

Discrete geometry of functional equations in cutgenerating function ology

Matthias Köppe

University of California, Davis, Mathematics

Discrete geometry of functional equations in cutgenerating function ology

Matthias Köppe

University of California, Davis, Mathematics

$\hbox{Cut-generating functions in the Gomory-Johnson infinite group relaxation}$

Let $G=\mathbb{Q}$ or $G=\mathbb{R}.$ Consider

min
$$\langle \eta, y \rangle$$
 s.t. $y \in F \subseteq \mathbb{Z}_+^{(G)}$,

where

- the primal space is the space R^(G) of finite-support functions y: G → R;
- linear functionals η are in the dual space \mathbb{R}^G of arbitrary functions $\eta \colon G \to \mathbb{R}$;
- dual pairing $\langle \eta, y \rangle = \sum_{r \in G} \eta(r) y(r)$;
- $F = \{ y \colon G \to \mathbb{R} \mid \sum_{r \in G} y(r) \mid r \in f + \mathbb{Z} \}$ for a constant $f \notin \mathbb{Z}$.

If $G = \mathbb{Q}$, then $R = \operatorname{conv}(F) \subseteq \mathbb{R}_+^{(G)}$ convex set of "blocking type", $\operatorname{rec}(R) = \mathbb{R}_+^{(G)}$; thus can normalize:

Nontrivial valid inequalities $\langle \pi, y \rangle \geq 1$, $\pi \geq 0$.

Same holds for $G=\mathbb{R}!$ Basu–Conforti–Di Summa–Paat, IPCO 2017

Cut-generating functions in the Gomory–Johnson infinite group relaxation

Let $G=\mathbb{Q}$ or $G=\mathbb{R}.$ Consider

min
$$\langle \eta, y \rangle$$
 s.t. $y \in F \subseteq \mathbb{Z}_+^{(G)}$,

where

- the primal space is the space R^(G) of finite-support functions y: G → R;
- linear functionals η are in the dual space \mathbb{R}^G of arbitrary functions $\eta \colon G \to \mathbb{R}$;
- dual pairing $\langle \eta, y \rangle = \sum_{r \in G} \eta(r) y(r)$;
- $F = \{ y \colon G \to \mathbb{R} \mid \sum_{r \in G} y(r) \mid r \in f + \mathbb{Z} \}$ for a constant $f \notin \mathbb{Z}$.

If $G = \mathbb{Q}$, then $R = \operatorname{conv}(F) \subseteq \mathbb{R}_+^{(G)}$ convex set of "blocking type", $\operatorname{rec}(R) = \mathbb{R}_+^{(G)}$; thus can normalize:

Nontrivial valid inequalities $\langle \pi, y \rangle \geq 1$, $\pi \geq 0$.

Same holds for $G=\mathbb{R}!$ Basu–Conforti–Di Summa–Paat, IPCO 2017

valid cut-generating functions

Cut-generating functions in the Gomory–Johnson infinite group relaxation

Let $G = \mathbb{Q}$ or $G = \mathbb{R}$. Consider

$$\mbox{min} \quad \langle \eta, y \rangle \quad \mbox{s.t.} \quad y \in {\it F} \subseteq \mathbb{Z}_{+}^{(\it G)},$$

where

- the primal space is the space R^(G) of finite-support functions y: G → R;
- linear functionals η are in the dual space \mathbb{R}^G of arbitrary functions $\eta \colon G \to \mathbb{R}$;
- dual pairing $\langle \eta, y \rangle = \sum_{r \in G} \eta(r) y(r)$;
- $F = \{ y \colon G \to \mathbb{R} \mid \sum_{r \in G} y(r) \mid r \in f + \mathbb{Z} \}$ for a constant $f \notin \mathbb{Z}$.

If
$$G = \mathbb{Q}$$
, then $R = \operatorname{conv}(F) \subseteq \mathbb{R}_+^{(G)}$ convex set of "blocking type", $\operatorname{rec}(R) = \mathbb{R}_+^{(G)}$; thus can normalize:

Nontrivial valid inequalities $\langle \pi, y \rangle \geq 1$, $\pi \geq 0$.

