut-generating functions in the Gomory—Johnson infinite group relaxation

Let G = Q or G = R. Consider
min  (n,y) st. y€FC Z(f),

where

@ the primal space is the space R(®) of
finite-support functions y: G — R;

e linear functionals 7 are in the dual space R®
of arbitrary functions n: G — R;
o dual pairing (n,y) = >_,ccn(r)y(r);

o F={y:GoR|>X, cy(nNref+7}
for a constant f ¢ Z.
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Gomory—Johnson (1972) characterize
minimal functions 7:
7 is periodic modulo 1,
m(r) =0 for r € Z,
m is subadditive: An(x,y) =
w(x) + 7(y) — w(x 4+ y) > 0 for
x,y € G,
7 is symmetric:
w(x)+m(f —x)=1for x € G.
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A hierarchy of functions: valid, minimal, extreme / facet

For minimal 7 define the vector space 1" of
effective perturbation functions 7: G — R:

Jde >0, ™ £ e minimal .

Say 7 is extreme if 1" = {0}.

not minimal f

gomory_fractional

A=
v — i

11_strong_fractional
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m is subadditive: An(x,y) =
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7 is symmetric:
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An electronic compendium of extreme functions
Ko.—Zhou (2014-); available at https://github.com/mkoeppe/cutgeneratingfunctionology
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Effective perturbations of minimal functions

Given a minimal function 7, what properties does an effective perturbation 7 € [17
necessarily have?

For a (possibly discontinuous) piecewise linear function 7 (on partition P), define a
polyhedral complex AP on R x R with faces

F(I,J,K)={(x,y) eRxR|x€l, yeJ, x+y €K}

where I, J, K are breakpoints or subintervals of P.
@ subadditivity slack

e N A7(x,y) = 7(x) + m(y) — 7(x +y)

is affine-linear on relint(F) for F € AP.

@ By convexity, because

=7+ e
T } subadditive,
................ T o= — e

1 we have An(x,y) =0 = A7(x,y) =0.



Cauchy’s and Pexider's functional equation on simple bounded domains
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Cauchy'’s functional equation on a domain [&:

i (u)+7 (v)=7 (u+v) forall (u,v)e F.
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Program: Infer properties of effective perturbations 77 = 7;
from the fact that they are bounded solutions to:
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@ Open: Characterization of full-dimensional polyhedra [El C R* for which affine
linearity extends to boundary of p;i([F).



Effective perturbations of minimal functions
Hong—K6.—Zhou, Equivariant Perturbation V, OMS 2017

Lemma (Dey, Richard, Li, Miller, MPA 2010; Hong—K6.—Zhou, OMS 2017)

Let m: G — R4 be a piecewise linear minimal function that is continuous from the right
at 0 or continuous from the left at 1. Let 7 € [1" be an effective perturbation function.
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Lemma (Dey, Richard, Li, Miller, MPA 2010; Hong—K6.—Zhou, OMS 2017)

Let m: G — Ry be a piecewise linear minimal function that is continuous from the right
at 0 or continuous from the left at 1. Let 7 € [1" be an effective perturbation function.
If 7 is continuous on a proper interval | C G, then 7 is Lipschitz continuous on |.

In particular, limits 7(x~) and 7(x") exist for any x € G.

| \

Proof.
WLOG, 7 is continuous from the right at 0. 3 s, b > 0 s.t. w(x) = sx for x € [0, 2b].
J € > 0 such that 77 = 7+ €7 and 7~ = m — €7 are minimal.

For x,y € [0, b], we have 7(x) + 7(y) = m(x + y); so @(x) + 7(y) = 7T(x + y).

7(0) = 0. By the Interval Lemma, 3 § € R such that 7(x) = 5x for x € [0, b].

Then 777 and 7~ have slopes st := s+ €5 and s~ := s — €5 on [0, b], respectively.

3 s, € R such that 7(x) — w(y) > si(x — y) for x,y € I.