Same holds for $G = \mathbb{R}!$

Basu-Conforti-Di Summa-Paat, IPCO 2017.

valid cut-generating functions

Cut-generating functions in the Gomory–Johnson infinite group relaxation

Let $G = \mathbb{Q}$ or $G = \mathbb{R}$. Consider

$$\mbox{min} \quad \langle \eta, y \rangle \quad \mbox{s.t.} \quad y \in {\it F} \subseteq \mathbb{Z}_{+}^{(\it G)},$$

where

- the primal space is the space R^(G) of finite-support functions y: G → R;
- linear functionals η are in the dual space \mathbb{R}^G of arbitrary functions $\eta: G \to \mathbb{R}$;
- dual pairing $\langle \eta, y \rangle = \sum_{r \in G} \eta(r) y(r)$;
- $F = \{ y \colon G \to \mathbb{R} \mid \sum_{r \in G} y(r) \mid r \in f + \mathbb{Z} \}$ for a constant $f \notin \mathbb{Z}$.

If $G = \mathbb{Q}$, then $R = \operatorname{conv}(F) \subseteq \mathbb{R}_+^{(G)}$ convex set of "blocking type", $\operatorname{rec}(R) = \mathbb{R}_+^{(G)}$; thus can normalize:

Nontrivial valid inequalities $\langle \pi, y \rangle \geq 1$, $\pi \geq 0$.

Same holds for $G = \mathbb{R}!$

Basu-Conforti-Di Summa-Paat, IPCO 2017.

Gomory–Johnson (1972) characterize minimal functions π :

 π is **periodic** modulo 1, $\pi(r) = 0$ for $r \in \mathbb{Z}$, π is **subadditive**: $\Delta \pi(x, y) := \pi(x) + \pi(y) - \pi(x + y) \ge 0$ for $x, y \in G$, π is **symmetric**:

 $\pi(x) + \pi(f - x) = 1$ for $x \in G$.

Cut-generating functions in the Gomory-Johnson infinite group relaxation

Let $G = \mathbb{Q}$ or $G = \mathbb{R}$. Consider

$$\mbox{min} \quad \langle \eta, y \rangle \quad \mbox{s.t.} \quad y \in {\it F} \subseteq \mathbb{Z}_{+}^{(\it G)},$$

where

- the primal space is the space R^(G) of finite-support functions y: G → R;
- linear functionals η are in the dual space \mathbb{R}^G of arbitrary functions $\eta \colon G \to \mathbb{R}$;
- dual pairing $\langle \eta, y \rangle = \sum_{r \in G} \eta(r) y(r)$;
- $F = \{ y \colon G \to \mathbb{R} \mid \sum_{r \in G} y(r) \mid r \in f + \mathbb{Z} \}$ for a constant $f \notin \mathbb{Z}$.

If $G = \mathbb{Q}$, then $R = \operatorname{conv}(F) \subseteq \mathbb{R}_+^{(G)}$ convex set of "blocking type", $\operatorname{rec}(R) = \mathbb{R}_+^{(G)}$; thus can normalize:

Nontrivial valid inequalities $\langle \pi, y \rangle \geq 1$, $\pi \geq 0$.

Same holds for $G = \mathbb{R}!$

Basu-Conforti-Di Summa-Paat, IPCO 2017.

Gomory–Johnson (1972) characterize minimal functions π :

 π is **periodic** modulo 1, $\pi(r) = 0$ for $r \in \mathbb{Z}$, π is **subadditive**: $\Delta \pi(x, y) := \pi(x) + \pi(y) - \pi(x + y) \ge 0$ for $x, y \in G$, π is **symmetric**: $\pi(x) + \pi(f - x) = 1$ for $x \in G$.

A hierarchy of functions: valid , minimal , extreme / facet

For minimal π define the vector space $\tilde{\Pi}^{\pi}$ of effective perturbation functions $\tilde{\pi} \colon G \to \mathbb{R}$:

$$\exists \epsilon > 0, \quad \pi \pm \epsilon \tilde{\pi} \quad \text{minimal}.$$

Say
$$\pi$$
 is extreme if $\tilde{\Pi}^{\pi} = \{0\}$.

Gomory–Johnson (1972) characterize minimal functions π :

$$\pi$$
 is **periodic** modulo 1, $\pi(r) = 0$ for $r \in \mathbb{Z}$, π is **subadditive**: $\Delta \pi(x,y) := \pi(x) + \pi(y) - \pi(x+y) \ge 0$ for $x,y \in G$, π is **symmetric**: $\pi(x) + \pi(f-x) = 1$ for $x \in G$.

An electronic compendium of extreme functions

Kö.-Zhou (2014-); available at https://github.com/mkoeppe/cutgeneratingfunctionology

gj_2_slope

dg_2_step_mir

gj_2_slope_ repeat

kf n step mir

bccz counterexample

drlm_backward_3_

slope

gj_forward_3_ slope

dr_projected_ sequential_ merge_3_slope

bhk_irrational

chen_4_slope hildebrand_5_ slope_22_1

kzh_7_slope_1

kzh_28_slope_1

bcdsp_arbitrary_ slope

11 strong fractional

dg_2_step_mir_ limit

drlm 2 slope limit

drlm_3_slope_ limit.

rlm_dpl1_ extreme_3a

hildebrand_2_ sided_discont_2_ slope_1

zhou_two_sided_ discontinuous_ cannot_assume_ any_continuity

kzh_minimal_ has_only_crazy_ perturbation_1

bcds discontinuous_ everywhere

Given a minimal function π , what properties does an effective perturbation $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition \mathcal{P}), define a polyhedral complex $\Delta \mathcal{P}$ on $\mathbb{R} \times \mathbb{R}$ with faces

$$F(I, J, K) = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \in I, y \in J, x + y \in K \}$$

where I, J, K are breakpoints or subintervals of \mathcal{P}

subadditivity slack

$$\Delta\pi(x,y) = \pi(x) + \pi(y) - \pi(x+y)$$

is affine-linear on rel int(
$$F$$
) for $F \in \Delta \mathcal{P}$

$$ullet$$
 Green faces have $\Delta\pi=0$ on relint(F

By convexity, because

$$\left. \begin{array}{l} \pi^+ = \pi + \epsilon \tilde{\pi} \\ \pi \\ \pi^- = \pi - \epsilon \tilde{\pi} \end{array} \right\} \mbox{ subadditive},$$

we have
$$\Delta\pi(x,y)=0 \Rightarrow \Delta\tilde{\pi}(x,y)=0$$

Given a minimal function π , what properties does an effective perturbation $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition \mathcal{P}), define a polyhedral complex $\Delta \mathcal{P}$ on $\mathbb{R} \times \mathbb{R}$ with faces

$$F(I, J, K) = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \in I, y \in J, x + y \in K \}$$

where I, J, K are breakpoints or subintervals of \mathcal{P}

subadditivity slack

$$\Delta\pi(x,y) = \pi(x) + \pi(y) - \pi(x+y)$$

is affine-linear on rel int(
$$F$$
) for $F \in \Delta \mathcal{P}$

$$ullet$$
 Green faces have $\Delta\pi=0$ on relint(F

By convexity, because

$$\left. \begin{array}{l} \pi^+ = \pi + \epsilon \tilde{\pi} \\ \pi \\ \pi^- = \pi - \epsilon \tilde{\pi} \end{array} \right\} \mbox{ subadditive},$$

we have
$$\Delta\pi(x,y)=0 \Rightarrow \Delta\tilde{\pi}(x,y)=0$$

Given a minimal function π , what properties does an effective perturbation $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition \mathcal{P}), define a polyhedral complex $\Delta \mathcal{P}$ on $\mathbb{R} \times \mathbb{R}$ with faces

$$F(I, J, K) = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \in I, y \in J, x + y \in K \}$$

where I, J, K are breakpoints or subintervals of \mathcal{P}

subadditivity slack

$$\Delta\pi(x,y) = \pi(x) + \pi(y) - \pi(x+y)$$

is affine-linear on $\operatorname{relint}(F)$ for $F \in \Delta \mathcal{P}$.

By convexity, because

$$\left. \begin{array}{l} \pi^+ = \pi + \epsilon \bar{\pi} \\ \pi \\ \pi^- = \pi - \epsilon \bar{\pi} \end{array} \right\} \mbox{ subadditive},$$

we have
$$\Delta \pi(x,y) = 0 \Rightarrow \Delta \tilde{\pi}(x,y) = 0$$

Given a minimal function π , what properties does an effective perturbation $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition \mathcal{P}), define a **polyhedral complex** $\Delta \mathcal{P}$ on $\mathbb{R} \times \mathbb{R}$ with faces

$$F(I, J, K) = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \in I, y \in J, x + y \in K \}$$

where I, J, K are breakpoints or subintervals of \mathcal{P} .

subadditivity slack

$$\Delta\pi(x,y) = \pi(x) + \pi(y) - \pi(x+y)$$

is affine-linear on relint(F) for $F \in \Delta P$.