Let x,y € [ such that x > y. By subadditivity, we have 7" (x) — 7" (y) < s™(x — y) and
77 (x) =7 (y) < s (x —y). It follows from e = 7" — 7 =7 — 7~ that

(51— s )(x —y) S e(7(x) = 7(y)) < (s" = s1)(x — ).

i(x) = (y)| < C|x — y|, where C = Lmax(|s* —s|,[s™ — s1]). O

Therefore,




Cauchy—Pexider in the limit

Basu—Hildebrand—K®é., Equivariant Perturbation |, MOR 2012; K6.—Zhou, Equivariant Perturbation VI, arXiv:
1605.03975v3, 2018

vtn

YN

Program: Additional properties of v

effective perturbations follow from ,

. ) . . Y3

Cauchy—Pexider's equation holding "

only in the limit near some points. "
(“stability of functional equations”) . oy

u—1n u—60 zux' utd u+n

Theorem (K6.—Zhou, 2018)

Let F be a two-dimensional face of AP, where P is the one-dimensional polyhedral
complex of a piecewise linear function. Let (u,v) € F .
Fori=1,23, let 7;: R — R be a function that is bounded near

u:pl(u, V)a V:p2(u7 V)a u+v=p3(u, V)‘

If
Afp(u,v) = lim  T1(x) + T2(y) — T3(x +y) =0,
(x:y)=(u,v)
(x,y)€int( F)

then for i = 1,2,3, the limit lim,_, , ., ). reint(p;(Fy) 7i(t) exists.




Cauchy—Pexider in the limit. Case 1
K6.—Zhou, Equivariant Perturbation VI, arXiv:1605.03975

Show: Ve > 0 3 a relative neighborhood U = (u, u+ d(€)) of u in int(p1( F )) so that

for all x,x’ € U, we have |71(x —f1(x)] <e.

ving Pick n > 0 small enough so that
o C) =[u,u+n] x[v,v+n C F

o |Af(x,y)| < /4 for (x,y) € Gy

wha o |7i(t)] < M for t € pi( C; ) (some M)

u f Take N > 4M /e +1 and § = n/(2N).
; Take x,x” € U, x < x'. Define y, =v+6+ (n—1)(x" — x) for
oz ol utd win 1< n<N.All (x,y) and (X', y;) liein C; Nint(F).

[AT(x, ynt1)| = |T1(x) + F2(ynt1) — F3(x + yni1)| < /4
|A7 (X, yn)| = |71 (x’ +72(Yn) —#3(x" + yn)| < e/4

With x + ynt1 = x’ + yn for n € {1,2,..., N — 1}, by the triangle inequality,
|71(x) — #1(x") + T?z(ynﬂ) — #a(yn)| < /2.
Summing over n =1,2,..., N — 1, triangle inequality:

(V= 1)(F2(0) = Fa(x7) + Falom) = Falos)] < (N = D/2.
Therefore, |71(x) — T1(x")| < |72(yn) — T2(1)| /(N = 1) +e/2 <2M/(N —1) +e/2 < e.



Cauchy—Pexider in the limit. Case 2
K6.—Zhou, Equivariant Perturbation VI, arXiv:1605.03975

u+td U‘;’ﬂ

The quadrilateral G, = conv( (), (477), (1), () € F.
Use

U:=(u—-9,u+9),
V= (v,v+9),
W= (u+v,u+v+79).



Cauchy—Pexider in the limit. Case 3
K6.—Zhou, Equivariant Perturbation VI, arXiv:1605.03975

Case 3a (sharp-angle corner): Then
G, =conv (), (470, (,2,)) s
contained in F.

Use U:= (u—4,u), V:=(v,v+59),
and W:= (u+v,u+v+9).

Case 3b (right-angle corner, second
quadrant): The sharp-angle corner of
Case 3a appears as a subcone.

Use U and V as in Case 3a and

W:=(w+v—-0/2,u+v+4/2).




Cauchy—Pexider in the limit. Application. Open questions

Theorem is false for arbitrary convex polygons F C R2.