- Green faces have $\Delta \pi = 0$ on relint(F)
- By convexity, because

$$\left. egin{aligned} \pi^+ &= \pi + \epsilon ilde{\pi} \ \pi \ \pi^- &= \pi - \epsilon ilde{\pi} \end{aligned}
ight.
ight. ext{subadditive},$$

we have
$$\Delta \pi(x,y) = 0 \Rightarrow \Delta \tilde{\pi}(x,y) = 0$$

Given a minimal function π , what properties does an effective perturbation $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition \mathcal{P}), define a **polyhedral complex** $\Delta \mathcal{P}$ on $\mathbb{R} \times \mathbb{R}$ with faces

$$F(I, J, K) = \{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \in I, y \in J, x + y \in K \}$$

where I, J, K are breakpoints or subintervals of \mathcal{P} .

subadditivity slack

$$\Delta\pi(x,y) = \pi(x) + \pi(y) - \pi(x+y)$$

is affine-linear on $\mathsf{rel}\,\mathsf{int}(F)$ for $F \in \Delta \mathcal{P}$.

- Green faces have $\Delta \pi = 0$ on relint(F)
- By convexity, because

$$\left. \begin{array}{l} \pi^+ = \pi + \epsilon \tilde{\pi} \\ \pi \\ \pi^- = \pi - \epsilon \tilde{\pi} \end{array} \right\} \mbox{ subadditive},$$

we have
$$\Delta \pi(x,y) = 0 \Rightarrow \Delta \tilde{\pi}(x,y) = 0$$
.

Program: Infer properties of effective perturbations $\tilde{\pi}$ from the fact that they are bounded solutions to:

Cauchy's functional equation on a domain F:

$$ilde{\pi}\;(u)+ ilde{\pi}\;(v)= ilde{\pi}\;(u+v)\quad ext{for all}\quad (u,v)\in rac{ extbf{\emph{F}}}{ extbf{\emph{F}}}.$$

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003): $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu-Hildebrand-Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- **Open:** Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Program: Infer properties of effective perturbations $\tilde{\pi}$ from the fact that they are bounded solutions to:

Cauchy's functional equation on a domain F:

$$ilde{\pi}\;(u)+ ilde{\pi}\;(v)= ilde{\pi}\;(u+v)\quad ext{for all}\quad (u,v)\in rac{ extbf{\emph{F}}}{ extbf{\emph{F}}}.$$

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003): $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu-Hildebrand-Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- **Open:** Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Program: Infer properties of effective perturbations $\tilde{\pi} = \tilde{\pi}_i$ from the fact that they are bounded solutions to:

$$ilde{\pi}_1(u)+ ilde{\pi}_2(v)= ilde{\pi}_3(u+v) \quad ext{for all} \quad (u,v)\in rac{ extbf{\emph{F}}}{ extbf{\emph{F}}}.$$

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003): $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu-Hildebrand-Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- Open: Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Program: Infer properties of effective perturbations $\tilde{\pi} = \tilde{\pi}_i$ from the fact that they are bounded solutions to:

$$ilde{\pi}_1(u)+ ilde{\pi}_2(v)= ilde{\pi}_3(u+v) \quad ext{for all} \quad (u,v)\in {\color{red} F}\,.$$

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003): $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu–Hildebrand–Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- Open: Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Program: Infer properties of effective perturbations $\tilde{\pi} = \tilde{\pi}_i$ from the fact that they are bounded solutions to:

$$ilde{\pi}_1(u) + ilde{\pi}_2(v) = ilde{\pi}_3(u+v)$$
 for all $(u,v) \in {\color{red} F}$.

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003):
 - $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu–Hildebrand–Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- Open: Characterization of full-dimensional polyhedra $\digamma \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(\digamma)$.

Program: Infer properties of effective perturbations $\tilde{\pi} = \tilde{\pi}_i$ from the fact that they are bounded solutions to:

$$ilde{\pi}_1(u) + ilde{\pi}_2(v) = ilde{\pi}_3(u+v) \quad \text{for all} \quad (u,v) \in \creak{\it F} \ .$$

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003): $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu-Hildebrand-Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- Open: Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Program: Infer properties of effective perturbations $\tilde{\pi} = \tilde{\pi}_i$ from the fact that they are bounded solutions to:

$$ilde{\pi}_1(u)+ ilde{\pi}_2(v)= ilde{\pi}_3(u+v)$$
 for all $(u,v)\in {\color{red} F}$.

- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Cauchy are homogeneous linear functions $\tilde{\pi}(x) = ax$
- $F = \mathbb{R}^k \times \mathbb{R}^k$: Solutions to Pexider are affine-linear functions $\tilde{\pi}_i(x) = ax + b_i$
- Interval lemma (Gomory–Johnson, 1973/2003):
 - $F = U \times V \subseteq \mathbb{R} \times \mathbb{R}$, where $U, V \subseteq \mathbb{R}$ proper intervals: Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $p_1(F) = U$, $p_2(F) = V$, $p_3(F) = U + V$ are affine-linear functions $ax + b_i$.
- Convex additivity domain lemma (Basu–Hildebrand–Kö., 2014): F a full-dimensional convex set of \mathbb{R}^k : Solutions to Pexider's equation are functions $\tilde{\pi}_i(x)$ whose restrictions to $\inf(p_1(F))$, $\inf(p_2(F))$, $\inf(p_3(F))$ are affine-linear functions $ax + b_i$
- **Open:** Characterization of full-dimensional polyhedra $F \subset \mathbb{R}^k$ for which affine linearity extends to boundary of $p_i(F)$.

Hong-Kö.-Zhou, Equivariant Perturbation V, OMS 2017

Lemma (Dey, Richard, Li, Miller, MPA 2010; Hong-Kö.-Zhou, OMS 2017)

Let $\pi\colon G\to\mathbb{R}_+$ be a piecewise linear minimal function that is continuous from the right at 0 or continuous from the left at 1. Let $\tilde{\pi}\in\tilde{\Pi}^\pi$ be an effective perturbation function.

If π is continuous on a proper interval $I \subset G$, then $\tilde{\pi}$ is Lipschitz continuous on I. In particular, limits $\tilde{\pi}(x^-)$ and $\tilde{\pi}(x^+)$ exist for any $x \in G$.

Fherefore, $| ilde{\pi}(x)- ilde{\pi}(y)|\leq C\,|x-y|$, where $C=rac{1}{\epsilon}\max(|s^+-s_l|\,,|s^--s_l|)$

Hong-Kö.-Zhou, Equivariant Perturbation V, OMS 2017

Lemma (Dey, Richard, Li, Miller, MPA 2010; Hong-Kö.-Zhou, OMS 2017)

Let $\pi: G \to \mathbb{R}_+$ be a piecewise linear minimal function that is continuous from the right at 0 or continuous from the left at 1. Let $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ be an effective perturbation function.

If π is continuous on a proper interval $I \subset G$, then $\tilde{\pi}$ is Lipschitz continuous on I.

Proo

 $\exists \ \epsilon > 0$ such that $\pi^+ = \pi + \epsilon \tilde{\pi}$ and $\pi^- = \pi - \epsilon \tilde{\pi}$ are minimal.

For $x, y \in [0, b]$, we have $\pi(x) + \pi(y) = \pi(x + y)$; so $\pi(x) + \pi(y) = \pi(x + y)$. $\pi(0) = 0$ By the **Interval Lemma** $\exists \ \hat{s} \in \mathbb{R}$ such that $\pi(x) = \hat{s}x$ for $x \in [0, b]$.

 $\pi(0) = 0$. By the Interval Lemma, $\exists s \in \mathbb{R}$ such that $\pi(x) = sx$ for $x \in [0, b]$. Then π^+ and π^- have slopes $s^+ := s + \epsilon \tilde{s}$ and $s^- := s - \epsilon \tilde{s}$ on [0, b], respective

Let $x, y \in \mathbb{R}$ such that x > y. By subadditivity, $y \in \mathbb{R}$. Let (x, y) = (x, y) = (x, y). It follows from (x, y) = (x, y) = (x, y).

$$(s, -s^-)(y, y) \leq c(\tilde{\pi}(y) - \tilde{\pi}(y)) \leq (s^+ - s_0)(y - y)$$

Therefore,
$$|\tilde{\pi}(x) - \tilde{\pi}(y)| < C|x - y|$$
, where $C = \frac{1}{2} \max(|s^+ - s_i|, |s^- - s_i|)$.