Open Question

Generalize the theorem to faces F = F(/,J,K) € AP, F C R x R¥, where P is the
polyhedral complex of an arbitrary piecewise linear function 7: R — R.




Main theorem on perturbation spaces / extremality test

Basu-Hildebrand—K6., Equivariant Perturbation I, MOR 2012; Basu-Hildebrand—K®., Light on the infinite
group relaxation, 40R 2014; Zhou, dissertation 2017; Hildebrand—K®&.-Zhou, 2018+

Theorem (Basu-Hildebrand—Ké., 2012, 2014; Zhou, 2017, Hildebrand—K&.~Zhou, 2018+-)

Let m be minimal function for Re(R/Z) that is

@ a (possibly discontinuous) piecewise linear function with rational breakpoints in %Z

Then there is a computable direct sum decomposition of the space [1™ into:

o a finite-dimensional space of perturbations that are (possibly discontinuous) linear
interpolations of values (and limits) at breakpoints ,

@ a finite number of infinite-dimensional spaces of Lipschitz perturbations 7,
equivariant under a computable semigroup action, zero on breakpoints.




Main theorem on perturbation spaces / extremality test

Basu-Hildebrand—K6., Equivariant Perturbation I, MOR 2012; Basu-Hildebrand—K®., Light on the infinite
group relaxation, 40R 2014; Zhou, dissertation 2017; Hildebrand—K®&.-Zhou, 2018+

Theorem (Basu-Hildebrand—Ké., 2012, 2014; Zhou, 2017, Hildebrand—K&.~Zhou, 2018+-)

Let m be minimal function for Re(R/Z) that is
@ a (possibly discontinuous) piecewise linear function with rational breakpoints in %Z

@ or a piecewise linear function with arbitrary breakpoints that is at least one-sided
continuous at 0 and for which the “move completion procedure” terminates.

Then there is a computable direct sum decomposition of the space [1™ into:

@ a finite-dimensional space of perturbations that are (possibly discontinuous) linear
interpolations of values (and limits) at “breakpoints”,

@ a finite number of infinite-dimensional spaces of Lipschitz perturbations 7,
equivariant under a computable semigroup action, zero on “breakpoints.”




Effective perturbations of minimal functions

Finite-dimensional perturbation subspace: Interpolations of perturbations on ‘breakpoints’

7 I
not_extreme_1
Infinite-dimensional perturbation subspace: Equivariant perturbations, 0 on ‘breakpoints’
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https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+not_extreme_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_not_extreme_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22

Cauchy—Pexider on irrational edges — the strip lemma

Basu-Hildebrand—K&ppe, Equivariant Perturbation I, MOR 2012; Hildebrand, Hong, Ké., La Haye, Louveaux,
unpublished, 2014; Zhou, dissertation 2017; Hildebrand—K&.—Zhou, Equivariant Perturbation VII, 2018+

F = union of n+ 1 irrational translates of an edge

Equivalent: Characterize connectivity of lattice points in the strip
S.={xeR"|0<a-x<1}

by standard unit moves {+e', +e? ..., +e"}.
N <

\

Let n =2 and a1, a» € (0,1) be rationally independent. Then S, N Z? is connected if and
only if ||a|l: < 1.




SageMath (Python) package cutgeneratingfunctionology
https://github.com/mkoeppe/cutgeneratingfunctionology

Authors: Chun Yu Hong (2013), K&. (2013-), Yuan Zhou (2014-), Jiawei Wang
(2016-), contributing undergraduate programmers

Models:
@ 1-row Gomory—Johnson model

Gomory's finite (cyclic) group problem

superadditive lifting functions

dual-feasible functions

multi-row code under development

7 / . . .
INJ Functionality:
\ @ electronic compendium of functions

@ automatic extremality test (Basu—Hildebrand—Ka.,
. | Math. Oper. Res. 2014, Hong—K&6.—Zhou, ICMS
2016, Zhou 2017, Hildebrand—K6.-Zhou, 2018+)

@ computer-based search for extreme functions
(K&.~Zhou, MPC 2016)