Hong-Kö.-Zhou, Equivariant Perturbation V, OMS 2017

Lemma (Dey, Richard, Li, Miller, MPA 2010; Hong-Kö.-Zhou, OMS 2017)

Let $\pi: G \to \mathbb{R}_+$ be a piecewise linear minimal function that is continuous from the right at 0 or continuous from the left at 1. Let $\tilde{\pi} \in \tilde{\Pi}^{\pi}$ be an effective perturbation function.

If π is continuous on a proper interval $I \subset G$, then $\tilde{\pi}$ is Lipschitz continuous on I. In particular, limits $\tilde{\pi}(x^-)$ and $\tilde{\pi}(x^+)$ exist for any $x \in G$.

Proof.

WLOG, π is continuous from the right at 0. $\exists s, b > 0$ s.t. $\pi(x) = sx$ for $x \in [0, 2b]$. $\exists \epsilon > 0$ such that $\pi^+ = \pi + \epsilon \tilde{\pi}$ and $\pi^- = \pi - \epsilon \tilde{\pi}$ are minimal.

For $x, y \in [0, b]$, we have $\pi(x) + \pi(y) = \pi(x + y)$; so $\tilde{\pi}(x) + \tilde{\pi}(y) = \tilde{\pi}(x + y)$. $\tilde{\pi}(0) = 0$. By the **Interval Lemma**, $\exists \ \tilde{s} \in \mathbb{R}$ such that $\tilde{\pi}(x) = \tilde{s}x$ for $x \in [0, b]$.

Then π^+ and π^- have slopes $s^+:=s+\epsilon \tilde{s}$ and $s^-:=s-\epsilon \tilde{s}$ on [0,b], respectively.

 $\exists s_I \in \mathbb{R}$ such that $\pi(x) - \pi(y) \ge s_I(x - y)$ for $x, y \in I$. Let $x, y \in I$ such that x > y. By **subadditivity**, we have $\pi^+(x) - \pi^+(y) \le s^+(x - y)$ and $\pi^-(x) - \pi^-(y) \le s^-(x - y)$. It follows from $\epsilon \tilde{\pi} = \pi^+ - \pi = \pi - \pi^-$ that

 $(s_l-s^-)(x-y) \leq \epsilon(\tilde{\pi}(x)-\tilde{\pi}(y)) \leq (s^+-s_l)(x-y).$

Therefore,
$$|\tilde{\pi}(x) - \tilde{\pi}(y)| \le C|x - y|$$
, where $C = \frac{1}{\epsilon} \max(|s^+ - s_I|, |s^- - s_I|)$.

Cauchy-Pexider in the limit

Basu-Hildebrand-Kö., Equivariant Perturbation I, MOR 2012; Kö.-Zhou, Equivariant Perturbation VI, arXiv: 1605.03975v3, 2018

Program: Additional properties of effective perturbations follow from Cauchy–Pexider's equation holding only in the limit near some points. ("stability of functional equations")

Theorem (**Kö.**–Zhou, 2018)

Let F be a two-dimensional face of $\Delta \mathcal{P}$, where \mathcal{P} is the one-dimensional polyhedral complex of a piecewise linear function. Let $(u,v) \in F$. For i=1,2,3, let $\tilde{\pi}_i \colon \mathbb{R} \to \mathbb{R}$ be a function that is bounded near

$$u = p_1(u, v), \quad v = p_2(u, v), \quad u + v = p_3(u, v).$$

If

$$\Delta \tilde{\pi}_{F}(u,v) = \lim_{\substack{(x,y) \to (u,v) \\ (y,y) \in \operatorname{int}(F)}} \tilde{\pi}_{1}(x) + \tilde{\pi}_{2}(y) - \tilde{\pi}_{3}(x+y) = 0,$$

then for i = 1, 2, 3, the limit $\lim_{t \to p_i(u,v), t \in \text{int}(p_i(F))} \tilde{\pi}_i(t)$ exists.

Cauchy-Pexider in the limit. Case 1

Kö.-Zhou, Equivariant Perturbation VI, arXiv:1605.03975

Show: $\forall \epsilon > 0 \; \exists \; \text{a relative neighborhood} \; U = (u, u + \delta(\epsilon)) \; \text{of} \; u \; \text{in int}(p_1(\digamma)) \; \text{so that}$

for all
$$x, x' \in U$$
, we have $|\tilde{\pi}_1(x) - \tilde{\pi}_1(x')| \leq \varepsilon$.

Pick
$$\eta > 0$$
 small enough so that

•
$$C_{\eta} = [u, u + \eta] \times [v, v + \eta] \subseteq F$$

•
$$|\Delta \tilde{\pi}(x,y)| < \varepsilon/4$$
 for $(x,y) \in C_{\eta}$

•
$$|\tilde{\pi}_i(t)| \leq M$$
 for $t \in p_i(C_\eta)$ (some M)

Take $N > 4M/\varepsilon + 1$ and $\delta = \eta/(2N)$.

Take
$$x, x' \in U$$
, $x < x'$. Define $y_n = v + \delta + (n-1)(x'-x)$ for $1 \le n \le N$. All (x, y_i) and (x', y_i) lie in $C_\eta \cap \text{int}(F)$.

$$|\Delta \tilde{\pi}(x, y_{n+1})| = |\tilde{\pi}_1(x) + \tilde{\pi}_2(y_{n+1}) - \tilde{\pi}_3(x + y_{n+1})| \le \varepsilon/4$$

$$|\Delta \tilde{\pi}(x',y_n)| = |\tilde{\pi}_1(x') + \tilde{\pi}_2(y_n) - \tilde{\pi}_3(x'+y_n)| \le \varepsilon/4$$

With $x + y_{n+1} = x' + y_n$ for $n \in \{1, 2, ..., N-1\}$, by the triangle inequality,

$$\left|\tilde{\pi}_1(x) - \tilde{\pi}_1(x') + \tilde{\pi}_2(y_{n+1}) - \tilde{\pi}_2(y_n)\right| \leq \varepsilon/2.$$

Summing over n = 1, 2, ..., N - 1, triangle inequality:

$$|(N-1)(\tilde{\pi}_1(x)-\tilde{\pi}_1(x'))+\tilde{\pi}_2(y_N)-\tilde{\pi}_2(y_1)|\leq (N-1)\varepsilon/2.$$

Therefore,
$$|\tilde{\pi}_1(x) - \tilde{\pi}_1(x')| \le |\tilde{\pi}_2(y_N) - \tilde{\pi}_2(y_1)|/(N-1) + \varepsilon/2 \le 2M/(N-1) + \varepsilon/2 \le \varepsilon$$
.

Cauchy-Pexider in the limit. Case 2

Kö.-Zhou, Equivariant Perturbation VI, arXiv:1605.03975

The quadrilateral
$$C_{\eta} = \text{conv}\Big(\binom{u}{v},\binom{u-\eta}{v+\eta},\binom{u+\eta}{v+\eta},\binom{u+\eta}{v}\Big) \subseteq F$$
. Use

$$U := (u - \delta, u + \delta),$$

$$V := (v, v + \delta),$$

$$W := (u + v, u + v + \delta).$$

Cauchy-Pexider in the limit. Case 3

Kö.-Zhou, Equivariant Perturbation VI, arXiv:1605.03975

Case 3a (sharp-angle corner): Then $C_{\eta} = \operatorname{conv}\left(\binom{u}{v}, \binom{u-\eta}{v+\eta}, \binom{u}{v+\eta}\right)$ is contained in F. Use $U := (u-\delta,u), \ V := (v,v+\delta),$ and $W := (u+v,u+v+\delta).$

Case 3b (right-angle corner, second quadrant): The sharp-angle corner of Case 3a appears as a subcone. Use U and V as in Case 3a and

$$W:=(u+v-\delta/2,u+v+\delta/2).$$

Cauchy-Pexider in the limit. Application. Open questions

Conjecture

Theorem is false for arbitrary convex polygons $F \subset \mathbb{R}^2$.

Open Question

Generalize the theorem to faces $F = F(I, J, K) \in \Delta \mathcal{P}$, $F \subset \mathbb{R}^k \times \mathbb{R}^k$, where \mathcal{P} is the polyhedral complex of an arbitrary piecewise linear function $\pi \colon \mathbb{R}^k \to \mathbb{R}$.

Main theorem on perturbation spaces / extremality test

 $Basu-Hildebrand-\textbf{K\"o.}, \ Equivariant \ Perturbation \ I, \ MOR \ 2012; \ Basu-Hildebrand-\textbf{K\"o.}, \ Light \ on \ the infinite group \ relaxation, \ 4OR \ 2014; \ Zhou, \ dissertation \ 2017; \ Hildebrand-\textbf{K\"o.}-Zhou, \ 2018+$

Theorem (Basu–Hildebrand–**Kö.**, 2012, 2014; Zhou, 2017, Hildebrand–**Kö.**–Zhou, 2018+)

Let π be minimal function for $R_f(\mathbb{R}/\mathbb{Z})$ that is

- ullet a (possibly discontinuous) piecewise linear function with rational breakpoints in $rac{1}{q}\mathbb{Z}$
- or a piecewise linear function with arbitrary breakpoints that is at least one-sided continuous at 0 and for which the "move completion procedure" terminates.

Then there is a computable direct sum decomposition of the space $\tilde{\Pi}^{\pi}$ into:

- a finite-dimensional space of perturbations that are (possibly discontinuous) linear interpolations of values (and limits) at breakpoints,
- a finite number of infinite-dimensional spaces of Lipschitz perturbations $\tilde{\pi}$, equivariant under a computable semigroup action, zero on breakpoints.

Main theorem on perturbation spaces / extremality test

Basu–Hildebrand–Kö., Equivariant Perturbation I, MOR 2012; Basu–Hildebrand–Kö., Light on the infinite group relaxation, 4OR 2014; Zhou, dissertation 2017; Hildebrand–Kö.–Zhou, 2018+

Theorem (Basu-Hildebrand-Kö., 2012, 2014; Zhou, 2017, Hildebrand-Kö.-Zhou, 2018+)

Let π be minimal function for $R_f(\mathbb{R}/\mathbb{Z})$ that is

- a (possibly discontinuous) piecewise linear function with rational breakpoints in \(\frac{1}{q}\mathbb{Z}\)
 or a piecewise linear function with arbitrary breakpoints that is at least one-sided continuous at 0 and for which the "move completion procedure" terminates.
- Then there is a computable direct sum decomposition of the space $\tilde{\Pi}^{\pi}$ into:
- a finite-dimensional space of perturbations that are (possibly discontinuous) linear interpolations of values (and limits) at "breakpoints",
 - a finite number of infinite-dimensional spaces of Lipschitz perturbations $\tilde{\pi}$, equivariant under a computable semigroup action, zero on "breakpoints."

drlm_not_extreme_1

Finite-dimensional perturbation subspace: Interpolations of perturbations on 'breakpoints'

0 4 1 1 1 1

not_extreme_1

bhk_irrational

Infinite-dimensional perturbation subspace: Equivariant perturbations, 0 on 'breakpoints'

Cauchy-Pexider on irrational edges - the strip lemma

Basu–Hildebrand–Köppe, Equivariant Perturbation I, MOR 2012; Hildebrand, Hong, **Kö.**, La Haye, Louveaux, unpublished, 2014; Zhou, dissertation 2017; Hildebrand–**Kö.**–Zhou, Equivariant Perturbation VII, 2018+

$${\color{red} {\it F}}=$$
 union of $n+1$ irrational translates of an edge

Equivalent: Characterize connectivity of lattice points in the strip

$$S_{\mathbf{a}} = \{ x \in \mathbb{R}^n \mid 0 \le \mathbf{a} \cdot x \le 1 \}$$

by standard unit moves
$$\{\pm e^1, \pm e^2, \dots, \pm e^n\}$$
.

Theorem

Let n=2 and $\mathbf{a}_1,\mathbf{a}_2\in(0,1)$ be rationally independent. Then $S_\mathbf{a}\cap\mathbb{Z}^2$ is connected if and only if $\|\mathbf{a}\|_1\leq 1$.

SageMath (Python) package cutgeneratingfunctionology

https://github.com/mkoeppe/cutgenerating functionology

Authors: Chun Yu Hong (2013), **Kö.** (2013–), Yuan Zhou (2014–), Jiawei Wang (2016–), contributing undergraduate programmers

Models:

- 1-row Gomory-Johnson model
- Gomory's finite (cyclic) group problem
- superadditive lifting functions
- dual-feasible functions
- multi-row code under development

Functionality:

- electronic compendium of functions
- automatic extremality test (Basu-Hildebrand-Kö., Math. Oper. Res. 2014, Hong-Kö.-Zhou, ICMS 2016, Zhou 2017, Hildebrand-Kö.-Zhou, 2018+)
- computer-based search for extreme functions (Kö.–Zhou, MPC 2016)